Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.740
Filtrar
1.
Sci Rep ; 14(1): 15041, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951552

RESUMO

The Indian economy is greatly influenced by the Banana Industry, necessitating advancements in agricultural farming. Recent research emphasizes the imperative nature of addressing diseases that impact Banana Plants, with a particular focus on early detection to safeguard production. The urgency of early identification is underscored by the fact that diseases predominantly affect banana plant leaves. Automated systems that integrate machine learning and deep learning algorithms have proven to be effective in predicting diseases. This manuscript examines the prediction and detection of diseases in banana leaves, exploring various diseases, machine learning algorithms, and methodologies. The study makes a contribution by proposing two approaches for improved performance and suggesting future research directions. In summary, the objective is to advance understanding and stimulate progress in the prediction and detection of diseases in banana leaves. The need for enhanced disease identification processes is highlighted by the results of the survey. Existing models face a challenge due to their lack of rotation and scale invariance. While algorithms such as random forest and decision trees are less affected, initially convolutional neural networks (CNNs) is considered for disease prediction. Though the Convolutional Neural Network models demonstrated impressive accuracy in many research but it lacks in invariance to scale and rotation. Moreover, it is observed that due its inherent design it cannot be combined with feature extraction methods to identify the banana leaf diseases. Due to this reason two alternative models that combine ANN with scale-invariant Feature transform (SIFT) model or histogram of oriented gradients (HOG) combined with local binary patterns (LBP) model are suggested. The first model ANN with SIFT identify the disease by using the activation functions to process the features extracted by the SIFT by distinguishing the complex patterns. The second integrate the combined features of HOG and LBP to identify the disease thus by representing the local pattern and gradients in an image. This paves a way for the ANN to learn and identify the banana leaf disease. Moving forward, exploring datasets in video formats for disease detection in banana leaves through tailored machine learning algorithms presents a promising avenue for research.


Assuntos
Aprendizado de Máquina , Musa , Redes Neurais de Computação , Doenças das Plantas , Folhas de Planta , Algoritmos
2.
Sci Rep ; 14(1): 16578, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020014

RESUMO

Banana (Musa spp.) is the most widely consumed fruit globally. Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is a highly threatening disease to banana production. Resistance genes to Foc exist in wild Musa genotypes such as Musa acuminata subsp. burmannicoides var. Calcutta 4. Whilst real-time PCR (RT-qPCR) is appropriate for accurate analysis of gene expression in pathways involved in host defence responses, reference genes with stable expression under specific biotic stress conditions and host tissue types are necessary for normalization of sample variation. In this context, the stability in potential host reference genes ACT1, APT, EF1α, GAPDH, αTUB, RAN, UBIQ1, UBIQ2, ßTUB1, ßTUB3, L2 and ACTA1 was evaluated in total RNA samples from root tissues in Calcutta 4 (resistant) and Musa sp. cultivar Prata-anã (susceptible) extracted during interaction with Foc subtropical race 4 (STR4). Expression stability was calculated using the algorithms geNorm, NormFinder and BestKeeper. ßTUB3 and L2 were identified as the most stable in Calcutta 4, with ACTA1 and GAPDH the most stable in Prata-anã. These reference genes for analysis of gene expression modulation in the Musa-Foc STR4 pathosystem are fundamental for advancing understanding of host defence responses to this important pathogen.


Assuntos
Resistência à Doença , Fusarium , Genótipo , Musa , Doenças das Plantas , Reação em Cadeia da Polimerase em Tempo Real , Fusarium/genética , Musa/microbiologia , Musa/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Padrões de Referência , Perfilação da Expressão Gênica/métodos
3.
PLoS One ; 19(6): e0303065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843276

