Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
Food Res Int ; 187: 114343, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763636

RESUMO

Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.


Assuntos
Filtração , Fórmulas Infantis , Muco , Animais , Fórmulas Infantis/química , Muco/metabolismo , Suínos , Proteínas do Soro do Leite/metabolismo , Intestino Delgado/metabolismo , Tripsina/metabolismo , Humanos , Células Caliciformes/metabolismo , Claudina-1/metabolismo , Claudina-1/genética , Lactase/metabolismo , Lactase/genética , Mucina-2/metabolismo , Mucina-2/genética , Mucosa Intestinal/metabolismo , Duodeno/metabolismo , Jejuno/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas do Leite/metabolismo , Proteínas do Leite/análise
2.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691832

RESUMO

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Assuntos
Colite , Sulfato de Dextrana , Fator 2 Relacionado a NF-E2 , NF-kappa B , Polissacarídeos , Animais , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/administração & dosagem , Sulfato de Dextrana/efeitos adversos , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Humanos , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/metabolismo , Células RAW 264.7 , NF-kappa B/metabolismo , NF-kappa B/genética , Camundongos Endogâmicos C57BL , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Estresse Oxidativo/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/imunologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Mucina-2/genética , Mucina-2/metabolismo
3.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791132

RESUMO

Inflammatory bowel disease (IBD) is a multifactorial disease involving the interaction of the gut microbiota, genes, host immunity, and environmental factors. Dysbiosis in IBD is associated with pathobiont proliferation, so targeted antibiotic therapy is a rational strategy. When restoring the microbiota with probiotics, it is necessary to take into account the mutual influence of co-cultivated microorganisms, as the microbiota is a dynamic community of species that mediates homeostasis and physiological processes in the intestine. The aim of our study was to investigate the recovery efficacy of two potential probiotic bacteria, L. johnsonii and E. faecalis, in Muc2-/- mice with impaired mucosal layer. Two approaches were used to determine the efficacy of probiotic supplementation in mice with dysbiosis caused by mucin-2 deficiency: bacterial seeding on selective media and real-time PCR analysis. The recovery time and the type of probiotic bacteria relocated affected only the number of E. faecalis. A significant positive correlation was found between colony-forming unit (CFU) and the amount of E. faecalis DNA in the group that was replanted with probiotic E. faecalis. As for L. johnsonii, it could be restored to its original level even without any additional bacteria supplementation after two weeks. Interestingly, the treatment of mice with L. johnsonii caused a decrease in the amount of E. faecalis. Furthermore, either L. johnsonii or E. faecalis treatment eliminated protozoan overgrowth caused by antibiotic administration.


Assuntos
Antibacterianos , Disbiose , Enterococcus faecalis , Lactobacillus johnsonii , Probióticos , Animais , Enterococcus faecalis/efeitos dos fármacos , Camundongos , Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Animais de Doenças , Mucina-2/metabolismo , Mucina-2/genética , Doenças Inflamatórias Intestinais/microbiologia , Camundongos Knockout
4.
Nutrients ; 16(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674791

RESUMO

Sleep deprivation (SD) leads to impaired intestinal barrier function and intestinal flora disorder, especially a reduction in the abundance of the next generation of probiotic Faecalibacterium prausnitzii (F. prausnitzii). However, it remains largely unclear whether F. prausnitzii can ameliorate SD-induced intestinal barrier damage. A 72 h SD mouse model was used in this research, with or without the addition of F. prausnitzii. The findings indicated that pre-colonization with F. prausnitzii could protect against tissue damage from SD, enhance goblet cell count and MUC2 levels in the colon, boost tight-junction protein expression, decrease macrophage infiltration, suppress pro-inflammatory cytokine expression, and reduce apoptosis. We found that the presence of F. prausnitzii helped to balance the gut microbiota in SD mice by reducing harmful bacteria like Klebsiella and Staphylococcus, while increasing beneficial bacteria such as Akkermansia. Ion chromatography analysis revealed that F. prausnitzii pretreatment increased the fecal butyrate level in SD mice. Overall, these results suggested that incorporating F. prausnitzii could help reduce gut damage caused by SD, potentially by enhancing the intestinal barrier and balancing gut microflora. This provides a foundation for utilizing probiotics to protect against intestinal illnesses.


