Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Headache Pain ; 20(1): 93, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477012

RESUMO

BACKGROUND: Increasing evidence has suggested that the cerebellum is associated with pain and migraine. In addition, the descending pain system of the brainstem is the major site of trigeminal pain processing and modulation and has been discussed as a main player in the pathophysiology of migraine. Cerebellar and brainstem structural changes associated with migraineurs remain to be further investigated. METHODS: Voxel-based morphometry (VBM) (50 controls, 50 migraineurs without aura (MWoAs)) and diffusion tensor imaging (DTI) (46 controls, 46 MWoAs) were used to assess cerebellum and brainstem anatomical alterations associated with MWoAs. We utilized a spatially unbiased infratentorial template toolbox (SUIT) to perform cerebellum and brainstem optimized VBM and DTI analysis. We extracted the average diffusion values from a probabilistic cerebellar white matter atlas to investigate whether MWoAs exhibited microstructure alterations in the cerebellar peduncle tracts. RESULTS: MWoAs showed decreased fractional anisotropy (FA) in the vermis VI extending to the bilateral lobules V and VI of the cerebellum. We also found higher axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) in the right inferior cerebellum peduncle tract in MWoAs. MWoAs exhibited both reduced gray matter volume and increased AD, MD and RD in the spinal trigeminal nucleus (SpV). CONCLUSION: MWoAs exhibited microstructural changes in the cerebellum and the local brainstem. These structural differences might contribute to dysfunction of the transmission and modulation of noxious information, trigeminal nociception, and conduction and integration of multimodal information in MWoAs. These findings further suggest involvement of the cerebellum and the brainstem in the pathology of migraine without aura.


Assuntos
Tronco Encefálico/patologia , Cerebelo/patologia , Enxaqueca sem Aura/patologia , Anisotropia , Tronco Encefálico/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Masculino , Enxaqueca sem Aura/diagnóstico por imagem , Núcleo Espinal do Trigêmeo/diagnóstico por imagem , Núcleo Espinal do Trigêmeo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
2.
Neurosci Res ; 144: 14-20, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29885345

RESUMO

Although a modulatory role has been reported for α-lipoic acid (LA) on T-type Ca2+ channels in the nervous system, the acute effects of LA in vivo, particularly on nociceptive transmission in the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous LA administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from seventeen SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. The mean firing frequency of SpVc WDR neurons in response to both non-noxious and noxious mechanical stimuli was significantly and dose-dependently inhibited by LA (1-100 mM, i.v.) and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 5 min. These inhibitory effects lasted for approximately 10 min. These results suggest that acute intravenous LA administration suppresses trigeminal sensory transmission, including nociception, via possibly blocking T-type Ca2+ channels. LA may be used as a therapeutic agent for the treatment of trigeminal nociceptive pain.


Assuntos
Nociceptividade/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Ácido Tióctico/farmacologia , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Administração Intravenosa , Animais , Eletrofisiologia , Face/inervação , Masculino , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/patologia , Nociceptores/patologia , Nociceptores/fisiologia , Estimulação Física , Ratos Wistar , Pele/inervação , Núcleo Espinal do Trigêmeo/citologia , Núcleo Espinal do Trigêmeo/patologia
3.
J Neurovirol ; 24(6): 776-779, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30168017

RESUMO

Ramsay Hunt syndrome (RHS) is an acute peripheral facial nerve paralysis typically accompanied by erythematous vesicular lesions of the auricular skin. The etiology is considered to be geniculate ganglionitis due to reactivation of varicella-zoster virus (VZV). Encephalitis is a rare but serious complication of VZV reactivation. Clarifying the regional and temporal evolution of the lesions on magnetic resonance imaging (MRI) would help with understanding the pathology of the lesion, but this information is lacking in encephalitis with RHS. Therefore, here, we reviewed sequential MR images in three RHS cases complicated by brainstem lesions. All the regions of the lesions represent specific neuronal structures-the ipsilateral solitary nucleus (SN) and spinal trigeminal nucleus and tract (STNT) in case 1; bilateral SN, ipsilateral STNT, and vestibular nucleus in case 2; ipsilateral SN and vestibular nucleus in case 3-and this seems to account for the persistent robust symptoms. Case 1 initially showed no abnormalities on MRI and cases 2 and 3 showed weak signals on the first MRI which subsequently plateaued. These observations suggest the timeframe within which it becomes possible to detect regional and temporal evolution, namely, that the distribution of the affected regions expands between weeks 2 and 5 after onset of facial paralysis. These observations and the findings of a literature review indicate that the SN, STNT, and vestibular nucleus are relatively prone to developing encephalitis after RHS.


