Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.421
Filtrar
1.
Nat Commun ; 15(1): 4996, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862527

RESUMO

Assessing the impact of SARS-CoV-2 on organelle dynamics allows a better understanding of the mechanisms of viral replication. We combine label-free holotomographic microscopy with Artificial Intelligence to visualize and quantify the subcellular changes triggered by SARS-CoV-2 infection. We study the dynamics of shape, position and dry mass of nucleoli, nuclei, lipid droplets and mitochondria within hundreds of single cells from early infection to syncytia formation and death. SARS-CoV-2 infection enlarges nucleoli, perturbs lipid droplets, changes mitochondrial shape and dry mass, and separates lipid droplets from mitochondria. We then used Bayesian network modeling on organelle dry mass states to define organelle cross-regulation networks and report modifications of organelle cross-regulation that are triggered by infection and syncytia formation. Our work highlights the subcellular remodeling induced by SARS-CoV-2 infection and provides an Artificial Intelligence-enhanced, label-free methodology to study in real-time the dynamics of cell populations and their content.


Assuntos
Teorema de Bayes , COVID-19 , Gotículas Lipídicas , Mitocôndrias , SARS-CoV-2 , SARS-CoV-2/fisiologia , Humanos , COVID-19/virologia , COVID-19/metabolismo , Mitocôndrias/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/virologia , Inteligência Artificial , Nucléolo Celular/metabolismo , Nucléolo Celular/virologia , Replicação Viral , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Animais , Chlorocebus aethiops , Células Vero
3.
Retrovirology ; 21(1): 13, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898526

RESUMO

Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.


Assuntos
Produtos do Gene gag , HIV-1 , Humanos , HIV-1/fisiologia , HIV-1/genética , Produtos do Gene gag/metabolismo , Produtos do Gene gag/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Vírus do Sarcoma de Rous/fisiologia , Vírus do Sarcoma de Rous/genética , Proteômica , Interações Hospedeiro-Patógeno , Replicação Viral , Interações entre Hospedeiro e Microrganismos , Espectrometria de Massas
4.
Virol J ; 21(1): 125, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831469

RESUMO

BACKGROUND: Merkel Cell Carcinoma (MCC) is an aggressive skin cancer that is three times deadlier than melanoma. In 2008, it was found that 80% of MCC cases are caused by the genomic integration of a novel polyomavirus, Merkel Cell Polyomavirus (MCPyV), and the expression of its small and truncated large tumor antigens (ST and LT-t, respectively). MCPyV belongs to a family of human polyomaviruses; however, it is the only one with a clear association to cancer. METHODS: To investigate the role and mechanisms of various polyomavirus tumor antigens in cellular transformation, Rat-2 and 293A cells were transduced with pLENTI MCPyV LT-t, MCPyV ST, TSPyV ST, HPyV7 ST, or empty pLENTI and assessed through multiple transformation assays, and subcellular fractionations. One-way ANOVA tests were used to assess statistical significance. RESULTS: Soft agar, proliferation, doubling time, glucose uptake, and serum dependence assays confirmed ST to be the dominant transforming protein of MCPyV. Furthermore, it was found that MCPyV ST is uniquely transforming, as the ST antigens of other non-oncogenic human polyomaviruses such as Trichodysplasia Spinulosa-Associated Polyomavirus (TSPyV) and Human Polyomavirus 7 (HPyV7) were not transforming when similarly assessed. Identification of structural dissimilarities between transforming and non-transforming tumor antigens revealed that the uniquely transforming domain(s) of MCPyV ST are likely located within the structurally dissimilar loops of the MCPyV ST unique region. Of all known MCPyV ST cellular interactors, 62% are exclusively or transiently nuclear, suggesting that MCPyV ST localizes to the nucleus despite the absence of a canonical nuclear localization signal. Indeed, subcellular fractionations confirmed that MCPyV ST could achieve nuclear localization through a currently unknown, regulated mechanism independent of its small size, as HPyV7 and TSPyV ST proteins were incapable of nuclear translocation. Although nuclear localization was found to be important for several transforming properties of MCPyV ST, some properties were also performed by a cytoplasmic sequestered MCPyV ST, suggesting that MCPyV ST may perform different transforming functions in individual subcellular compartments. CONCLUSIONS: Together, these data further elucidate the unique differences between MCPyV ST and other polyomavirus ST proteins necessary to understand MCPyV as the only known human oncogenic polyomavirus.


