Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 46: 116356, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416512

RESUMO

The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.


Assuntos
Antivirais/farmacologia , Vírus de RNA de Cadeia Positiva/efeitos dos fármacos , Animais , Citocinas/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Glicosilação/efeitos dos fármacos , Humanos , Imunidade/efeitos dos fármacos , Imunidade/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/fisiologia , Poliaminas/metabolismo , Vírus de RNA de Cadeia Positiva/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/fisiologia
2.
Viruses ; 13(8)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34452503

RESUMO

Recent outbreaks of zoonotic coronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have caused tremendous casualties and great economic shock. Although some repurposed drugs have shown potential therapeutic efficacy in clinical trials, specific therapeutic agents targeting coronaviruses have not yet been developed. During coronavirus replication, a replicase gene cluster, including RNA-dependent RNA polymerase (RdRp), is alternatively translated via a process called -1 programmed ribosomal frameshift (-1 PRF) by an RNA pseudoknot structure encoded in viral RNAs. The coronavirus frameshifting has been identified previously as a target for antiviral therapy. In this study, the frameshifting efficiencies of MERS-CoV, SARS-CoV and SARS-CoV-2 were determined using an in vitro -1 PRF assay system. Our group has searched approximately 9689 small molecules to identify potential -1 PRF inhibitors. Herein, we found that a novel compound, 2-(5-acetylthiophen-2yl)furo[2,3-b]quinoline (KCB261770), inhibits the frameshifting of MERS-CoV and effectively suppresses viral propagation in MERS-CoV-infected cells. The inhibitory effects of 87 derivatives of furo[2,3-b]quinolines were also examined showing less prominent inhibitory effect when compared to compound KCB261770. We demonstrated that KCB261770 inhibits the frameshifting without suppressing cap-dependent translation. Furthermore, this compound was able to inhibit the frameshifting, to some extent, of SARS-CoV and SARS-CoV-2. Therefore, the novel compound 2-(5-acetylthiophen-2yl)furo[2,3-b]quinoline may serve as a promising drug candidate to interfere with pan-coronavirus frameshifting.


Assuntos
Antivirais/farmacologia , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Quinolinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Células A549 , Animais , Linhagem Celular , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Bibliotecas de Moléculas Pequenas , Zoonoses Virais/virologia , Replicação Viral/efeitos dos fármacos
3.
ACS Chem Biol ; 16(8): 1469-1481, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34328734

RESUMO

The programmed -1 ribosomal frameshifting element (PFSE) of SARS-CoV-2 is a well conserved structured RNA found in all coronaviruses' genomes. By adopting a pseudoknot structure in the presence of the ribosome, the PFSE promotes a ribosomal frameshifting event near the stop codon of the first open reading frame Orf1a during translation of the polyprotein pp1a. Frameshifting results in continuation of pp1a via a new open reading frame, Orf1b, that produces the longer pp1ab polyprotein. Polyproteins pp1a and pp1ab produce nonstructural proteins NSPs 1-10 and NSPs 1-16, respectively, which contribute vital functions during the viral life cycle and must be present in the proper stoichiometry. Both drugs and sequence alterations that affect the stability of the -1 programmed ribosomal frameshifting element disrupt the stoichiometry of the NSPs produced, which compromise viral replication. For this reason, the -1 programmed frameshifting element is considered a promising drug target. Using chaperone assisted RNA crystallography, we successfully crystallized and solved the three-dimensional structure of the PFSE. We observe a three-stem H-type pseudoknot structure with the three stems stacked in a vertical orientation stabilized by two triple base pairs at the stem 1/stem 2 and stem 1/stem 3 junctions. This structure provides a new conformation of PFSE distinct from the bent conformations inferred from midresolution cryo-EM models and provides a high-resolution framework for mechanistic investigations and structure-based drug design.