RESUMO

The detoxification efflux carriers (DTX) are a significant group of multidrug efflux transporter family members that play diverse functions in all kingdoms of living organisms. However, genome-wide identification and characterization of DTX family transporters have not yet been performed in banana, despite its importance as an economic fruit plant. Therefore, a detailed genome-wide analysis of DTX family transporters in banana (Musa acuminata) was conducted using integrated bioinformatics and systems biology approaches. In this study, a total of 37 DTX transporters were identified in the banana genome and divided into four groups (I, II, III, and IV) based on phylogenetic analysis. The gene structures, as well as their proteins' domains and motifs, were found to be significantly conserved. Gene ontology (GO) annotation revealed that the predicted DTX genes might play a vital role in protecting cells and membrane-bound organelles through detoxification mechanisms and the removal of drug molecules from banana cells. Gene regulatory analyses identified key transcription factors (TFs), cis-acting elements, and post-transcriptional regulators (miRNAs) of DTX genes, suggesting their potential roles in banana. Furthermore, the changes in gene expression levels due to pathogenic infections and non-living factor indicate that banana DTX genes play a role in responses to both biotic and abiotic stresses. The results of this study could serve as valuable tools to improve banana quality by protecting them from a range of environmental stresses.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Musa , Filogenia , Proteínas de Plantas , Musa/genética , Musa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Nutrients ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892639

RESUMO

Compared to the general population, patients with inflammatory bowel disease (IBD) are less likely to be vaccinated, putting them at an increased risk of vaccine-preventable illnesses. This risk is further compounded by the immunosuppressive therapies commonly used in IBD management. Therefore, developing new treatments for IBD that maintain immune function is crucial, as successful management can lead to better vaccination outcomes and overall health for these patients. Here, we investigate the potential of recombinant banana lectin (rBanLec) as a supporting therapeutic measure to improve IBD control and possibly increase vaccination rates among IBD patients. By examining the therapeutic efficacy of rBanLec in a murine model of experimental colitis, we aim to lay the foundation for its application in improving vaccination outcomes. After inducing experimental colitis in C57BL/6 and BALB/c mice with 2,4,6-trinitrobenzene sulfonic acid, we treated animals orally with varying doses of rBanLec 0.1-10 µg/mL (0.01-1 µg/dose) during the course of the disease. We assessed the severity of colitis and rBanLec's modulation of the immune response compared to control groups. rBanLec administration resulted in an inverse dose-response reduction in colitis severity (less pronounced weight loss, less shortening of the colon) and an improved recovery profile, highlighting its therapeutic potential. Notably, rBanLec-treated mice exhibited significant modulation of the immune response, favoring anti-inflammatory pathways (primarily reduction in a local [TNFα]/[IL-10]) crucial for effective vaccination. Our findings suggest that rBanLec could mitigate the adverse effects of immunosuppressive therapy on vaccine responsiveness in IBD patients. By improving the underlying immune response, rBanLec may increase the efficacy of vaccinations, offering a dual benefit of disease management and prevention of vaccine-preventable illnesses. Further studies are required to translate these findings into clinical practice.


Assuntos
Colite , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Musa , Animais , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos , Musa/química , Colite/tratamento farmacológico , Colite/imunologia , Colite/prevenção & controle , Lectinas de Plantas/farmacologia , Ácido Trinitrobenzenossulfônico , Agentes de Imunomodulação/farmacologia , Feminino , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Masculino
5.
Org Lett ; 26(26): 5522-5527, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38900928

RESUMO

Here, we use transcriptomic data from seeds of Musella lasiocarpa to identify five enzymes involved in the formation of dihydrocurcuminoids. Characterization of the substrate specificities of the enzymes reveals two distinct dihydrocurcuminoid pathways leading to phenylphenalenones and linear diarylheptanoid derivatives, the major seed metabolites. Furthermore, we demonstrate the stepwise conversion of dihydrobisdemethoxycurcumin to the phenylphenalenone 4'-hydroxylachnanthocarpone by feeding intermediates to M. lasiocarpa root protein extract.