Assuntos
Antígenos Virais de Tumores , Núcleo Celular , Poliomavírus das Células de Merkel , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/fisiologia , Humanos , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Núcleo Celular/virologia , Núcleo Celular/metabolismo , Animais , Ratos , Sinais de Localização Nuclear , Carcinoma de Célula de Merkel/virologia , Linhagem Celular , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/patologia , Transformação Celular Viral , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Infecções por Polyomavirus/virologia
5.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709216

RESUMO

Autophagy is an essential degradation program required for cell homeostasis. Among its functions is the engulfment and destruction of cytosolic pathogens, termed xenophagy. Not surprisingly, many pathogens use various strategies to circumvent or co-opt autophagic degradation. For poxviruses, it is known that infection activates autophagy, which however is not required for successful replication. Even though these complex viruses replicate exclusively in the cytoplasm, autophagy-mediated control of poxvirus infection has not been extensively explored. Using the prototypic poxvirus, vaccinia virus (VACV), we show that overexpression of the xenophagy receptors p62, NDP52, and Tax1Bp1 restricts poxvirus infection. While NDP52 and Tax1Bp1 were degraded, p62 initially targeted cytoplasmic virions before being shunted to the nucleus. Nuclear translocation of p62 was dependent upon p62 NLS2 and correlated with VACV kinase mediated phosphorylation of p62 T269/S272. This suggests that VACV targets p62 during the early stages of infection to avoid destruction and further implies that poxviruses exhibit multi-layered control of autophagy to facilitate cytoplasmic replication.


Assuntos
Autofagia , Núcleo Celular , Proteína Sequestossoma-1 , Vaccinia virus , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Células HEK293 , Células HeLa , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Fosforilação , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Vacínia/metabolismo , Vacínia/virologia , Vacínia/genética , Vaccinia virus/metabolismo , Vaccinia virus/genética , Replicação Viral
6.
Viruses ; 16(5)2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38793614

RESUMO

The L 1 region of bovine adenovirus (BAdV)-3 encodes a multifunctional protein named protein VII. Anti-protein VII sera detected a protein of 26 kDa in transfected or BAdV-3-infected cells, which localizes to nucleus and nucleolus of infected/transfected cells. Analysis of mutant protein VII identified four redundant overlapping nuclear/nucleolar localization signals as deletion of all four potential nuclear/nucleolar localization signals localizes protein VII predominantly to the cytoplasm. The nuclear import of protein VII appears to use importin α (α-1), importin-ß (ß-1) and transportin-3 nuclear transport receptors. In addition, different nuclear transport receptors also require part of protein VII outside nuclear localization sequences for efficient interaction. Proteomic analysis of protein complexes purified from recombinant BAdV-3 expressing protein VII containing Strep Tag II identified potential viral and cellular proteins interacting with protein VII. Here, we confirm that protein VII interacts with IVa2 and protein VIII in BAdV-3-infected cells. Moreover, amino acids 91-101 and 126-137, parts of non-conserved region of protein VII, are required for interaction with IVa2 and protein VIII, respectively.


Assuntos
Mastadenovirus , Proteínas Virais , Animais , Bovinos , Mastadenovirus/metabolismo , Mastadenovirus/genética , Mastadenovirus/fisiologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Ligação Proteica , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Proteômica/métodos , Interações Hospedeiro-Patógeno , Sinais de Localização Nuclear , Transporte Ativo do Núcleo Celular , Humanos
7.
PLoS Pathog ; 20(5): e1012231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38753876