Assuntos
Disbiose , Faecalibacterium prausnitzii , Microbioma Gastrointestinal , Mucosa Intestinal , Probióticos , Privação do Sono , Animais , Privação do Sono/complicações , Camundongos , Probióticos/farmacologia , Probióticos/administração & dosagem , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Fezes/microbiologia , Camundongos Endogâmicos C57BL , Suplementos Nutricionais , Modelos Animais de Doenças , Mucina-2/metabolismo , Butiratos/metabolismo , Colo/microbiologia , Colo/metabolismo
5.
Nutrients ; 16(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38674854

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a commonly encountered foodborne pathogen that can cause hemorrhagic enteritis and lead to hemolytic uremic syndrome (HUS) in severe cases. Bifidobacterium is a beneficial bacterium that naturally exists in the human gut and plays a vital role in maintaining a healthy balance in the gut microbiota. This study investigated the protective effects of B. longum K5 in a mouse model of EHEC O157:H7 infection. The results indicated that pretreatment with B. longum K5 mitigated the clinical symptoms of EHEC O157:H7 infection and attenuated the increase in myeloperoxidase (MPO) activity in the colon of the mice. In comparison to the model group, elevated serum D-lactic acid concentrations and diamine oxidase (DAO) levels were prevented in the K5-EHEC group of mice. The reduced mRNA expression of tight junction proteins (ZO-1, Occludin, and Claudin-1) and mucin MUC2, as well as the elevated expression of virulence factors Stx1A and Stx2A, was alleviated in the colon of both the K5-PBS and K5-EHEC groups. Additionally, the increase in the inflammatory cytokine levels of TNF-α and IL-1ß was inhibited and the production of IL-4 and IL-10 was promoted in the K5-EHEC group compared with the model group. B. longum K5 significantly prevented the reduction in the abundance and diversity of mouse gut microorganisms induced by EHEC O157:H7 infection, including blocking the decrease in the relative abundance of Roseburia, Lactobacillus, and Oscillibacter. Meanwhile, the intervention with B. longum K5 promoted the production of acetic acid and butyric acid in the gut. This study provides insights into the use of B. longum K5 for developing probiotic formulations to prevent intestinal diseases caused by pathogenic bacterial infections.


Assuntos
Bifidobacterium longum , Colo , Infecções por Escherichia coli , Escherichia coli O157 , Microbioma Gastrointestinal , Probióticos , Animais , Camundongos , Probióticos/farmacologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/microbiologia , Colo/microbiologia , Colo/metabolismo , Modelos Animais de Doenças , Mucina-2/metabolismo , Citocinas/metabolismo , Peroxidase/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo
6.
Int J Biol Macromol ; 267(Pt 2): 131434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614182

RESUMO

The gastrointestinal (GI) tract's mucus layer serves as a critical barrier and a mediator in drug nanoparticle delivery. The mucus layer's diverse molecular structures and spatial complexity complicates the mechanistic study of the diffusion dynamics of particulate materials. In response, we developed a bi-component coarse-grained mucus model, specifically tailored for the colorectal cancer environment, that contained the two most abundant glycoproteins in GI mucus: Muc2 and Muc5AC. This model demonstrated the effects of molecular composition and concentration on mucus pore size, a key determinant in the permeability of nanoparticles. Using this computational model, we investigated the diffusion rate of polyethylene glycol (PEG) coated nanoparticles, a widely used muco-penetrating nanoparticle. We validated our model with experimentally characterized mucus pore sizes and the diffusional coefficients of PEG-coated nanoparticles in the mucus collected from cultured human colorectal goblet cells. Machine learning fingerprints were then employed to provide a mechanistic understanding of nanoparticle diffusional behavior. We found that larger nanoparticles tended to be trapped in mucus over longer durations but exhibited more ballistic diffusion over shorter time spans. Through these discoveries, our model provides a promising platform to study pharmacokinetics in the GI mucus layer.