Assuntos
Cristalografia/métodos , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Chaperonas Moleculares , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Viral/genética , Ribossomos/metabolismo , SARS-CoV-2/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
4.
Virology ; 554: 75-82, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387787

RESUMO

Human population growth, climate change, and globalization are accelerating the emergence of novel pathogenic viruses. In the past two decades alone, three such members of the coronavirus family have posed serious threats, spurring intense efforts to understand their biology as a way to identify targetable vulnerabilities. Coronaviruses use a programmed -1 ribosomal frameshift (-1 PRF) mechanism to direct synthesis of their replicase proteins. This is a critical switch in their replication program that can be therapeutically targeted. Here, we discuss how nearly half a century of research into -1 PRF have provided insight into the virological importance of -1 PRF, the molecular mechanisms that drive it, and approaches that can be used to manipulate it towards therapeutic outcomes with particular emphasis on SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Coronavirus/genética , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Antivirais/química , Antivirais/uso terapêutico , Coronavirus/crescimento & desenvolvimento , Coronavirus/fisiologia , Infecções por Coronavirus/tratamento farmacológico , Mudança da Fase de Leitura do Gene Ribossômico/genética , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Regulação Viral da Expressão Gênica , Humanos , Mutação , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/fisiologia , Replicação Viral
5.
J Biol Chem ; 295(52): 17904-17921, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33127640

RESUMO

Programmed ribosomal frameshifting (PRF) is a mechanism used by arteriviruses like porcine reproductive and respiratory syndrome virus (PRRSV) to generate multiple proteins from overlapping reading frames within its RNA genome. PRRSV employs -1 PRF directed by RNA secondary and tertiary structures within its viral genome (canonical PRF), as well as a noncanonical -1 and -2 PRF that are stimulated by the interactions of PRRSV nonstructural protein 1ß (nsp1ß) and host protein poly(C)-binding protein (PCBP) 1 or 2 with the viral genome. Together, nsp1ß and one of the PCBPs act as transactivators that bind a C-rich motif near the shift site to stimulate -1 and -2 PRF, thereby enabling the ribosome to generate two frameshift products that are implicated in viral immune evasion. How nsp1ß and PCBP associate with the viral RNA genome remains unclear. Here, we describe the purification of the nsp1ß:PCBP2:viral RNA complex on a scale sufficient for structural analysis using small-angle X-ray scattering and stochiometric analysis by analytical ultracentrifugation. The proteins associate with the RNA C-rich motif as a 1:1:1 complex. The monomeric form of nsp1ß within the complex differs from previously reported homodimer identified by X-ray crystallography. Functional analysis of the complex via mutational analysis combined with RNA-binding assays and cell-based frameshifting reporter assays reveal a number of key residues within nsp1ß and PCBP2 that are involved in complex formation and function. Our results suggest that nsp1ß and PCBP2 both interact directly with viral RNA during formation of the complex to coordinate this unusual PRF mechanism.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Proteínas de Ligação a DNA/genética , Humanos , Evasão da Resposta Imune , Síndrome Respiratória e Reprodutiva Suína/imunologia , RNA Viral , Proteínas de Ligação a RNA/genética , Suínos , Proteínas não Estruturais Virais/genética
6.
Nat Commun ; 10(1): 4598, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601802

RESUMO

mRNA contexts containing a 'slippery' sequence and a downstream secondary structure element stall the progression of the ribosome along the mRNA and induce its movement into the -1 reading frame. In this study we build a thermodynamic model based on Bayesian statistics to explain how -1 programmed ribosome frameshifting can work. As training sets for the model, we measured frameshifting efficiencies on 64 dnaX mRNA sequence variants in vitro and also used 21 published in vivo efficiencies. With the obtained free-energy difference between mRNA-tRNA base pairs in the 0 and -1 frames, the frameshifting efficiency of a given sequence can be reproduced and predicted from the tRNA-mRNA base pairing in the two frames. Our results further explain how modifications in the tRNA anticodon modulate frameshifting and show how the ribosome tunes the strength of the base-pair interactions.