RESUMO

Utilisation of RNA-binding proteins (RBPs) is an important aspect of post-transcriptional regulation of viral RNA. Viruses such as influenza A viruses (IAV) interact with RBPs to regulate processes including splicing, nuclear export and trafficking, while also encoding RBPs within their genomes, such as NP and NS1. But with almost 1000 RBPs encoded within the human genome it is still unclear what role, if any, many of these proteins play during viral replication. Using the RNA interactome capture (RIC) technique, we isolated RBPs from IAV infected cells to unravel the RBPome of mRNAs from IAV infected human cells. This led to the identification of one particular RBP, MKRN2, that associates with and positively regulates IAV mRNA. Through further validation, we determined that MKRN2 is involved in the nuclear-cytoplasmic trafficking of IAV mRNA potentially through an association with the RNA export mediator GLE1. In the absence of MKRN2, IAV mRNAs accumulate in the nucleus of infected cells, which may lead to their degradation by the nuclear RNA exosome complex. MKRN2, therefore, appears to be required for the efficient nuclear export of IAV mRNAs in human cells.


Assuntos
Vírus da Influenza A , Influenza Humana , RNA Mensageiro , RNA Viral , Proteínas de Ligação a RNA , Animais , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Vírus da Influenza A/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , Influenza Humana/genética , Transporte de RNA , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Viral/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Replicação Viral
8.
Methods Mol Biol ; 2807: 15-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743218

RESUMO

Live-cell imaging has become a powerful tool for dissecting the behavior of viral complexes during HIV-1 infection with high temporal and spatial resolution. Very few HIV-1 particles in a viral population are infectious and successfully complete replication (~1/50). Single-particle live-cell imaging enables the study of these rare infectious viral particles, which cannot be accomplished in biochemical assays that measure the average property of the entire viral population, most of which are not infectious. The timing and location of many events in the early stage of the HIV-1 life cycle, including nuclear import, uncoating, and integration, have only recently been elucidated. Live-cell imaging also provides a valuable approach to study interactions of viral and host factors in distinct cellular compartments and at specific stages of viral replication. Successful live-cell imaging experiments require careful consideration of the fluorescent labeling method used and avoid or minimize its potential impact on normal viral replication and produce misleading results. Ideally, it is beneficial to utilize multiple virus labeling strategies and compare the results to ensure that the virion labeling did not adversely influence the viral replication step that is under investigation. Another potential benefit of using different labeling strategies is that they can provide information about the state of the viral complexes. Here, we describe our methods that utilize multiple fluorescent protein labeling approaches to visualize and quantify important events in the HIV-1 life cycle, including docking HIV-1 particles with the nuclear envelope (NE) and their nuclear import, uncoating, and proviral transcription.


Assuntos
Transporte Ativo do Núcleo Celular , HIV-1 , Transcrição Gênica , Replicação Viral , HIV-1/fisiologia , HIV-1/genética , Humanos , Desenvelopamento do Vírus , Provírus/genética , Provírus/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Vírion/metabolismo , Vírion/genética
9.
Proc Natl Acad Sci U S A ; 121(19): e2401341121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696466

RESUMO

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.


Assuntos
Herpesvirus Humano 1 , Cinesinas , Proteínas Estruturais Virais , Cinesinas/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Humanos , Animais , Transporte Axonal/fisiologia , Chlorocebus aethiops , Centrossomo/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Células Vero , Núcleo Celular/metabolismo , Núcleo Celular/virologia
10.
Proc Natl Acad Sci U S A ; 121(18): e2202003121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669184