Assuntos
Diarileptanoides , Fenalenos , Diarileptanoides/química , Fenalenos/química , Estrutura Molecular , Sementes/química , Musa/química , Especificidade por Substrato , População do Leste Asiático
6.
Microb Biotechnol ; 17(6): e14511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38925606

RESUMO

Ethylene and ethylene oxide are widely used in the chemical industry, and ethylene is also important for its role in fruit ripening. Better sensing systems would assist risk management of these chemicals. Here, we characterise the ethylene regulatory system in Mycobacterium strain NBB4 and use these genetic parts to create a biosensor. The regulatory genes etnR1 and etnR2 and cognate promoter Petn were combined with a fluorescent reporter gene (fuGFP) in a Mycobacterium shuttle vector to create plasmid pUS301-EtnR12P. Cultures of M. smegmatis mc2-155(pUS301-EtnR12P) gave a fluorescent signal in response to ethylene oxide with a detection limit of 0.2 µM (9 ppb). By combining the epoxide biosensor cells with another culture expressing the ethylene monooxygenase, the system was converted into an ethylene biosensor. The co-culture was capable of detecting ethylene emission from banana fruit. These are the first examples of whole-cell biosensors for epoxides or aliphatic alkenes. This work also resolves long-standing questions concerning the regulation of ethylene catabolism in bacteria.


Assuntos
Técnicas Biossensoriais , Óxido de Etileno , Etilenos , Técnicas Biossensoriais/métodos , Etilenos/metabolismo , Óxido de Etileno/metabolismo , Mycobacterium/genética , Mycobacterium/metabolismo , Musa/microbiologia , Genes Reporter , Plasmídeos/genética
7.
ACS Appl Mater Interfaces ; 16(26): 33182-33191, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38903013

RESUMO

Direct observation by the naked eye of fluorescence-stained microbes adsorbed on surface imprinted polymers (SIPs) is highly challenging and limited by speed, accuracy and the semiquantitative nature of the method. In this study, we tested for the presence of spores of Fusarium oxysporum f. sp. cubense race 4 (Foc4), which cause severe banana Fusarium wilt disease and reduces the area of banana plants. This kind of spore can become dormant in soil, which means that the detection of secreted molecules (molecular imprinting) in soil may be inaccurate; detection methods such as polymerase chain reaction (PCR) and Raman spectroscopy are more accurate but time-consuming and inconvenient. Therefore, a semiquantitative and rapid SIP detection method for Foc4 was proposed. Based on the ITO conductive layer, a reusable and naked-eye-detectable Foc4-PDMS SIP film was prepared with a site density of approximately 9000 mm-2. Adsorption experiments showed that when the Foc4 spore concentration was between 104 to 107 CFU/mL, the number of Foc4 spores adsorbed and the fluorescence intensity were strongly correlated with the concentration and could be fully distinguished by the naked eye after fluorescence staining. Adsorption tests on other microbes showed that the SIP film completely recognized only the Foc series. All the results were highly consistent with the naked-eye observations after fluorescence staining, and the results of the Foc4-infected soil experiment were also close to the ideal situation. Taken together, these results showed that Foc4-PDMS SIPs have the ability to rapidly and semiquantitatively detect the concentration of Foc in soil, which can provide good support for banana cultivation. This method also has potential applications in the detection of other fungal diseases.


Assuntos
Fusarium , Fusarium/isolamento & purificação , Fusarium/química , Siloxanas/química , Esporos Fúngicos/isolamento & purificação , Esporos Fúngicos/química , Musa/microbiologia , Musa/química , Doenças das Plantas/microbiologia , Adsorção , Impressão Molecular , Propriedades de Superfície , Microbiologia do Solo
8.
Food Chem ; 455: 139812, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823131