Assuntos
Proteínas de Bactérias/genética , DNA Polimerase III/genética , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Modelos Teóricos , Pareamento de Bases , Teorema de Bayes , Códon , Mutação da Fase de Leitura , Lisina/genética , Fenilalanina/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Termodinâmica
7.
Proc Natl Acad Sci U S A ; 116(39): 19500-19505, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31409714

RESUMO

Specific structures in mRNA can stimulate programmed ribosomal frameshifting (PRF). PRF efficiency can vary enormously between different stimulatory structures, but the features that lead to efficient PRF stimulation remain uncertain. To address this question, we studied the structural dynamics of the frameshift signal from West Nile virus (WNV), which stimulates -1 PRF at very high levels and has been proposed to form several different structures, including mutually incompatible pseudoknots and a double hairpin. Using optical tweezers to apply tension to single mRNA molecules, mimicking the tension applied by the ribosome during PRF, we found that the WNV frameshift signal formed an unusually large number of different metastable structures, including all of those previously proposed. From force-extension curve measurements, we mapped 2 mutually exclusive pathways for the folding, each encompassing multiple intermediates. We identified the intermediates in each pathway from length changes and the effects of antisense oligomers blocking formation of specific contacts. Intriguingly, the number of transitions between the different conformers of the WNV frameshift signal was maximal in the range of forces applied by the ribosome during -1 PRF. Furthermore, the occupancy of the pseudoknotted conformations was far too low for static pseudoknots to account for the high levels of -1 PRF. These results support the hypothesis that conformational heterogeneity plays a key role in frameshifting and suggest that transitions between different conformers under tension are linked to efficient PRF stimulation.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Dobramento de RNA/fisiologia , RNA Mensageiro/metabolismo , Mutação da Fase de Leitura/genética , Mutação da Fase de Leitura/fisiologia , Mudança da Fase de Leitura do Gene Ribossômico/genética , Microscopia de Força Atômica/métodos , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Viral/genética , Ribossomos/metabolismo , Relação Estrutura-Atividade , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(16): 7813-7818, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936299

RESUMO

The elongation factor G (EF-G)-catalyzed translocation of mRNA and tRNA through the ribosome is essential for vacating the ribosomal A site for the next incoming aminoacyl-tRNA, while precisely maintaining the translational reading frame. Here, the 3.2-Å crystal structure of a ribosome translocation intermediate complex containing mRNA and two tRNAs, formed in the absence of EF-G or GTP, provides insight into the respective roles of EF-G and the ribosome in translocation. Unexpectedly, the head domain of the 30S subunit is rotated by 21°, creating a ribosomal conformation closely resembling the two-tRNA chimeric hybrid state that was previously observed only in the presence of bound EF-G. The two tRNAs have moved spontaneously from their A/A and P/P binding states into ap/P and pe/E states, in which their anticodon loops are bound between the 30S body domain and its rotated head domain, while their acceptor ends have moved fully into the 50S P and E sites, respectively. Remarkably, the A-site tRNA translocates fully into the classical P-site position. Although the mRNA also undergoes movement, codon-anticodon interaction is disrupted in the absence of EF-G, resulting in slippage of the translational reading frame. We conclude that, although movement of both tRNAs and mRNA (along with rotation of the 30S head domain) can occur in the absence of EF-G and GTP, EF-G is essential for enforcing coupled movement of the tRNAs and their mRNA codons to maintain the reading frame.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , RNA Mensageiro , RNA de Transferência , Ribossomos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/metabolismo , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
9.
Nucleic Acids Res ; 46(19): 10184-10194, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30247639

RESUMO

During protein synthesis genetic instructions are passed from DNA via mRNA to the ribosome to assemble a protein chain. Occasionally, stop codons in the mRNA are bypassed and translation continues into the untranslated region (3'-UTR). This process, called translational readthrough (TR), yields a protein chain that becomes longer than would be predicted from the DNA sequence alone. Protein sequences vary in propensity for translational errors, which may yield evolutionary constraints by limiting evolutionary paths. Here we investigated TR in Saccharomyces cerevisiae by analysing ribosome profiling data. We clustered proteins as either prone or non-prone to TR, and conducted comparative analyses. We find that a relatively high frequency (5%) of genes undergo TR, including ribosomal subunit proteins. Our main finding is that proteins undergoing TR are highly expressed and have intrinsically disordered C-termini. We suggest that highly expressed proteins may compensate for the deleterious effects of TR by having intrinsically disordered C-termini, which may provide conformational flexibility but without distorting native function. Moreover, we discuss whether minimizing deleterious effects of TR is also enabling exploration of the phenotypic landscape of protein isoforms.