RESUMO

Using an immunofluorescence assay based on CRISPR-dCas9-gRNA complexes that selectively bind to the HIV LTR (HIV Cas-FISH), we traced changes in HIV DNA localization in primary effector T cells from early infection until the cells become quiescent as they transition to memory cells. Unintegrated HIV DNA colocalized with CPSF6 and HIV capsid (CA, p24) was found in the cytoplasm and nuclear periphery at days 1 and 3 post infection. From days 3 to 7, most HIV DNA was distributed primarily in the nuclear intermediate euchromatic compartment and was transcribed. By day 21, the cells had entered quiescence, and HIV DNA accumulated in the perinucleolar compartment (PNC). The localization of proviruses to the PNC was blocked by integrase inhibitor Raltegravir, suggesting it was due to chromosomal rearrangements. During the reactivation of latently infected cells through the T cell receptor (TCR), nascent viral mRNA transcripts associated with HIV DNA in the PNC were detected. The viral trans-activator Tat and its regulatory partners, P-TEFb and 7SK snRNA, assembled in large interchromatin granule clusters near the provirus within 2 h of TCR activation. As T cell activation progressed, the HIV DNA shifted away from the PNC. HIV DNA in latently infected memory T cells from patients also accumulated in the PNC and showed identical patterns of nuclear rearrangements after cellular reactivation. Thus, in contrast to transformed cells where proviruses are found primarily at the nuclear periphery, in primary memory T cells, the nuclear architecture undergoes rearrangements that shape the transcriptional silencing and reactivation of proviral HIV.


Assuntos
Núcleo Celular , Infecções por HIV , HIV-1 , Provírus , Ativação Viral , Latência Viral , Humanos , Provírus/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , HIV-1/genética , HIV-1/fisiologia , HIV-1/metabolismo , Infecções por HIV/virologia , Infecções por HIV/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Repetição Terminal Longa de HIV/genética
11.
Virus Res ; 345: 199379, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643859

RESUMO

Although all herpesviruses utilize a highly conserved replication machinery to amplify their viral genomes, different members may have unique strategies to modulate the assembly of their replication components. Herein, we characterize the subcellular localization of seven essential replication proteins of varicella-zoster virus (VZV) and show that several viral replication enzymes such as the DNA polymerase subunit ORF28, when expressed alone, are localized in the cytoplasm. The nuclear import of ORF28 can be mediated by the viral DNA polymerase processivity factor ORF16. Besides, ORF16 could markedly enhance the protein abundance of ORF28. Noteworthily, an ORF16 mutant that is defective in nuclear transport still retained the ability to enhance ORF28 abundance. The low abundance of ORF28 in transfected cells was due to its rapid degradation mediated by the ubiquitin-proteasome system. We additionally reveal that radicicol, an inhibitor of the chaperone Hsp90, could disrupt the interaction between ORF16 and ORF28, thereby affecting the nuclear entry and protein abundance of ORF28. Collectively, our findings imply that the cytoplasmic retention and rapid degradation of ORF28 may be a key regulatory mechanism for VZV to prevent untimely viral DNA replication, and suggest that Hsp90 is required for the interaction between ORF16 and ORF28.


Assuntos
Transporte Ativo do Núcleo Celular , DNA Polimerase Dirigida por DNA , Herpesvirus Humano 3 , Proteínas Virais , Replicação Viral , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Humanos , Proteínas Virais/metabolismo , Proteínas Virais/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Citoplasma/metabolismo , Citoplasma/virologia , Linhagem Celular , Replicação do DNA
12.
J Virol ; 98(5): e0029924, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38557225

RESUMO

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is highly conserved in all sequenced baculovirus genomes, and it plays important roles in both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. In this study, we characterized a cellular CRM1-dependent nuclear export signal (NES) of AcMNPV Ac93. Bioinformatic analysis revealed that AcMNPV Ac93 may contain an NES at amino acids 115-125. Green fluorescent protein (GFP) fused to the NES (GFP:NES) of AcMNPV Ac93 is localized to the cytoplasm of transfected cells. Multiple point mutation analysis demonstrated that NES is important for the nuclear export of GFP:NES. Bimolecular fluorescence complementation experiments and co-immunoprecipitation assays confirmed that Ac93 interacts with Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits cellular CRM1-dependent nuclear export of GFP:NES. To determine whether the NES in AcMNPV Ac93 is important for the formation of intranuclear microvesicles, an ac93-null AcMNPV bacmid was constructed; the wild-type and NES-mutated Ac93 were reinserted into the ac93-null AcMNPV bacmid. Immunofluorescence analysis showed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in infected cells, while the construct containing point mutations at residues 123 and 125 of Ac93 resulted in a defect in budded virus production and the abolishment of intranuclear microvesicles. Together, these data demonstrate that Ac93 contains a functional NES, which is required for the production of progeny viruses and the formation of intranuclear microvesicles.IMPORTANCEAutographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is important for the formation of intranuclear microvesicles. However, how the baculovirus manipulates Ac93 for the formation of intranuclear microvesicles is unclear. In this study, we identified a nuclear export signal (NES) at amino acids 115-125 of AcMNPV Ac93. Our results showed that the NES is required for the interaction between Ac93 and Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits the nuclear export of green fluorescent protein fused to the NES. Our analysis revealed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in AcMNPV-infected cells. Together, our results indicate that Ac93 participates in the formation of intranuclear microvesicles via the Ac93 NES-mediated CRM1 pathway.