RESUMO

The study used the fractal dimension (FD), browning incidence, and grayscale values using machine vision to describe the bruise magnitude and quality of mechanically damaged 'Fard' bananas bruised from 20, 40, 60 cm drop heights by 66, 98, and 110 g ball weights conditioned at different storage temperatures (5, 13, 22 °C) after 48 h. Conventional analyses like bruise area (BA), bruise volume (BV), and bruise susceptibility (BS) were also conducted. A correlation was performed to determine the relationship between image processing and conventional assessment of bruise damage in bananas. Weight, firmness, color, sugar content, and acidity were investigated. The results demonstrated that bananas bruised from the highest force and stored at 5 and 22 °C reported the lowest FD with values of 1.7162 and 1.7403, respectively. Increasing the level of damage reduced the fractal dimension and grayscale values and increased browning incidence and bruise susceptibility values after 48 h of storage. The total color change values showed a strong Pearson's correlation coefficient (r≥-0.81) with image analysis fractal dimension and grayscale values. The findings also indicated that higher bruising and temperature can induce weight loss, firmness reduction, lightness, and yellowness increment, and sugar and acidity changes. Overall, the fractal image analysis conducted in this study was highly effective in describing the bruising magnitude of bananas under different conditions.


Assuntos
Fractais , Frutas , Processamento de Imagem Assistida por Computador , Musa , Frutas/química , Musa/química , Processamento de Imagem Assistida por Computador/métodos , Cor , Temperatura
9.
Int J Biol Macromol ; 273(Pt 2): 133204, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889831

RESUMO

Herein, the novel eco-friendly biopolymer electrolytes consisting of banana powder and konjac glucomannan host matrix doped with zinc acetate salt were successfully fabricated through simple casting technique. The biopolymer electrolyte exhibited satisfactory thermal stability and mechanical properties; tensile strength (13.82 MPa); elongation at break (60.52 %) and Young's modulus (93.2 MPa). The electrochemical studies were carried out in symmetrical cells Zn/Zn cells. Biopolymer electrolyte showed favorable ionic conductivity of 5.59 × 10-4 S/cm along with stable cycling performance. The potential stability was found to be 2.52 V. The as-prepared biopolymer electrolytes demonstrated the potential as green, simple yet effective biopolymer electrolytes for zinc-ion batteries.


Assuntos
Fontes de Energia Elétrica , Eletrólitos , Mananas , Musa , Pós , Zinco , Mananas/química , Musa/química , Eletrólitos/química , Zinco/química , Biopolímeros/química , Íons/química , Condutividade Elétrica , Resistência à Tração
10.
Sci Rep ; 14(1): 13821, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879683

RESUMO

The problem of cadmium pollution and its control is becoming increasingly severe issue in the world. Banana straw is an abundant bio raw material, but its burning or discarding in field not only causes pollution but also spreads fusarium wilt. The objective of this paper is to utilize biochar derived from the wilt-infected banana straw for remediation of Cd(II) pollution while to eliminate the pathogen. The activity of wilt pathogen in biochar was determined by PDA petri dish test. The Cd(II) adsorption of the biochar was determined by batch adsorption experiments. The effects of KOH concentration (0.25, 0.5 and 0.75 M) on the physicochemical characteristics of the biochar were also observed by BET, SEM, FTIR, XRD and XPS. Results showed that pristine banana straw biochar (PBBC) did not harbor any pathogen. The specific surface area (SSA) and Cd(II) adsorption capacity of 0.75 M KOH modified banana straw biochar (MBBC0.75M) were increased by 247.2% and 46.1% compared to that of PBBC, respectively. Cd(II) adsorption by MBBC0.75M was suitable to be described by the pseudo-second-order kinetic model and Freundlich isotherm. After Cd(II) adsorption, the CdCO3 were confirmed by XRD and observed through SEM. The weakness and shift of oxygen-containing functional groups in MBBC0.75M after Cd(II) adsorption implied that those groups were complexed with Cd(II). The results showed that pyrolysis could not only eliminate banana fusarium wilt, but also prepare porous biochar with the wilt-infected banana straw. The porous biochar possessed the potential to adsorb Cd(II) pollutants.