Assuntos
Regiões 3' não Traduzidas/genética , Códon de Terminação , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Terminação Traducional da Cadeia Peptídica/fisiologia , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/química , Códon/química , Códon/metabolismo , Biologia Computacional , Análise Mutacional de DNA , Mutação da Fase de Leitura/genética , Conformação de Ácido Nucleico , Fases de Leitura Aberta/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
10.
Nucleic Acids Res ; 46(18): 9736-9748, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30011005

RESUMO

Downstream stable mRNA secondary structures can stall elongating ribosomes by impeding the concerted movements of tRNAs and mRNA on the ribosome during translocation. The addition of a downstream mRNA structure, such as a stem-loop or a pseudoknot, is essential to induce -1 programmed ribosomal frameshifting (-1 PRF). Interestingly, previous studies revealed that -1 PRF efficiencies correlate with conformational plasticity of pseudoknots, defined as their propensity to form incompletely folded structures, rather than with the mechanical properties of pseudoknots. To elucidate the detailed molecular mechanisms of translocation and -1 PRF, we applied several smFRET assays to systematically examine how translocation rates and conformational dynamics of ribosomes were affected by different pseudoknots. Our results show that initial pseudoknot-unwinding significantly inhibits late-stage translocation and modulates conformational dynamics of ribosomal post-translocation complexes. The effects of pseudoknots on the structural dynamics of ribosomes strongly correlate with their abilities to induce -1 PRF. Our results lead us to propose a kinetic scheme for translocation which includes an initial power-stroke step and a following thermal-ratcheting step. This scheme provides mechanistic insights on how selective modulation of late-stage translocation by pseudoknots affects -1 PRF. Overall our findings advance current understanding of translocation and ribosome-induced mRNA structure unwinding.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Conformação de Ácido Nucleico , RNA Mensageiro/metabolismo , RNA/química , Ribossomos/metabolismo , Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Cinética , Elongação Traducional da Cadeia Peptídica/fisiologia , RNA/metabolismo , RNA Circular , RNA Mensageiro/química , Imagem Individual de Molécula
11.
Nucleic Acids Res ; 45(10): 6011-6022, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334864

RESUMO

Frameshifting is an essential process that regulates protein synthesis in many viruses. The ribosome may slip backward when encountering a frameshift motif on the messenger RNA, which usually contains a pseudoknot structure involving tertiary base pair interactions. Due to the lack of detailed molecular explanations, previous studies investigating which features of the pseudoknot are important to stimulate frameshifting have presented diverse conclusions. Here we constructed a bimolecular pseudoknot to dissect the interior tertiary base pairs and used single-molecule approaches to assess the structure targeted by ribosomes. We found that the first ribosome target stem was resistant to unwinding when the neighboring loop was confined along the stem; such constrained conformation was dependent on the presence of consecutive adenosines in this loop. Mutations that disrupted the distal base triples abolished all remaining tertiary base pairs. Changes in frameshifting efficiency correlated with the stem unwinding resistance. Our results demonstrate that various tertiary base pairs are coordinated inside a highly efficient frameshift-stimulating RNA pseudoknot and suggest a mechanism by which mechanical resistance of the pseudoknot may persistently act on translocating ribosomes.