Assuntos
Muco , Nanopartículas , Polietilenoglicóis , Humanos , Nanopartículas/química , Difusão , Polietilenoglicóis/química , Muco/metabolismo , Muco/química , Mucina-2/metabolismo , Mucina-2/química , Mucina-5AC/metabolismo , Mucina-5AC/química , Mucosa Intestinal/metabolismo , Trato Gastrointestinal/metabolismo , Células Caliciformes/metabolismo , Modelos Biológicos
7.
Food Funct ; 15(9): 5118-5131, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38682277

RESUMO

This study investigated the impact of in vivo available colon-mango (poly)phenols on stress-induced impairment of intestinal barrier function. Caco-2/HT29-MTX cells were incubated with six extracts of ileal fluid collected pre- and 4-8 h post-mango consumption before being subjected to inflammatory stress. (Poly)phenols in ileal fluids were analysed by UHPLC-HR-MS. Epithelial barrier function was monitored by measurement of trans-epithelial electrical resistance (TEER) and the production of selected inflammatory markers (interleukin-8 (IL-8) and nitric oxide (NO)) and the major mucin of the mucosal layer (MUC2). Post-mango intake ileal fluids contained principally benzoic acids, hydroxybenzenes and galloyl derivatives. There was a high interindividual variability in the levels of these compounds, which was reflected by the degree of variability in the protective effects of individual ileal extracts on inflammatory changes in the treated cell cultures. The 24 h treatment with non-cytotoxic doses of extracts of 4-8 h post-mango intake ileal fluid significantly reduced the TEER decrease in monolayers treated with the inflammatory cytomix. This effect was not associated with changes in IL-8 expression and secretion or claudine-7 expression. The mango derived-ileal fluid extract (IFE) also mitigated cytomix-dependent nitrite secretion, as a proxy of NO production, and the MUC2 reduction observed upon the inflammatory challenge. These insights shed light on the potential protective effect of mango (poly)phenols on the intestinal barrier exposed to inflammatory conditions.


Assuntos
Interleucina-8 , Mucosa Intestinal , Mangifera , Mucina-2 , Humanos , Mangifera/química , Células CACO-2 , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Interleucina-8/metabolismo , Mucina-2/metabolismo , Células HT29 , Polifenóis/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inflamação/tratamento farmacológico , Função da Barreira Intestinal
8.
Phytomedicine ; 129: 155541, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579640

RESUMO

BACKGROUND: Diarrheal irritable bowel syndrome (IBS-D), characterized primarily by the presence of diarrhea and abdominal pain, is a clinical manifestation resulting from a multitude of causative factors. Furthermore, Sishen Wan (SSW) has demonstrated efficacy in treating IBS-D. Nevertheless, its mechanism of action remains unclear. METHODS: A model of IBS-D was induced by a diet containing 45 % lactose and chronic unpredictable mild stress. Additionally, the impact of SSW was assessed by measuring body weight, visceral sensitivity, defecation parameters, intestinal transport velocity, intestinal neurotransmitter levels, immunohistochemistry, and transmission electron microscopy analysis. Immunofluorescent staining was used to detect the expression of Mucin 2 (MUC2) and Occludin in the colon. Western blotting was used to detect changes in proteins related to tight junction (TJ), autophagy, and endoplasmic reticulum (ER) stress in the colon. Finally, 16S rRNA amplicon sequencing was used to monitor the alteration of gut microbiota after SSW treatment. RESULTS: Our study revealed that SSW administration resulted in reduced visceral sensitivity, improved defecation parameters, decreased intestinal transport velocity, and reduced intestinal permeability in IBS-D mice. Furthermore, SSW promotes the secretion of colonic mucus by enhancing autophagy and inhibiting ER stress. SSW treatment caused remodeling of the gut microbiome by increasing the abundance of Blautia, Muribaculum and Ruminococcus torques group. CONCLUSION: SSW can improve intestinal barrier function by promoting autophagy and inhibiting ER stress, thus exerting a therapeutic effect on IBS-D.


Assuntos
Diarreia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Estresse do Retículo Endoplasmático , Microbioma Gastrointestinal , Mucosa Intestinal , Síndrome do Intestino Irritável , Síndrome do Intestino Irritável/tratamento farmacológico , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Diarreia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Mucosa Intestinal/efeitos dos fármacos , Mucina-2/metabolismo , Colo/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Ocludina/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Camundongos Endogâmicos C57BL , Função da Barreira Intestinal
9.
Chem Biol Interact ; 395: 111014, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38648921