Assuntos
Herpes Zoster da Orelha Externa/patologia , Núcleo Solitário/patologia , Núcleo Espinal do Trigêmeo/patologia , Núcleos Vestibulares/patologia , Feminino , Herpes Zoster da Orelha Externa/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Núcleo Solitário/diagnóstico por imagem , Núcleo Espinal do Trigêmeo/diagnóstico por imagem , Núcleos Vestibulares/diagnóstico por imagem
4.
J Neuroinflammation ; 15(1): 245, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165876

RESUMO

BACKGROUND: The mechanism underlying migraine chronification remains unclear. Central sensitization may account for this progression. The microglia P2X4 receptor (P2X4R) plays a pivotal role in the central sensitization of inflammatory and neuropathic pain, but there is no information about P2X4R in migraine. Therefore, the aim of this study was to identify the precise role of microglia P2X4R in chronic migraine (CM). METHODS: We used an animal model with recurrent intermittent administration of nitroglycerin (NTG), which closely mimics CM. NTG-induced basal and acute mechanical hypersensitivity were evaluated using the von Frey filament test. Then, we detected Iba1 immunoreactivity (Iba1-IR) and P2X4R expression in the trigeminal nucleus caudalis (TNC). To understand the effect of microglia and P2X4R on central sensitization of CM, we examined whether minocycline, an inhibitor of microglia activation, and 5-BDBD, a P2X4R antagonist, altered NTG-induced mechanical hyperalgesia. In addition, we also evaluated the effect of 5-BDBD on c-Fos and calcitonin gene-related peptide (CGRP) expression within the TNC. RESULTS: Chronic intermittent administration of NTG resulted in acute and chronic basal mechanical hyperalgesia, accompanied with microglia activation and upregulation of P2X4R expression. Minocycline significantly decreased basal pain hypersensitivity but did not alter acute NTG-induced hyperalgesia. Minocycline also reduced microglia activation. 5-BDBD completely blocked the basal and acute hyperalgesia induced by NTG. This effect was associated with a significant inhibition of the NTG-induced increase in c-Fos protein and CGRP release in the TNC. CONCLUSIONS: Our results indicate that blocking microglia activation may have an effect on the prevention of migraine chronification. Moreover, we speculate that the P2X4R may be implicated in the microglia-neuronal signal in the TNC, which contributes to the central sensitization of CM.


Assuntos
Microglia/metabolismo , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/patologia , Nitroglicerina , Receptores Purinérgicos P2X4/metabolismo , Animais , Benzodiazepinonas/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Transtornos de Enxaqueca/complicações , Minociclina/farmacologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Estimulação Física/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/genética , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/metabolismo , Núcleo Espinal do Trigêmeo/patologia
5.
Cell Physiol Biochem ; 46(2): 568-578, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617678

RESUMO

BACKGROUND/AIMS: Migraine is a disabling condition that severely impacts socioeconomic function and quality of life. The focus of this study was to develop a mouse model of trigeminal pain that mimics migraine. METHODS: After undergoing dural cannulation surgery, mice were treated with repeated dural doses of an acidic solution to induce trigeminal pain. RESULTS: The method elicited intermittent, head-directed wiping and scratching as well as the expression of both the c-FOS gene in the spinal trigeminal nucleus caudalis and calcitonin gene related peptide (CGRP) in the periaqueductal grey matter. Interestingly, the acid-induced trigeminal pain behaviour was inhibited by amiloride, an antagonist of acid-sensing ion channels (ASICs), but not by AMG-9810, an inhibitor of transient receptor potential cation channel V1(TRPV1). In addition, the relative mRNA and protein expression levels of ASIC1a and ASIC3 were increased in the acid-induced trigeminal nociceptive pathways. Furthermore, blocking CaMKII with KN-93 significantly reduced the acid-induced trigeminal pain behaviour and c-FOS gene expression. CONCLUSION: The data suggested that chronic intermittent administration of an acidic solution to mice resulted in trigeminal hypersensitivity and that dural acid-induced trigeminal pain behaviour in mice may mechanistically mimic migraine. The observations here identify an entirely novel treatment strategy for migraine.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dor/patologia , Ácido Acético/toxicidade , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Acrilamidas/farmacologia , Amilorida/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/induzido quimicamente , Dor/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/genética , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Núcleo Espinal do Trigêmeo/patologia
6.
Brain Res ; 1687: 162-172, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29522721