Assuntos
Pareamento de Bases , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Conformação de Ácido Nucleico , RNA Mensageiro/química , Ribossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Oligorribonucleotídeos/síntese química , Oligorribonucleotídeos/química , Pinças Ópticas , RNA Mensageiro/genética , Fases de Leitura , Especificidade por Substrato
12.
J Biol Chem ; 291(30): 15788-95, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27226636

RESUMO

West Nile virus (WNV) is a prototypical emerging virus for which no effective therapeutics currently exist. WNV uses programmed -1 ribosomal frameshifting (-1 PRF) to synthesize the NS1' protein, a C terminally extended version of its non-structural protein 1, the expression of which enhances neuro-invasiveness and viral RNA abundance. Here, the NS1' frameshift signals derived from four WNV strains were investigated to better understand -1 PRF in this quasispecies. Sequences previously predicted to promote -1 PRF strongly promote this activity, but frameshifting was significantly more efficient upon inclusion of additional 3' sequence information. The observation of different rates of -1 PRF, and by inference differences in the expression of NS1', may account for the greater degrees of pathogenesis associated with specific WNV strains. Chemical modification and mutational analyses of the longer and shorter forms of the -1 PRF signals suggests dynamic structural rearrangements between tandem stem-loop and mRNA pseudoknot structures in two of the strains. A model is suggested in which this is employed as a molecular switch to fine tune the relative expression of structural to non-structural proteins during different phases of the viral replication cycle.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Modelos Biológicos , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/fisiologia , RNA Mensageiro/química , RNA Viral/química , Proteínas não Estruturais Virais/química
13.
ACS Chem Biol ; 11(1): 88-94, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26496521

RESUMO

Human Immunodeficiency Virus (HIV) type 1 uses a -1 programmed ribosomal frameshift (-1 PRF) event to translate its enzymes from the same transcript used to encode the virus' structural proteins. The frequency of this event is highly regulated, and significant deviation from the normal 5-10% frequency has been demonstrated to decrease viral infectivity. Frameshifting is primarily regulated by the Frameshift Stimulatory Signal RNA (FSS-RNA), a thermodynamically stable, highly conserved stem loop that has been proposed as a therapeutic target. We describe the design, synthesis, and testing of a series of N-methyl peptides able to bind the HIV-1 FSS RNA stem loop with low nanomolar affinity and high selectivity. Surface plasmon resonance (SPR) data indicates increased affinity is a reflection of a substantially enhanced on rate. Compounds readily penetrate cell membranes and inhibit HIV infectivity in a pseudotyped virus assay. Viral infectivity inhibition correlates with compound-dependent changes in the ratios of Gag and Gag-Pol in virus particles. As the first compounds with both single digit nanomolar affinities for the FSS RNA and an ability to inhibit HIV in cells, these studies support the use of N-methylation for enhancing the affinity, selectivity, and bioactivity of RNA-binding peptides.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , HIV-1/química , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Bases , Mudança da Fase de Leitura do Gene Ribossômico/genética , Células HEK293 , HIV-1/efeitos dos fármacos , Humanos , Metilação , Dados de Sequência Molecular , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/metabolismo , Ligação Proteica , RNA Viral/química
14.
PLoS Pathog ; 10(11): e1004447, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25375107

RESUMO

West Nile virus (WNV) is a human pathogen of significant medical importance with close to 40,000 cases of encephalitis and more than 1,600 deaths reported in the US alone since its first emergence in New York in 1999. Previous studies identified a motif in the beginning of non-structural gene NS2A of encephalitic flaviviruses including WNV which induces programmed -1 ribosomal frameshift (PRF) resulting in production of an additional NS protein NS1'. We have previously demonstrated that mutant WNV with abolished PRF was attenuated in mice. Here we have extended our previous observations by showing that PRF does not appear to have a significant role in virus replication, virion formation, and viral spread in several cell lines in vitro. However, we have also shown that PRF induces an over production of structural proteins over non-structural proteins in virus-infected cells and that mutation abolishing PRF is present in ∼11% of the wild type virus population. In vivo experiments in house sparrows using wild type and PRF mutant of New York 99 strain of WNV viruses showed some attenuation for the PRF mutant virus. Moreover, PRF mutant of Kunjin strain of WNV showed significant decrease compared to wild type virus infection in dissemination of the virus from the midgut through the haemocoel, and ultimately the capacity of infected mosquitoes to transmit virus. Thus our results demonstrate an important role for PRF in regulating expression of viral genes and consequently virus replication in avian and mosquito hosts.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Replicação Viral/fisiologia , Febre do Nilo Ocidental/metabolismo , Vírus do Nilo Ocidental/fisiologia , Animais , Aves/virologia , Chlorocebus aethiops , Cricetinae , Culicidae/virologia , Humanos , Camundongos , Camundongos Knockout , New York , Células Vero , Febre do Nilo Ocidental/epidemiologia
15.
J Phys Chem B ; 118(41): 11905-20, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25226454