RESUMO

There is an increasing appreciation that colonic barrier function is closely related to the development and progression of colitis. The mucus layer is a crucial component of the colonic barrier, responsible for preventing harmful bacteria from invading the intestinal epithelium and causing inflammation. Furthermore, a defective mucus barrier is also a significant characteristic of ulcerative colitis (UC). Biochanin A (BCA), an isoflavonoid, has garnered increasing interest due to its significant biological activities. However, the impact of BCA on UC has not been reported yet. In this study, we used a dextran sodium sulfate (DSS)-induced ulcerative colitis model and the Muc2 deficient (Muc2-/-) mice spontaneous colitis model to explore the mechanisms of BCA in the treatment of UC. Here, we verified that DSS-induced UC was observably attenuated and spontaneous colitis in Muc2-/- mice was relieved by BCA. Treatment with BCA improved colitis-related symptoms and reduced intestinal permeability by upregulating the levels of goblet cells and tight junction (TJ) proteins. In addition, we confirmed that BCA promotes autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway, thereby alleviating DSS-induced UC. In addition, the administration of BCA was able to reduce apoptosis and promote proliferation by suppressing Cleaved Caspase-3 (Cleaved Cas-3) expression, and increasing PCNA and Ki67 levels. Further research revealed that BCA treatment ameliorated spontaneous colitis and alleviated epithelial damage in Muc2-/- mice by restoring the intestinal barrier and promoting autophagy. Our results demonstrated that BCA alleviated UC by enhancing intestinal barrier function and promoting autophagy. These findings indicate that BCA may be a novel treatment alternative for UC.


Assuntos
Colite Ulcerativa , Colo , Sulfato de Dextrana , Genisteína , Mucina-2 , Animais , Mucina-2/metabolismo , Mucina-2/genética , Sulfato de Dextrana/toxicidade , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Genisteína/farmacologia , Genisteína/uso terapêutico , Camundongos , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Autofagia/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Camundongos Knockout , Apoptose/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Cell Biochem Funct ; 42(2): e3989, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500386

RESUMO

Colorectal mucinous adenocarcinoma (MAC) is one of the most lethal histological types of colorectal cancer, and its mechanism of development is not well understood. In this study, we aimed to clarify the molecular characteristics of MAC via in silico analysis using The Cancer Genome Atlas database. The expression of genes on chromosome 20q (Chr20q) was negatively associated with the expression of MUC2, which is a key molecule that can be used to distinguish between MAC and nonmucinous adenocarcinoma (NMAC). This was consistent with a significant difference in copy number alteration of Chr20q between the two histological types. We further identified 475 differentially expressed genes (DEGs) between MAC and NMAC, and some of the Chr20q genes among the DEGs are considered to be pivotal genes used to define MAC. Both in vitro and in vivo analysis showed that simultaneous knockdown of POFUT1 and PLAGL2, both of which are located on Chr20q, promoted MUC2 expression. Moreover, these genes were highly expressed in NMAC but not in MAC according to the results of immunohistological studies using human samples. In conclusion, POFUT1 and PLAGL2 are considered to be important for defining MAC, and these genes are associated with MUC2 expression.


Assuntos
Adenocarcinoma Mucinoso , Adenocarcinoma , Neoplasias Colorretais , Humanos , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/patologia , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mucina-2/genética , Mucina-2/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética
11.
Genomics ; 116(3): 110809, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492821

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the prevalence rate of CRC is increasing in the China. In this study, whole-exome sequencing (WES) was performed on primary tissues of 47 CRC Chinese patients including 22 metastatic and 25 non-metastatic patients. By comparison with data from western colorectal cancer patients in the Cancer Genome Atlas (TCGA), we identified a number of genes that are more likely to be mutated in Chinese colorectal cancer patients, such as MUC12, MUC12, MUC2, MUC4, HYDIN and KMT2C. Interestingly, MUC family genes including MUC12, MUC2 and MUC4, have mutation rates of >20%, while the mutation frequency was extremely low in western colorectal cancer patients, which were <3% in TCGA and 0% in Memorial Sloan Kettering Cancer Center (MSKCC). We detected metastasis-specific mutated genes including TCF7L2, MST1L, HRNR and SMAD4, while MUC4, NEB, FLG and RFPL4A alteration is more prevalent in the non-metastasis group. Further analysis reveals mutation genes in metastasis group are more focus in the Wnt and Hippo signaling pathway. APC, SMAD4 and TCF7L2 accounted for the major genetic abnormalities in this pathway. In conclusion, this study identified the unique characteristics of gene mutations in Chinese patients with colorectal cancer, and is a valuable reference for personalized treatment in Chinese CRC patients.