Assuntos
Cádmio , Carvão Vegetal , Fusarium , Musa , Poluentes Químicos da Água , Musa/microbiologia , Musa/química , Carvão Vegetal/química , Fusarium/metabolismo , Cádmio/metabolismo , Adsorção , Porosidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Cinética
11.
Anal Methods ; 16(26): 4268-4284, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38884146

RESUMO

GC-MS/MS has been observed from past studies to be an appropriate choice for designing a simple, efficient and sensitive analytical technique. Accordingly, the linearity and working range, Method Limit of Detection (MLOD), Method Limit of Quantification (MLOQ), accuracy, precision (intra-day and inter-day), Matrix Effect (ME) and selectivity were analyzed for the assessment of 200 pesticide residues [organophosphorus pesticides (OPP), organochlorine pesticides (OCP), organonitrogen pesticides (ONP), synthetic pyrethroid pesticides (SPP), and herbicide methyl esters (HME)] in the banana matrix. The procedure involved QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction and clean-up with Multi-Walled Carbon Nanotubes (MWCNTs) and Primary Secondary Amine (PSA) wherein the factors were optimized using the Plackett-Burman and central composite designs. The performance of the method in order to quantitate 200 pesticides at trace levels was evaluated by matrix-matched calibration. The linearity was observed to range from 1 to 100 µg L-1 with determination coefficient (r2) > 0.99. Recovery studies were conducted at 2 levels, 10 µg kg-1 and 25 µg kg-1, and the values obtained were in the range of 71-116% and 72-119%, respectively. The Relative Standard Deviation (RSD) was observed to be less than 20% in line with the recommended guidelines (SANTE/11312/2021). The MLOD and MLOQ were found to be in the range of 0.45-6.33 µg kg-1 and 1.44-9.59 µg kg-1 respectively. The developed method was applied satisfactorily to analyse banana samples cultivated in different regions of Gujarat, India.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Musa , Resíduos de Praguicidas , Resíduos de Praguicidas/análise , Musa/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Contaminação de Alimentos/análise , Análise Multivariada
12.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891986

RESUMO

Food allergies mediated by specific IgE (sIgE) have a significant socioeconomic impact on society. Evaluating the IgE cross-reactivity between allergens from different allergen sources can enable the better management of these potentially life-threatening adverse reactions to food proteins and enhance food safety. A novel banana fruit allergen, S-adenosyl-L-homocysteine hydrolase (SAHH), has been recently identified and its recombinant homolog was heterologously overproduced in E. coli. In this study, we performed a search in the NCBI (National Center for Biotechnology Information) for SAHH homologs in ryegrass, latex, and kiwifruit, all of which are commonly associated with pollen-latex-fruit syndrome. In addition, Western immunoblot analysis was utilized to identify the cross-reactive IgE to banana SAHH in the sera of patients with a latex allergy, kiwifruit allergy, and ryegrass allergy. ClustalOmega analysis showed more than 92% amino acid sequence identity among the banana SAHH homologs in ryegrass, latex, and kiwifruit. In addition to five B-cell epitopes, in silico analysis predicted eleven T-cell epitopes in banana SAHH, seventeen in kiwifruit SAHH, twelve in ryegrass SAHH, and eight in latex SAHH, which were related to the seven-allele HLA reference set (HLA-DRB1*03:01, HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-DRB5*01:01). Four T-cell epitopes were identical in banana and kiwifruit SAHH (positions 328, 278, 142, 341), as well as banana and ryegrass SAHH (positions 278, 142, 96, and 341). All four SAHHs shared two T-cell epitopes (positions 278 and 341). In line with the high amino acid sequence identity and B-cell epitope homology among the analyzed proteins, the cross-reactive IgE to banana SAHH was detected in three of three latex-allergic patients, five of six ryegrass-allergic patients, and two of three kiwifruit-allergic patients. Although banana SAHH has only been studied in a small group of allergic individuals, it is a novel cross-reactive food allergen that should be considered when testing for pollen-latex-fruit syndrome.