RESUMO

In programmed -1 ribosomal frameshift, an RNA pseudoknot stalls the ribosome at specific sequence and restarts translation in a new reading frame. A precise understanding of structural characteristics of these pseudoknots and their PRF inducing ability has not been clear to date. To investigate this phenomenon, we have studied various structural aspects of a -1 PRF inducing RNA pseudoknot from BWYV using extensive molecular dynamics simulations. A set of functional and poorly functional forms, for which previous mutational data were available, were chosen for analysis. These structures differ from each other by either single base substitutions or base-pair replacements from the native structure. We have rationalized how certain mutations in RNA pseudoknot affect its function; e.g., a specific base substitution in loop 2 stabilizes the junction geometry by forming multiple noncanonical hydrogen bonds, leading to a highly rigid structure that could effectively resist ribosome-induced unfolding, thereby increasing efficiency. While, a CG to AU pair substitution in stem 1 leads to loss of noncanonical hydrogen bonds between stems and loop, resulting in a less stable structure and reduced PRF inducing ability, inversion of a pair in stem 2 alters specific base-pair geometry that might be required in ribosomal recognition of nucleobase groups, negatively affecting pseudoknot functioning. These observations illustrate that the ability of an RNA pseudoknot to induce -1 PRF with an optimal rate depends on several independent factors that contribute to either the local conformational variability or geometry.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , RNA Viral/metabolismo , Ribossomos/metabolismo , Pareamento de Bases , Ligação de Hidrogênio , Íons/metabolismo , Luteovirus , Magnésio/metabolismo , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , Estabilidade de RNA/fisiologia , Proteínas Ribossômicas/metabolismo , Água/metabolismo
16.
Postepy Biochem ; 60(1): 39-54, 2014.
Artigo em Polonês | MEDLINE | ID: mdl-25033541

RESUMO

Translation initiation is a key rate-limiting step in cellular protein synthesis. A cap-dependent initiation is the most effective mechanism of the translation. However, some physiological (mitosis) and pathological (oxidative stress) processes may switch the classic mechanism to an alternative one that is regulated by an mRNA element such as IRES, uORF, IRE, CPE, DICE, AURE or CITE. A recently discovered mechanism of RNA hypoxia response element (rHRE)-dependent translation initiation, may change the view of oxygen-regulated translation and give a new insight into unexplained biochemical processes. Hypoxia is one of the better-known factors that may trigger an alternative mechanism of the translation initiation. Temporal events of oxygen deficiency within tissues and organs may activate processes such as angiogenesis, myogenesis, regeneration, wound healing, and may promote an adaptive response in cardiovascular and neurodegenerative diseases. On the other hand, growth of solid tumors may be accompanied by cyclic hypoxia, allowing for synthesis of proteins required for further progression of cancer cells. This paper provides a review of current knowledge on translational control in the context of alternative models of translation initiation.


Assuntos
Modelos Biológicos , Biossíntese de Proteínas/fisiologia , RNA/genética , Elementos de Resposta , Animais , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Humanos , Hipóxia/metabolismo , MicroRNAs/genética , Neoplasias/metabolismo , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Proc Natl Acad Sci U S A ; 111(21): E2172-81, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24825891

RESUMO

Programmed -1 ribosomal frameshifting (-1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes -1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual -2 frameshifting (-2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of -1 PRF, yielding a third, truncated nsp2 variant named "nsp2N." Remarkably, we now show that both -2 and -1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1ß). Embedded in nsp1ß's papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1ß with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Regulação Viral da Expressão Gênica/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Ativação Transcricional/fisiologia , Proteínas não Estruturais Virais/fisiologia , Animais , Linhagem Celular , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Haplorrinos , Humanos , Imunoensaio , Luciferases , Corantes de Rosanilina , Espectrometria de Massas em Tandem
18.
Proc Natl Acad Sci U S A ; 111(15): 5538-43, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706807