Assuntos
Transporte Ativo do Núcleo Celular , Sinais de Exportação Nuclear , Nucleopoliedrovírus , Proteínas Virais , Animais , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Proteína Exportina 1 , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Carioferinas/metabolismo , Nucleopoliedrovírus/metabolismo , Nucleopoliedrovírus/fisiologia , Nucleopoliedrovírus/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Células Sf9 , Spodoptera/virologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Curr Opin Microbiol ; 79: 102457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581914

RESUMO

Nucleus-forming phages (chimalliviruses) encode numerous genes responsible for creating intricate structures for viral replication. Research on this newly appreciated family of phages has begun to reveal the mechanisms underlying the subcellular organization of the nucleus-based phage replication cycle. These discoveries include the structure of the phage nuclear shell, the identification of a membrane-bound early phage infection intermediate, the dynamic localization of phage RNA polymerases, the phylogeny and core genome of chimalliviruses, and the variation in replication mechanisms across diverse nucleus-forming phages. This research is being propelled forward through the application of fluorescence microscopy and cryo-electron microscopy and the innovative use of new tools such as proximity labeling and RNA-targeting Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems.


Assuntos
Replicação Viral , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Núcleo Celular/virologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Filogenia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Microscopia Crioeletrônica
14.
Dev Comp Immunol ; 156: 105160, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38485065

RESUMO

The lacking of stable and susceptible cell lines has hampered research on pathogenic mechanism of crustacean white spot syndrome virus (WSSV). To look for the suitable cell line which can sustain WSSV infection, we performed the studies on WSSV infection in the Spodoptera frugiperda (Sf9) insect cells. In consistent with our previous study in vitro in crayfish hematopoietic tissue cells, the WSSV envelope was detached from nucleocapsid around 2 hpi in Sf9 cells, which was accompanied with the cytoplasmic transport of nucleocapsid toward the cell nucleus within 3 hpi. Furthermore, the expression profile of both gene and protein of WSSV was determined in Sf9 cells after viral infection, in which a viral immediate early gene IE1 and an envelope protein VP28 exhibited gradually increased presence from 3 to 24 hpi. Similarly, the significant increase of WSSV genome replication was found at 3-48 hpi in Sf9 cells after infection with WSSV, indicating that Sf9 cells supported WSSV genome replication. Unfortunately, no assembled progeny virion was observed at 24 and 48 hpi in Sf9 cell nuclei as determined by transmission electron microscope, suggesting that WSSV progeny could not be assembled in Sf9 cell line as the viral structural proteins could not be transported into cell nuclei. Collectively, these findings provide a cell model for comparative analysis of WSSV infection mechanism with crustacean cells.


Assuntos
Spodoptera , Vírion , Montagem de Vírus , Replicação Viral , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Spodoptera/virologia , Células Sf9 , Vírion/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Nucleocapsídeo/metabolismo , Nucleocapsídeo/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Genoma Viral , Linhagem Celular
15.
Nucleic Acids Res ; 51(22): 12111-12123, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933844