RESUMO

The pathology of migraine, a common neurological disease, involves sensitization and activation of trigeminal nociceptive neurons to promote hyperalgesia and allodynia during an attack. Migraineurs often exhibit characteristics of a hyperexcitable or hypervigilant nervous system. One of the primary reported risk factors for development of a hyperexcitable trigeminal system is chronic, unmanaged stress and anxiety. While primary traumatic stress is a commonly cited risk factor for many pain conditions, exposure to secondary traumatic stress early in life is also thought to be a contributing risk factor. The goal of this study was to investigate cellular changes within the spinal trigeminal nucleus and trigeminal ganglion mediated by secondary traumatic stress. Male Sprague Dawley rats (sender) were subjected to forced swim testing (primary traumatic stress) and were then housed in close visual, olfactory, and auditory proximity to the breeding male and female rats, pregnant female rats, or female rats and their nursing offspring (all receivers). In response to secondary stress, levels of calcitonin gene-related peptide, active forms of the mitogen activated protein kinases ERK, JNK, and p38, and astrocyte expression of glial fibrillary acidic protein were significantly elevated in the spinal trigeminal nucleus in day 45 offspring when compared to naïve offspring. In addition, increased nuclear expression of ERK and p38 was observed in trigeminal ganglion neurons. Our results demonstrate that secondary traumatic stress promotes cellular events associated with prolonged trigeminal sensitization in the offspring, and provides a mechanism of how early life stress may function as a risk factor for migraine.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Transtornos de Estresse Traumático/patologia , Gânglio Trigeminal/patologia , Núcleo Espinal do Trigêmeo/patologia , Animais , Modelos Animais de Doenças , Feminino , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Ratos , Ratos Sprague-Dawley , Transtornos de Estresse Traumático/fisiopatologia , Natação
7.
Clin Exp Pharmacol Physiol ; 45(1): 34-41, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28853174

RESUMO

One way to expand the existing range of anti-migraine drugs seems to be the search for pharmacological agents with anti-cephalalgic properties among medicines approved for clinical indications other than migraine. Numerous experimental and clinical data imply that selective serotonin 5-HT3 receptor antagonists can be considered as potential anti-migraine agents. Therefore, the objective of our work was to examine the impact of selective 5-HT3 receptor blockade with granisetron on migraine-related nociceptive transmission within the spinal trigeminal nucleus (STN) and the ventroposteromedial nucleus of the thalamus (VPM). Using an electrophysiological model of trigemino-durovascular nociception in anaesthetised male Wistar rats, we evaluated the effects of intravenous administration of granisetron on ongoing firing and dural electrical stimulation-evoked responses of the spinal trigeminal and thalamic cells. Granisetron did not substantially affect responses of the STN and VPM neurons to electrical stimulation of the dura mater as well as did not cause steady changes in ongoing firing of the spinal trigeminal cells. The results obtained argue against the use of 5-HT3 receptor antagonists for treating migraine. These data also lead to the conclusion that in the absence of sustained sensitisation of neurons along the trigemino-thalamo-cortical pathway the role of 5-HT3 receptor-dependent mechanisms in serotonergic modulation of trigeminovascular nociceptive transmission can hardly be considered crucial.


Assuntos
Granisetron/farmacologia , Transtornos de Enxaqueca/fisiopatologia , Nociceptividade/efeitos dos fármacos , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Tálamo/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Animais , Masculino , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos , Tálamo/patologia , Tálamo/fisiopatologia , Núcleo Espinal do Trigêmeo/patologia , Núcleo Espinal do Trigêmeo/fisiopatologia
8.
Pain ; 158(10): 2025-2034, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28700539