Assuntos
Actinidia , Alérgenos , Reações Cruzadas , Hipersensibilidade Alimentar , Imunoglobulina E , Látex , Musa , Humanos , Reações Cruzadas/imunologia , Hipersensibilidade Alimentar/imunologia , Alérgenos/imunologia , Alérgenos/genética , Musa/imunologia , Musa/genética , Imunoglobulina E/imunologia , Actinidia/imunologia , Feminino , Látex/imunologia , Masculino , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Adulto , Antígenos de Plantas/imunologia , Antígenos de Plantas/genética , Sequência de Aminoácidos , Epitopos de Linfócito T/imunologia , Pessoa de Meia-Idade , Adolescente , Criança , Adulto Jovem
13.
Database (Oxford) ; 20242024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776381

RESUMO

The Musa Germplasm Information System (MGIS) stands as a pivotal database for managing global banana genetic resources information. In our latest effort, we have expanded MGIS to incorporate in situ observations. We thus incorporated more than 3000 in situ observations from 133 countries primarily sourced from iNaturalist, GBIF, Flickr, Pl@ntNet, Google Street view and expert curation of the literature. This addition provides a more comprehensive and detailed view of banana diversity and its distribution. Additional graphical interfaces, supported by new Drupal modules, were developed, allowing users to compare banana accessions and explore them based on various filters including taxonomy and geographic location. The integrated maps present a unified view, showcasing both in situ observations and the collecting locations of accessions held in germplasm collections. This enhancement not only broadens the scope of MGIS but also promotes a collaborative and open approach in documenting banana diversity, to allow more effective conservation and use of banana germplasm. Furthermore, this work documents a citizen-science approach that could be relevant for other communities. Database URL: https://www.crop-diversity.org/mgis/musa-in-situ.


Assuntos
Musa , Musa/genética , Bases de Dados Genéticas , Ciência do Cidadão , Internet
14.
Environ Microbiol ; 26(5): e16636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783572

RESUMO

Fusarium wilt of bananas (FWB) is a severe plant disease that leads to substantial losses in banana production worldwide. It remains a major concern for Cuban banana cultivation. The disease is caused by members of the soil-borne Fusarium oxysporum species complex. However, the genetic diversity among Fusarium species infecting bananas in Cuba has remained largely unexplored. In our comprehensive survey, we examined symptomatic banana plants across all production zones in the country, collecting 170 Fusarium isolates. Leveraging genotyping-by-sequencing and whole-genome comparisons, we investigated the genetic diversity within these isolates and compared it with a global Fusarium panel. Notably, typical FWB symptoms were observed in Bluggoe cooking bananas and Pisang Awak subgroups across 14 provinces. Our phylogenetic analysis revealed that F. purpurascens, F. phialophorum, and F. tardichlamydosporum are responsible for FWB in Cuba, with F. tardichlamydosporum dominating the population. Furthermore, we identified between five and seven distinct genetic clusters, with F. tardichlamydosporum isolates forming at least two subgroups. This finding underscores the high genetic diversity of Fusarium spp. contributing to FWB in the Americas. Our study sheds light on the population genetic structure and diversity of the FWB pathogen in Cuba and the broader Latin American and Caribbean regions.


Assuntos
Fusarium , Variação Genética , Musa , Filogenia , Doenças das Plantas , Fusarium/genética , Fusarium/classificação , Fusarium/patogenicidade , Fusarium/isolamento & purificação , Musa/microbiologia , Cuba , Doenças das Plantas/microbiologia , Região do Caribe , América Latina
15.
Arch Microbiol ; 206(6): 271, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767679

RESUMO

Secreted in Xylem (SIX) are small effector proteins released by Fusarium oxysporum f.sp. cubense (Foc) into the plant's xylem sap disrupting the host's defence responses causing Fusarium wilt disease resulting in a significant decline in banana crop yields and economic losses. Notably, different races of Foc possess unique sets of SIX genes responsible for their virulence, however, these genes remain underutilized, despite their potential as biomarkers for early disease detection. Herein, we identified seven SIX genes i.e. SIX1, SIX2, SIX4, SIX6, SIX8a, SIX9a and SIX13 present in Foc Tropical Race 4 (FocTR4), while only SIX9b in Foc Race 1 (Foc1). Analysis of SIX gene expression in infected banana roots revealed differential patterns during infection providing valuable insights into host-pathogen interactions, virulence level, and early detection time points. Additionally, a comprehensive analysis of virulent Foc1_C2HIR and FocTR4_C1HIR isolates yielded informative genomic insights. Hence, these discoveries contribute to our comprehension of potential disease control targets in these plants, as well as enhancing plant diagnostics and breeding programs.