Assuntos
Neoplasias Colorretais , Sequenciamento do Exoma , Mutação , Metástase Neoplásica , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Via de Sinalização Hippo , Mucina-4/genética , Mucina-4/metabolismo , China , Mucina-2/genética , Mucina-2/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas Filagrinas , Proteínas Serina-Treonina Quinases/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Via de Sinalização Wnt , Povo Asiático/genética , População do Leste Asiático , Proteínas de Ligação a DNA
12.
Vet Immunol Immunopathol ; 271: 110740, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537313

RESUMO

Intestinal mucus barrier disruption may occur with chronic inflammatory enteropathies. The lack of studies evaluating mucus health in dogs with chronic colitis arises from inherent challenges with assessment of the intestinal mucus layer. It is therefore unknown if reduced goblet cell (GBC) numbers and/or mucin 2 (MUC2) expression, which are responsible for mucus production and secretion, correlate with inflammation severity in dogs with granulomatous colitis (GC) or lymphocytic-plasmacytic colitis (LPC). It is undetermined if Ki-67 immunoreactivity, which has been evaluated in dogs with small intestinal inflammation, similarly correlates to histologic severity in GC and LPC. Study objectives included comparing Ki-67 immunoreactivity, GBC population and MUC2 expression in dogs with GC, LPC and non-inflamed colon; and exploring the use of ribonucleic acid (RNAscope®) in-situ hybridization (ISH) to evaluate MUC2 expression in canine colon. Formalin-fixed endoscopic colonic biopsies were obtained from 48 dogs over an eight-year period. A blinded pathologist reviewed all biopsies. Dogs were classified into the GC (n=19), LPC (n=19) or no colitis (NC) (n=10) group based on final histopathological diagnosis. Ki-67 immunohistochemistry, Alcian-Blue/PAS staining to highlight GBCs, and RNAscope® ISH using customized canine MUC2-targeted probes were performed. At least five microscopic fields per dog were selected to measure Ki-67 labelling index (KI67%), GBC staining percentage (GBC%) and MUC2 expression (MUC2%) using image analysis software. Spearman's correlation coefficients were used to determine associations between World Small Animal Veterinary Association histologic score (WHS) and measured variables. Linear regression models were used to compare relationships between WHS with KI67%, GBC%, and MUC2%; and between GBC% and MUC2%. Median WHS was highest in dogs with GC. Median KI67% normalised to WHS was highest in the NC group (6.69%; range, 1.70-23.60%). Median GBC% did not correlate with colonic inflammation overall. Median MUC2% normalised to WHS in the NC group (10.02%; range, 3.05-39.09%) was two- and three-fold higher than in the GC and LPC groups respectively. With increased colonic inflammation, despite minimal changes in GBC% overall, MUC2 expression markedly declined in the LPC group (-27.4%; 95%-CI, -49.8, 5.9%) and mildly declined in the GC and NC groups. Granulomatous colitis and LPC likely involve different pathways regulating MUC2 expression. Decreased MUC2 gene expression is observed in dogs with chronic colitis compared to dogs without colonic signs. Changes in MUC2 expression appear influenced by GBC activity rather than quantity in GC and LPC.


Assuntos
Colite , Doenças do Cão , Células Caliciformes , Antígeno Ki-67 , Mucina-2 , Animais , Cães , Mucina-2/genética , Mucina-2/metabolismo , Células Caliciformes/patologia , Células Caliciformes/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Doenças do Cão/metabolismo , Doenças do Cão/genética , Doenças do Cão/imunologia , Colite/veterinária , Colite/patologia , Feminino , Masculino , Colo/patologia , Granuloma/veterinária , Granuloma/patologia , Imuno-Histoquímica/veterinária
13.
Int J Biol Macromol ; 266(Pt 1): 131232, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554896

RESUMO

Inflammatory bowel diseases (IBD) are chronic inflammatory conditions characterized by disruptions in the colonic mucus barrier and gut microbiota. In this study, a novel soluble polysaccharide obtained from Boletus aereus (BAP) through water extraction was examined for its structure. The protective effects of BAP on colitis were investigated using a DSS-induced mice model. BAP was found to promote the expression of intestinal mucosal and tight junction proteins, restore the compromised mucus barrier, and suppress the activation of inflammatory signaling. Moreover, BAP reshape the gut microbiota and had a positive impact on the composition of the gut microbiota by reducing inflammation-related microbes. Additionally, BAP decreased cytokine levels through the MANF-BATF2 signaling pathway. Correlation analysis revealed that MANF was negatively correlated with the DAI and the level of cytokines. Furthermore, the depletion of gut microbiota using antibiotic partially inhabited the effect of BAP on the activation of MANF and Muc2, indicating the role of gut microbiota in its protective effect against colitis. In conclusion, BAP had an obvious activation on MANF under gut inflammation. This provides new insights into the prospective use of BAP as a functional food to enhance intestinal health.