RESUMO

Migraine is currently conceptualized as a chronic disease with episodic manifestations. In some patients, migraine attack frequency increases, leading to chronic migraine. Daily preventive therapy is initiated to decrease attack frequency. Propranolol, a first-line medication for migraine prophylaxis, reduces attack frequency in nearly 50% of patients receiving it. However, the mechanisms of its antimigraine action are unclear. We examined the effect of daily propranolol treatment (10 mg·kg per os, 8 days) in a rat model of recurrent activation of dural nociceptors (repeated infusion of an inflammatory soup (IS) on the dura through a cannula every 2-3 days). Propranolol does not abort IS-induced acute cephalic mechanical allodynia but blocks the development of a chronic cutaneous hypersensitivity upon repeated IS injections. Furthermore, propranolol prevents (1) the elevated touch-evoked Fos expression within the trigeminocervical complex, (2) enhanced both spontaneous activity, and evoked responses of second-order trigeminovascular neurons, (3) elevated touch-evoked rostral ventromedial medulla and locus coeruleus Fos expression and (4) diffuse noxious inhibitory controls impairment, induced by repeated IS injections. Our results suggest that propranolol exerts its prophylactic action, at least in part, by blocking the chronic sensitization of descending controls of pain, arising from the rostral ventromedial medulla and locus coeruleus, and in turn preventing the maintenance of a state of facilitated trigeminovascular transmission within the trigeminocervical complex. Assessing changes in these brain areas has the potential to elucidate the mechanisms for migraine transformation and to reveal novel biological and molecular targets for specific migraine-preventive therapies.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Dura-Máter/fisiologia , Propranolol/farmacologia , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/fisiopatologia , Animais , Hidrato de Cloral/farmacologia , Estimulação Elétrica/efeitos adversos , Face/inervação , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Hipnóticos e Sedativos/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Proteínas Oncogênicas v-fos/metabolismo , Técnicas de Patch-Clamp , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Núcleo Espinal do Trigêmeo/metabolismo , Núcleo Espinal do Trigêmeo/patologia
9.
Med Hypotheses ; 100: 15-18, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28236840

RESUMO

Trigeminal neuralgia is a painful condition that causes great discomfort. Although this disease has been known for more than 1000years, there is still no consensus on its underlying mechanism or treatment. Many hypotheses have been reported to explain the cause and nature of trigeminal neuralgia. These include theories about peripheral mechanisms and central mechanisms. We put forward a new hypothesis that trigeminal neuralgia is associated with the pars oralis of the spinal trigeminal nucleus (POSTN). The main basis for this is the close similarity between trigger point distribution and the area of influence of the POSTN. We also highlight that the areas of influence for the trigeminal nerve divisions do not match the trigger point distribution; therefore, peripheral theories should be further investigated.


Assuntos
Neuralgia do Trigêmeo/etiologia , Núcleo Espinal do Trigêmeo/patologia , Adulto , Mapeamento Encefálico , Tronco Encefálico/fisiologia , Dor Facial , Feminino , Humanos , Injeções Subcutâneas , Masculino , Modelos Teóricos , Raízes Nervosas Espinhais , Neuralgia do Trigêmeo/diagnóstico
10.
Neuroscience ; 340: 445-454, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27865869

RESUMO

This study was to investigate the role of p38 activation via ERK1/2 phosphorylation in neurons and microglia of the spinal trigeminal subnucleus caudalis (Vc) in the promotion of orofacial hyperalgesia induced by unilateral anterior crossbite (UAC) traumatic occlusion in adult rats. U0126, a p-ERK1/2 inhibitor, was injected intracisternally before UAC implant. The effects of the U0126 injection were compared to those following the injection of SB203580, a p-p38 inhibitor. Mechanical hyperalgesia was evaluated via pressure pain threshold measurements. Brain stem tissues were processed for a Western blot analysis to evaluate the activation of ERK1/2 and p38. Double immunofluorescence was also performed to observe the expression of p-ERK1/2 and p-p38 in neurons (labeled by NeuN) and microglia (labeled by OX42). The data showed that UAC caused orofacial hyperalgia ipsilaterally on d1 to d7, peaking on d3 (P<0.05). An upregulation of p-ERK1/2 was observed in the ipsilateral Vc on d1 to d3, peaking on d1. An upregulation of p-p38 was also observed on d1 to d7, peaking on d3 (P<0.05). p-ERK1/2 primarily co-localized with NeuN and, to a lesser extent, with OX42, while p-p38 co-localized with both NeuN and OX42. Pretreatment with U0126 prevented the upregulation of both p-ERK1/2 and p-p38. Similarly to an intracisternal injection of SB203580, U0126 pretreatment attenuated the UAC-induced orofacial hyperalgesia. These data indicate that UAC caused orofacial hyperalgesia by inducing central sensitization via the activation of ERK1/2 and p38 in both neurons and microglia in the Vc, potentially impacting the effects of p-ERK1/2 during p38 activation.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Dor Facial/enzimologia , Hiperalgesia/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Núcleo Espinal do Trigêmeo/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Dor Facial/patologia , Feminino , Hiperalgesia/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/enzimologia , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Fosforilação , Distribuição Aleatória , Ratos Sprague-Dawley , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
11.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27068286