Assuntos
Biomarcadores , Fusarium , Musa , Doenças das Plantas , Xilema , Fusarium/genética , Fusarium/patogenicidade , Fusarium/isolamento & purificação , Doenças das Plantas/microbiologia , Xilema/microbiologia , Musa/microbiologia , Virulência/genética , Interações Hospedeiro-Patógeno , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Raízes de Plantas/microbiologia , Regulação Fúngica da Expressão Gênica
16.
Sci Rep ; 14(1): 10942, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740839

RESUMO

Pradimicin U is a new dihydrobenzo[a]naphthacenequinone compound found to be active on a screen designed to investigate compounds with antimicrobial activity, produced by the actinomycete designated strain FMUSA5-5T. The strain was isolated from a bio-fertilizer of Musa spp. collected from Suphanburi province, Thailand. The chemotaxonomic characteristics and 16S rRNA gene analysis revealed that strain FMUSA5-5T is a member of the genus Nonomuraea. Low genome-based taxonomic criteria, average nucleotide identity (ANI) (82.8-88.3%), average amino-acid identity (AAI) (79.4-87.3%), and digital DNA-DNA hybridization (dDDH) (29.5-38.5%) values and several phenotypic differences between strain FMUSA5-5T and its closest type strains of the genus Nonomuraea indicated that strain FMUSA5-5T represents a novel species of the genus Nonomuraea and the name Nonomuraea composti sp. nov. is proposed for the strain. The crude extract from the culture broth of strain FMUSA5-5T displayed promising antimicrobial activity against several pathogens and led to the isolation of a novel secondary metabolite, pradimicin U. Interestingly, this compound displayed a broad spectrum of biological activities such as antimalarial activity against Plasmodium falciparum K1 (IC50 value = 3.65 µg/mL), anti-Mycobacterium tuberculosis H37Ra (MIC value = 25.0 µg/mL), anti-Alternaria brassicicola BCC 42724 (MIC value = 25.0 µg/mL), anti-Bacillus cereus ATCC 11778 and anti-Staphylococcus aureus ATCC 29213 (MIC values = 6.25 and 1.56 µg/mL, respectively). Moreover, the compound possessed strong anti-human small cell lung cancer (NCI-H187) activity with IC50 value of 5.69 µg/mL, while cytotoxicity against human breast cancer (MCF-7) and Vero cells was very weak (IC50 values of 52.49 and 21.84 µg/mL, respectively).


Assuntos
Actinobacteria , Naftacenos , Quinonas , Naftacenos/isolamento & purificação , Naftacenos/farmacologia , Quinonas/isolamento & purificação , Quinonas/farmacologia , Actinobacteria/química , Actinobacteria/classificação , Actinobacteria/citologia , Actinobacteria/isolamento & purificação , Fertilizantes , Musa/microbiologia , Metabolismo Secundário , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Humanos , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia
17.
Int J Biol Macromol ; 270(Pt 1): 132276, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734352