Assuntos
Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , Mucina-2 , Transdução de Sinais , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Mucina-2/metabolismo , Mucina-2/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Modelos Animais de Doenças , Polissacarídeos/farmacologia , Polissacarídeos/química , Citocinas/metabolismo , Basidiomycota/química , Masculino , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química
14.
Sci Rep ; 14(1): 6954, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521809

RESUMO

Mucin protein glycosylation is important in determining biological properties of mucus gels, which form protective barriers at mucosal surfaces of the body such as the intestine. Ecological factors including: age, sex, and diet can change mucus barrier properties by modulating mucin glycosylation. However, as our understanding stems from controlled laboratory studies in house mice, the combined influence of ecological factors on mucin glycosylation in real-world contexts remains limited. In this study, we used histological staining with 'Alcian Blue, Periodic Acid, Schiff's' and 'High-Iron diamine' to assess the acidic nature of mucins stored within goblet cells of the intestine, in a wild mouse population (Mus musculus). Using statistical models, we identified sex as among the most influential ecological factors determining the acidity of intestinal mucin glycans in wild mice. Our data from wild mice and experiments using laboratory mice suggest estrogen signalling associates with an increase in the relative abundance of sialylated mucins. Thus, estrogen signalling may underpin sex differences observed in the colonic mucus of wild and laboratory mice. These findings highlight the significant influence of ecological parameters on mucosal barrier sites and the complementary role of wild populations in augmenting standard laboratory studies in the advancement of mucus biology.


Assuntos
Colo , Mucinas , Camundongos , Feminino , Masculino , Animais , Mucinas/metabolismo , Colo/patologia , Células Caliciformes/metabolismo , Intestinos , Estrogênios/metabolismo , Mucina-2/metabolismo , Mucosa Intestinal/metabolismo
15.
Am J Pathol ; 194(6): 975-988, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423356

RESUMO

Radiation-induced enteritis, a significant concern in abdominal radiation therapy, is associated closely with gut microbiota dysbiosis. The mucus layer plays a pivotal role in preventing the translocation of commensal and pathogenic microbes. Although significant expression of REGγ in intestinal epithelial cells is well established, its role in modulating the mucus layer and gut microbiota remains unknown. The current study revealed notable changes in gut microorganisms and metabolites in irradiated mice lacking REGγ, as compared to wild-type mice. Concomitant with gut microbiota dysbiosis, REGγ deficiency facilitated the infiltration of neutrophils and macrophages, thereby exacerbating intestinal inflammation after irradiation. Furthermore, fluorescence in situ hybridization assays unveiled an augmented proximity of bacteria to intestinal epithelial cells in REGγ knockout mice after irradiation. Mechanistically, deficiency of REGγ led to diminished goblet cell populations and reduced expression of key goblet cell markers, Muc2 and Tff3, observed in both murine models, minigut organoid systems and human intestinal goblet cells, indicating the intrinsic role of REGγ within goblet cells. Interestingly, although administration of broad-spectrum antibiotics did not alter the goblet cell numbers or mucin 2 (MUC2) secretion, it effectively attenuated inflammation levels in the ileum of irradiated REGγ absent mice, bringing them down to the wild-type levels. Collectively, these findings highlight the contribution of REGγ in counteracting radiation-triggered microbial imbalances and cell-autonomous regulation of mucin secretion.