RESUMO

Ribosomal frameshifting occurs when a ribosome slips a few nucleotides on an mRNA and generates a new sequence of amino acids. Programmed -1 ribosomal frameshifting (-1PRF) is used in various systems to express two or more proteins from a single mRNA at precisely regulated levels. We used single-molecule fluorescence resonance energy transfer (smFRET) to study the dynamics of -1PRF in the Escherichia coli dnaX gene. The frameshifting mRNA (FSmRNA) contained the frameshifting signals: a Shine-Dalgarno sequence, a slippery sequence, and a downstream stem loop. The dynamics of ribosomal complexes translating through the slippery sequence were characterized using smFRET between the Cy3-labeled L1 stalk of the large ribosomal subunit and a Cy5-labeled tRNA(Lys) in the ribosomal peptidyl-tRNA-binding (P) site. We observed significantly slower elongation factor G (EF-G)-catalyzed translocation through the slippery sequence of FSmRNA in comparison with an mRNA lacking the stem loop, ΔSL. Furthermore, the P-site tRNA/L1 stalk of FSmRNA-programmed pretranslocation (PRE) ribosomal complexes exhibited multiple fluctuations between the classical/open and hybrid/closed states, respectively, in the presence of EF-G before translocation, in contrast with ΔSL-programmed PRE complexes, which sampled the hybrid/closed state approximately once before undergoing translocation. Quantitative analysis showed that the stimulatory stem loop destabilizes the hybrid state and elevates the energy barriers corresponding to subsequent substeps of translocation. The shift of the FSmRNA-programmed PRE complex equilibrium toward the classical/open state and toward states that favor EF-G dissociation apparently allows the PRE complex to explore alternative translocation pathways such as -1PRF.


Assuntos
Escherichia coli/fisiologia , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Modelos Genéticos , Modelos Moleculares , Conformação Molecular , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/genética , DNA Polimerase III/genética , Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Ribossomos/fisiologia
19.
Phys Biol ; 11(1): 016009, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24501223

RESUMO

Many viruses produce multiple proteins from a single mRNA sequence by encoding overlapping genes. One mechanism to decode both genes, which reside in alternate reading frames, is -1 programmed ribosomal frameshifting. Although recognized for over 25 years, the molecular and physical mechanism of -1 frameshifting remains poorly understood. We have developed a mathematical model that treats mRNA translation and associated -1 frameshifting as a stochastic process in which the transition probabilities are based on the energetics of local molecular interactions. The model predicts both the location and efficiency of -1 frameshift events in HIV-1. Moreover, we compute -1 frameshift efficiencies upon mutations in the viral mRNA sequence and variations in relative tRNA abundances, predictions that are directly testable in experiment.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Modelos Biológicos , Mudança da Fase de Leitura do Gene Ribossômico/genética , HIV-1/genética , RNA Mensageiro/genética , RNA Viral/genética , Processos Estocásticos
20.
PLoS One ; 8(9): e73772, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069231

RESUMO

In the model fungus Podospora anserina, the PaYIP3 gene encoding the orthologue of the Saccharomyces cerevisiae YIP3 Rab-GDI complex dissociation factor expresses two polypeptides, one of which, the long form, is produced through a programmed translation frameshift. Inactivation of PaYIP3 results in slightly delayed growth associated with modification in repartition of fruiting body on the thallus, along with reduced ascospore production on wood. Long and short forms of PaYIP3 are expressed in the mycelium, while only the short form appears expressed in the maturing fruiting body (perithecium). The frameshift has been conserved over the evolution of the Pezizomycotina, lasting for over 400 million years, suggesting that it has an important role in the wild.


Assuntos
Ascomicetos/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Proteínas Fúngicas/metabolismo , Ascomicetos/genética , Mudança da Fase de Leitura do Gene Ribossômico/genética , Proteínas Fúngicas/genética , Podospora/genética , Podospora/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...