RESUMO

The reuse and development of natural waste resources is a hotspots and challenges in the research of new fiber materials and the resolution of environmental concern globally. Herein, this study aimed to develop a simple and direct manual extraction process to extract Musa core fibers (MCFs) for rapid water conduction and evaporation. Through simple processes such as ring cutting and stretching, this green and non-destructive inside-out extraction strategy enabled Musa fibers to be naturally and harmlessly degummed from natural Musa stems, with good maintenance of the fiber structure and highly helical morphology. The extracted fibers are composed of regularly and closely arranged cellulose nanofibrils in the shape of ribbon spirally arranged multi-filaments, and the single filament is about 2.65 µm. The high-purity fibers exhibit ultra-high tensile strength under a non-destructive extraction process, and the ultimate tensile strength in dry state is as high as 742.95 MPa. The tensile strength is affected by the number of fiber bundles, which shows that tensile strength and tensile modulus is higher than those of vascular bundle fibers in dry or wet condition. In addition, the MCFs membrane indicates good water conductivity, with a water absorption height of 50 mm for the sample in only 60 s. Moreover, the water evaporation rate of MCFs reaches 1.37 kg m-2 h-1 in 30 min, which shows that MCFs have excellent water conductivity and evaporation rate compared with ordinary cotton fibers. These results indicate that MCFs have great potential in replacing the use of chemical methods to extract fibers from vascular bundles, providing an effective way to achieve sustainability in quick-drying applications, as well as in the sustainable development of natural waste resources.


Assuntos
Musa , Resistência à Tração , Água , Água/química , Musa/química , Celulose/química , Nanofibras/química
18.
Int J Biol Macromol ; 270(Pt 1): 132287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735601

RESUMO

Damage to the integrity of the preservation coating on the fruit surface will seriously affect the shelf life of the fruit. In this work, the strong hydrogen bond interaction between xanthan gum (XG) and konjac glucomannan (KGM) could form hydrogel films with self-healing properties. The introduction of gallic acid (GA) was beneficial to further improve the antioxidant activity and UV shielding performance of the composite films. Surprisingly, the mechanical properties and gas (water vapor, O2 and CO2) barrier properties of the KGM film crosslinked by XG were significantly improved. The experiment of banana preservation showed that the composite coating could effectively delay the water loss and browning of bananas, slow down the decomposition of pectin and starch in the flesh, and extend the shelf life of bananas for >6 days. Therefore, this multifunctional coating is an excellent packaging material and has a very broad application prospect in the field of food preservation.


Assuntos
Conservação de Alimentos , Mananas , Musa , Polissacarídeos Bacterianos , Mananas/química , Polissacarídeos Bacterianos/química , Musa/química , Conservação de Alimentos/métodos , Antioxidantes/química , Embalagem de Alimentos/métodos , Hidrogéis/química
19.
Int J Biol Macromol ; 270(Pt 1): 132070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705313

RESUMO

Plastic pots used in horticultural nurseries generate substantial waste, causing environmental pollution. This study aimed to develop biodegradable composites from banana pseudo-stem reinforced with agricultural residues like pineapple leaves, taro and water hyacinth as eco-friendly substitutes. The aim of this study is to develop optimised banana biocomposite formulations with suitable reinforcements that balance mechanical durability, biodegradation, and seedling growth promotion properties to serve as viable eco-friendly alternatives to plastic seedling pots. This study was carried out by fabricating banana fibre mats through pulping, drying and hot pressing. Composite sheets were reinforced with 50 % pineapple, taro or water hyacinth fibres. The mechanical properties (tensile, yield strength, elongation, bursting strength), hydrophilicity (contact angle, water absorption), biodegradability (soil burial test), and seedling growth promotion were evaluated through appropriate testing methods. The results show that banana-taro composites exhibited suitable tensile strength (25 MPa), elongation (27 %), water uptake (41 %) and 82 % biodegradation in 60 days. It was observed that biodegradable seedling trays fabricated from banana-taro composite showed 95 % tomato seed germination and a 125 cm plant height increase in 30 days, superior to plastic trays. The finding shows that the study demonstrates the potential of banana-taro biocomposites as alternatives to plastic nursery pots, enabling healthy seedling growth while eliminating plastic waste pollution through biodegradation.


Assuntos
Musa , Plântula , Musa/crescimento & desenvolvimento , Musa/química , Plântula/crescimento & desenvolvimento , Resistência à Tração , Biodegradação Ambiental , Germinação , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...