Assuntos
Enterite , Microbioma Gastrointestinal , Células Caliciformes , Homeostase , Camundongos Knockout , Animais , Enterite/microbiologia , Enterite/metabolismo , Enterite/patologia , Camundongos , Células Caliciformes/patologia , Células Caliciformes/metabolismo , Humanos , Proteínas Associadas a Pancreatite/metabolismo , Mucina-2/metabolismo , Disbiose/microbiologia , Disbiose/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Fator Trefoil-3/metabolismo , Camundongos Endogâmicos C57BL , Lesões por Radiação/metabolismo , Lesões por Radiação/microbiologia , Lesões por Radiação/patologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/microbiologia
16.
Microbiol Res ; 281: 127599, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219635

RESUMO

The colonic mucus layer plays a critical role in maintaining the integrity of the colonic mucosal barrier, serving as the primary defense against colonic microorganisms. Predominantly composed of mucin 2 (MUC2), a glycosylation-rich protein, the mucus layer forms a gel-like coating that covers the colonic epithelium surface. This layer provides a habitat for intestinal microorganisms, which can utilize mucin glycans present in the mucus layer as a sustainable source of nutrients. Additionally, metabolites produced by the microbiota during the metabolism of mucus glycans have a profound impact on host health. Under normal conditions, the production and consumption of mucus maintain a dynamic balance. However, several studies have demonstrated that certain factors, such as dietary fiber deficiency, can enhance the metabolism of mucus glycans by gut bacteria, thereby disturbing this balance and weakening the mucus barrier function of the mucus layer. To better understand the occurrence and development of colon-related diseases, it is crucial to investigate the complex metabolic patterns of mucus glycosylation by intestinal microorganisms. Our objective was to comprehensively review these patterns in order to clarify the effects of mucus layer glycan metabolism by intestinal microorganisms on the host.


Assuntos
Formigas , Mucosa Intestinal , Animais , Mucosa Intestinal/metabolismo , Muco/metabolismo , Mucina-2/metabolismo , Mucinas/metabolismo , Colo/metabolismo , Colo/microbiologia , Polissacarídeos/metabolismo , Formigas/metabolismo
17.
J Biol Chem ; 300(3): 105675, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272223

RESUMO

The O-glycoprotein Mucin-2 (MUC2) forms the protective colon mucus layer. While animal models have demonstrated the importance of Muc2, few studies have explored human MUC2 in similar depth. Recent studies have revealed that secreted MUC2 is bound to human feces. We hypothesized human fecal MUC2 (HF-MUC2) was accessible for purification and downstream structural and functional characterization. We tested this via histologic and quantitative imaging on human fecal sections; extraction from feces for proteomic and O-glycomic characterization; and functional studies via growth and metabolic assays in vitro. Quantitative imaging of solid fecal sections showed a continuous mucus layer of varying thickness along human fecal sections with barrier functions intact. Lectin profiling showed HF-MUC2 bound several lectins but was weak to absent for Ulex europaeus 1 (α1,2 fucose-binding) and Sambucus nigra agglutinin (α2,6 sialic acid-binding), and did not have obvious b1/b2 barrier layers. HF-MUC2 separated by electrophoresis showed high molecular weight glycoprotein bands (∼1-2 MDa). Proteomics and Western analysis confirmed the enrichment of MUC2 and potential MUC2-associated proteins in HF-MUC2 extracts. MUC2 O-glycomics revealed diverse fucosylation, moderate sialylation, and little sulfation versus porcine colonic MUC2 and murine fecal Muc2. O-glycans were functional and supported the growth of Bacteroides thetaiotaomicron (B. theta) and short-chain fatty acid (SCFA) production in vitro. MUC2 could be similarly analyzed from inflammatory bowel disease stools, which displayed an altered glycomic profile and differential growth and SCFA production by B. theta versus healthy samples. These studies describe a new non-invasive platform for human MUC2 characterization in health and disease.


Assuntos
Colo , Fezes , Proteômica , Animais , Humanos , Camundongos , Colo/metabolismo , Glicoproteínas/metabolismo , Mucosa Intestinal/metabolismo , Mucina-2/genética , Mucina-2/metabolismo , Muco/metabolismo , Suínos , Masculino , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal
18.
Am J Surg Pathol ; 48(2): 127-139, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38062562