RESUMO

Human lysyl-tRNA synthetase (LysRS) was previously shown to be re-localized from its normal cytoplasmic location in a multi-aminoacyl-tRNA synthetase complex (MSC) to the nucleus of HIV-1 infected cells. Nuclear localization depends on S207 phosphorylation but the nuclear function of pS207-LysRS in the HIV-1 lifecycle is unknown. Here, we show that HIV-1 replication was severely reduced in a S207A-LysRS knock-in cell line generated by CRISPR/Cas9; this effect was rescued by S207D-LysRS. LysRS phosphorylation up-regulated HIV-1 transcription, as did direct transfection of Ap4A, an upstream transcription factor 2 (USF2) activator that is synthesized by pS207-LysRS. Overexpressing an MSC-derived peptide known to stabilize LysRS MSC binding inhibited HIV-1 replication. Transcription of HIV-1 proviral DNA and other USF2 target genes was reduced in peptide-expressing cells. We propose that nuclear pS207-LysRS generates Ap4A, leading to activation of HIV-1 transcription. Our results suggest a new role for nuclear LysRS in facilitating HIV-1 replication and new avenues for antiviral therapy.


Assuntos
Núcleo Celular , HIV-1 , Lisina-tRNA Ligase , Humanos , DNA/metabolismo , HIV-1/fisiologia , Lisina-tRNA Ligase/metabolismo , Peptídeos/metabolismo , Fosforilação , Provírus/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Replicação Viral
16.
J Virol ; 97(12): e0143823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37991364

RESUMO

IMPORTANCE: Herpes simplex virus 1 (HSV-1) establishes lifelong latency in neuronal cells. Following a stressor, the virus reactivates from latency, virus is shed at the periphery and recurrent disease can occur. During latency, the viral lncRNA termed the latency-associated transcript (LAT) is known to accumulate to high abundance. The LAT is known to impact many aspects of latency though the molecular events involved are not well understood. Here, we utilized a human neuronal cell line model of HSV latency and reactivation (LUHMES) to identify the molecular-binding partners of the LAT during latency. We found that the LAT binds to both the cellular protein, TMEM43, and HSV-1 genomes in LUHMES cells. Additionally, we find that knockdown of TMEM43 prior to infection results in a decreased ability of HSV-1 to establish latency. This work highlights a potential mechanism for how the LAT facilitates the establishment of HSV-1 latency in human neurons.


Assuntos
Núcleo Celular , Genoma Viral , Herpes Simples , Herpesvirus Humano 1 , RNA Longo não Codificante , Latência Viral , Humanos , Linhagem Celular , Herpes Simples/genética , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/genética , RNA Longo não Codificante/genética , Ativação Viral/genética , Latência Viral/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Neurônios/metabolismo , Neurônios/virologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Genoma Viral/genética
17.
J Virol ; 97(12): e0095523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37991369

RESUMO

IMPORTANCE: Mutations and genetic rearrangements are the primary driving forces of evolution. Viruses provide valuable model systems for investigating these mechanisms due to their rapid evolutionary rates and vast genetic variability. To investigate genetic rearrangements in the double-stranded DNA genome of herpes simplex virus type 1, the viral population was serially passaged in various cell types. The serial passaging led to formation of defective genomes, resulted from cell-specific non-canonical rearrangements (NCRs). Interestingly, we discovered shared sequence characteristics underlying the formation of these NCRs across all cell types. Moreover, most NCRs identified in clinical samples shared these characteristics. Based on our findings, we propose a model elucidating the formation of NCRs during viral replication within the nucleus of eukaryotic cells.


Assuntos
DNA Viral , Genoma Viral , Herpesvirus Humano 1 , Mutação , DNA Viral/genética , Genoma Viral/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crescimento & desenvolvimento , Replicação Viral , Células Eucarióticas/virologia , Núcleo Celular/virologia , Inoculações Seriadas , Humanos
18.
J Virol ; 97(10): e0083623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787529

RESUMO

IMPORTANCE: Herpesviruses are able to disseminate in infected hosts despite development of a strong immune response. Their ability to do this relies on a specialized process called cell-to-cell spread in which newly assembled virus particles are trafficked to plasma membrane surfaces that abut adjacent uninfected cells. The mechanism of cell-to-cell spread is obscure, and little is known about whether or how it is regulated in different cells. We show here that a viral protein with a well-characterized role in promoting spread from neurons has an opposite, inhibitory role in other cells.