RESUMO

BACKGROUND: Resveratrol, a component of red wine, has been reported to decrease prostaglandin E2 production by inhibiting the cyclooxygenase-2 cascade and to modulate various voltage-dependent ion channels, suggesting that resveratrol could attenuate inflammatory hyperalgesia. However, the effects of resveratrol on inflammation-induced hyperexcitability of nociceptive neurons in vivo remain to be determined. Thus, the aim of the present study was to determine whether daily systemic administration of resveratrol to rats attenuates the inflammation-induced hyperexcitability of spinal trigeminal nucleus caudalis wide-dynamic range neurons associated with hyperalgesia. RESULTS: Inflammation was induced by injection of complete Freund's adjuvant into the whisker pad. The threshold of escape from mechanical stimulation applied to whisker pad in inflamed rats was significantly lower than in control rats. The decreased mechanical threshold in inflamed rats was restored to control levels by daily systemic administration of resveratrol (2 mg/kg, i.p.). The mean discharge frequency of spinal trigeminal nucleus caudalis wide-dynamic range neurons to both nonnoxious and noxious mechanical stimuli in inflamed rats was significantly decreased after resveratrol administration. In addition, the increased mean spontaneous discharge of spinal trigeminal nucleus caudalis wide-dynamic range neurons in inflamed rats was significantly decreased after resveratrol administration. Similarly, resveratrol significantly diminished noxious pinch-evoked mean after discharge frequency and occurrence in inflamed rats. Finally, resveratrol restored the expanded mean size of the receptive field in inflamed rats to control levels. CONCLUSION: These results suggest that chronic administration of resveratrol attenuates inflammation-induced mechanical inflammatory hyperalgesia and that this effect is due primarily to the suppression of spinal trigeminal nucleus caudalis wide dynamic range neuron hyperexcitability via inhibition of both peripheral and central cyclooxygenase-2 cascade signaling pathways. These findings support the idea of resveratrol as a potential complementary and alternative medicine for the treatment of trigeminal inflammatory hyperalgesia without side effects.


Assuntos
Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Inflamação/complicações , Inflamação/tratamento farmacológico , Neurônios/patologia , Estilbenos/uso terapêutico , Núcleo Espinal do Trigêmeo/patologia , Animais , Masculino , Neurônios/efeitos dos fármacos , Ratos Wistar , Resveratrol , Núcleo Espinal do Trigêmeo/efeitos dos fármacos
12.
Neuropharmacology ; 107: 27-39, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26972829

RESUMO

Post-traumatic headache (PTH) following TBI is a common and often persisting pain disability. PTH is often associated with a multimodal central pain sensitization on the skin surface described as allodynia. However, the particular neurobiology underlying cTBI-induced pain disorders are not known. These studies were performed to assess trigeminal sensory sensitization and to determine if sensitization measured behaviorally correlated with detectable changes in portions of the trigeminal sensory system (TSS), particularly trigeminal nucleus, thalamus, and sensory cortex. Thermal stimulation is particularly well suited to evaluate sensitization and was used in these studies. Recent advances in the use of reward/conflict paradigms permit use of operant measures of behavior, versus reflex-driven response behaviors, for thermal sensitization studies. Thus, to quantitate facial thermal sensitization (allodynia) in the setting of acute TBI, the current study utilized an operant orofacial pain reward/conflict testing paradigm to assess facial thermal sensitivity in uninjured control animals compared with those two weeks after cTBI in a rodent model. Significant reductions in facial contact/lick behaviors were observed in the TBI animals using either cool or warm challenge temperatures compared with behaviors in the normal animals. These facial thermal sensitizations correlated with detectable changes in multiple levels of the TSS. The immunohistochemical (IHC) studies revealed significant alterations in the expression of the serotonin (5-HT), neurokinin 1 receptor (NK1R), norepinephrine (NE), and gamma-aminobutyric acid (GABA) in the caudal trigeminal nucleus, thalamic VPL/VPM nucleus, and sensory cortex of the orofacial pain pathways. There was a strong correlation between increased expression of certain IHC markers and increased behavioral markers for facial sensitization. The authors conclude that TBI-induced changes observed in the TSS are consistent with the expression of generalized facial allodynia following cTBI. To our knowledge, this is the first report of orofacial sensitization correlated with changes in selected neuromodulators/neurotransmitters in the TSS following experimental mild TBI.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Dor Facial/fisiopatologia , Traumatismos Cranianos Fechados/fisiopatologia , Hiperalgesia/fisiopatologia , Plasticidade Neuronal/fisiologia , Núcleo Espinal do Trigêmeo/fisiopatologia , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Dor Facial/etiologia , Dor Facial/patologia , Feminino , Traumatismos Cranianos Fechados/complicações , Traumatismos Cranianos Fechados/patologia , Temperatura Alta , Hiperalgesia/etiologia , Hiperalgesia/patologia , Imuno-Histoquímica , Dor Nociceptiva/etiologia , Dor Nociceptiva/patologia , Dor Nociceptiva/fisiopatologia , Ratos Sprague-Dawley , Receptores da Neurocinina-1/metabolismo , Serotonina/metabolismo , Núcleo Espinal do Trigêmeo/patologia
13.
Somatosens Mot Res ; 32(4): 236-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26402339