RESUMO

Small bowel adenocarcinoma (SBA) is rare, and scant data exist regarding its molecular and clinicopathologic characteristics. This study aimed to clarify the correlation between immunophenotypes, DNA mismatch repair status, genomic profiling, and clinicopathologic characteristics in patients with SBA. We examined 68 surgical resections from patients with primary SBA for immunohistochemical analyses of CK7, CK20, CD10, CDX2, MUC1, MUC2, MUC4, MUC5AC, and MUC6 expression as well as mismatch repair status. Genomic profiling was performed on 30 cases using targeted next-generation sequencing. Tumor mucin phenotypes were classified as gastric, intestinal, gastrointestinal, or null based on MUC2, MUC5AC, MUC6, and CD10 immunostaining. The expression of these proteins was categorized into 3 classifications according to their relationship to: (1) tumor location: CK7/CK20, MUC4, and MUC6; (2) histologic type: mucinous adenocarcinoma was positive for MUC2 and negative for MUC6; and (3) TNM stage: CD10 was downregulated, whereas MUC1 was upregulated in advanced TNM stages. CDX2 was a specific marker for SBA generally expressed in the small intestine. MUC1 and MUC4 expression was significantly associated with worse prognosis. MUC2 expression correlated with better prognosis, except for mucinous adenocarcinoma. Although the difference was not statistically significant, gastric-type tumors were more frequently located in the duodenum and were absent in the ileum. APC and CTNNB1 mutations were not found in the gastric-type tumors. The SBA immunophenotype correlated with tumor location, biological behavior, and genomic alterations. Our results suggest that the molecular pathway involved in carcinogenesis of gastric-type SBA differs from that of intestinal-type SBA.


Assuntos
Adenocarcinoma Mucinoso , Adenocarcinoma , Neoplasias Duodenais , Humanos , Mucina-2/análise , Mucina-2/genética , Mucina-2/metabolismo , Perfil Genético , Biomarcadores Tumorais/análise , Adenocarcinoma/genética , Adenocarcinoma Mucinoso/patologia , Intestino Delgado/patologia
19.
Cell Host Microbe ; 31(7): 1087-1100, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37442097

RESUMO

The colon mucus layer is organized with an inner colon mucus layer that is impenetrable to bacteria and an outer mucus layer that is expanded to allow microbiota colonization. A major component of mucus is MUC2, a glycoprotein that is extensively decorated, especially with O-glycans. In the intestine, goblet cells are specialized in controlling glycosylation and making mucus. Some microbiota members are known to encode multiple proteins that are predicted to bind and/or cleave mucin glycans. The interactions between commensal microbiota and host mucins drive intestinal colonization, while at the same time, the microbiota can utilize the glycans on mucins and affect the colonic mucus properties. This review will examine this interaction between commensal microbes and intestinal mucins and discuss how this interplay affects health and disease.


Assuntos
Mucosa Intestinal , Microbiota , Mucosa Intestinal/microbiologia , Mucina-2/metabolismo , Intestinos/microbiologia , Muco/metabolismo , Mucinas/metabolismo , Polissacarídeos/metabolismo
20.
FASEB J ; 37(7): e22994, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249555

RESUMO

Mucin-2 (MUC2) secreted by goblet cells participates in the intestinal barrier, but its mechanism in acute necrotizing pancreatitis (ANP) remains unclear. In acute pancreatitis (AP) patients, the functions of goblet cells (MUC2, FCGBP, CLCA1, and TFF3) decreased, and MUC2 was negatively correlated with AP severity. ANP rats treated with pilocarpine (PILO) (PILO+ANP rats) to deplete MUC2 showed more serious pancreatic and colonic injuries, goblet cell dysfunction, gut dysbiosis, and bacterial translocation than those of ANP rats. GC-MS analysis of feces showed that PILO+ANP rats had lower levels of butyric acid, isobutyric acid, isovaleric acid, and hexanoic acid than those of ANP rats. The expression of MUC2 was associated with colonic injury and gut dysbiosis. All these phenomena could be relieved, and goblet cell functions were also partially reversed by MUC2 supplementation in ANP rats. TNF-α-treated colonoids had exacerbated goblet cell dysfunction. MUC2 expression was negatively correlated with the levels of pro-inflammatory cytokines (IL-1ß and IL-6) (p < .05) and positively related to the expression of tight junction proteins (Claudin 1, Occludin, and ZO1) (p < .05). Downregulating MUC2 by siRNA increased the levels of the pro-inflammatory cytokines in colonoids. MUC2 might maintain intestinal homeostasis to alleviate ANP.


Assuntos
Pancreatite Necrosante Aguda , Ratos , Animais , Mucina-2/genética , Mucina-2/metabolismo , Pancreatite Necrosante Aguda/induzido quimicamente , Pancreatite Necrosante Aguda/tratamento farmacológico , Pancreatite Necrosante Aguda/metabolismo , Disbiose/metabolismo , Doença Aguda , Citocinas/metabolismo , Homeostase , Mucosa Intestinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...