Assuntos
Estruturas da Membrana Celular , Núcleo Celular , Células Epiteliais , Herpesvirus Humano 1 , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas , Mutação , Proteínas Virais , Liberação de Vírus , Transporte Biológico , Estruturas da Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipoproteínas/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética , Vírion/metabolismo
19.
J Cell Biol ; 222(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37516914

RESUMO

Herpes simplex virus (HSV-1) progeny form in the nucleus and exit to successfully infect other cells. Newly formed capsids navigate complex chromatin architecture to reach the inner nuclear membrane (INM) and egress. Here, we demonstrate by transmission electron microscopy (TEM) that HSV-1 capsids traverse heterochromatin associated with trimethylation on histone H3 lysine 27 (H3K27me3) and the histone variant macroH2A1. Through chromatin profiling during infection, we revealed global redistribution of these marks whereby massive host genomic regions bound by macroH2A1 and H3K27me3 correlate with decreased host transcription in active compartments. We found that the loss of these markers resulted in significantly lower viral titers but did not impact viral genome or protein accumulation. Strikingly, we discovered that loss of macroH2A1 or H3K27me3 resulted in nuclear trapping of capsids. Finally, by live-capsid tracking, we quantified this decreased capsid movement. Thus, our work demonstrates that HSV-1 takes advantage of the dynamic nature of host heterochromatin formation during infection for efficient nuclear egress.


Assuntos
Herpesvirus Humano 1 , Heterocromatina , Liberação de Vírus , Núcleo Celular/virologia , Cromatina , Herpesvirus Humano 1/genética , Heterocromatina/genética , Histonas/genética , Capsídeo/ultraestrutura
20.
J Virol ; 96(17): e0077222, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35972293

RESUMO

Bats are reservoirs for diverse coronaviruses, including swine acute diarrhea syndrome coronavirus (SADS-CoV). SADS-CoV was first identified in diarrheal piglets in 2017. As a novel alphacoronavirus, SADS-CoV shares ~95% identity with bat alphacoronavirus HKU2. SADS-CoV has been reported to have broad cell tropism and inherent potential to cross host species barriers for dissemination. Thus far, no effective antiviral drugs or vaccines are available to treat infections with SADS-CoV. Therefore, knowledge of the protein-coding gene set and a subcellular localization map of SADS-CoV proteins are fundamental first steps in this endeavor. Here, all SADS-CoV genes were cloned separately into Flag-tagged plasmids, and the subcellular localizations of viral proteins, with the exception of nsp11, were detected using confocal microscopy techniques. As a result, nsp1, nsp3-N, nsp4, nsp5, nsp7, nsp8, nsp9, nsp10, nsp14, and nsp15 were localized in the cytoplasm and nuclear spaces, and these viral proteins may perform specific functions in the nucleus. All structural and accessory proteins were mainly localized in the cytoplasm. NS7a and membrane protein M colocalized with the Golgi compartment, and they may regulate the assembly of SADS-CoV virions. Maturation of SADS-CoV may occur in the late endosomes, during which envelope protein E is involved in the assembly and release of the virus. In summary, the present study demonstrates for the first time the location of all the viral proteins of SADS-CoV. These fundamental studies of SADS-CoV will promote studies of basic virology of SADS-CoV and support preventive strategies for animals with infection of SADS-CoV. IMPORTANCE SADS-CoV is the first documented spillover of a bat coronavirus that causes severe diseases in domestic animals. Our study is an in-depth annotation of the newly discovered swine coronavirus SADS-CoV genome and viral protein expression. Systematic subcellular localization of SADS-CoV proteins can have dramatic significance in revealing viral protein biological functions in the subcellular locations. Furthermore, our study promote understanding the fundamental science behind the novel swine coronavirus to pave the way for treatments and cures.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Doenças dos Suínos , Proteínas Virais , Alphacoronavirus/genética , Animais , Núcleo Celular/virologia , Quirópteros , Infecções por Coronavirus/veterinária , Endossomos/virologia , Complexo de Golgi/virologia , Suínos , Doenças dos Suínos/virologia , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...