RESUMO

Ingestive behaviors in mice are dependent on orosensory cues transmitted via the trigeminal nerve, as confirmed by transection studies. However, these studies cannot differentiate between deficits caused by the loss of the lemniscal pathway vs. the parallel paralemniscal pathway. The paired-like homeodomain protein Prrxl1 is expressed widely in the brain and spinal cord, including the trigeminal system. A knockout of Prrxl1 abolishes somatotopic barrellette patterning in the lemniscal brainstem nucleus, but not in the parallel paralemniscal nucleus. Null animals are significantly smaller than littermates by postnatal day 5, but reach developmental landmarks at appropriate times, and survive to adulthood on liquid diet. A careful analysis of infant and adult ingestive behavior reveals subtle impairments in suckling, increases in time spent feeding and the duration of feeding bouts, feeding during inappropriate times of the day, and difficulties in the mechanics of feeding. During liquid diet feeding, null mice display abnormal behaviors including extensive use of the paws to move food into the mouth, submerging the snout in the diet, changes in licking, and also have difficulty consuming solid chow pellets. We suggest that our Prrxl1(-/-) animal is a valuable model system for examining the genetic assembly and functional role of trigeminal lemniscal circuits in the normal control of eating in mammals and for understanding feeding abnormalities in humans resulting from the abnormal development of these circuits.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Comportamento Alimentar/fisiologia , Proteínas do Tecido Nervoso/deficiência , Fatores de Transcrição/deficiência , Núcleo Espinal do Trigêmeo/patologia , Vias Aferentes/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Peso Corporal/genética , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Reflexo/genética , Olfato/genética , Fatores de Transcrição/genética , Vibrissas/inervação
14.
J Neurosci ; 35(6): 2508-15, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25673845

RESUMO

Accumulated evidence from experimental animal models suggests that neuronal loss within the dorsal horn is involved in the development and/or maintenance of peripheral neuropathic pain. However, to date, no study has specifically investigated whether such neuroanatomical changes also occur at this level in humans. Using brain imaging techniques, we sought to determine whether anatomical changes were present in the spinal trigeminal nucleus in subjects with chronic orofacial neuropathic pain. In 22 subjects with painful trigeminal neuropathy and 44 pain-free controls, voxel-based morphometry of T1-weighted anatomical images and diffusion tensor images were used to assess regional gray matter volume and microstructural changes within the brainstem. In addition, deterministic tractography was used to assess the integrity of ascending pain pathways. Orofacial neuropathic pain was associated with significant regional gray matter volume decreases, fractional anisotropy increases, and mean diffusivity decreases within the spinal trigeminal nucleus, specifically the subnucleus oralis. In addition, tractography revealed no significant differences in diffusivity properties in the root entry zone of the trigeminal nerve, the spinal trigeminal tract, or the ventral trigeminothalamic tracts in painful trigeminal neuropathy subjects compared with controls. These data reveal that chronic neuropathic pain in humans is associated with discrete alterations in the anatomy of the primary synapse. These neuroanatomical changes may be critical for the generation and/or maintenance of pathological pain.


Assuntos
Neuralgia/patologia , Sinapses/patologia , Doenças do Nervo Trigêmeo/patologia , Núcleo Espinal do Trigêmeo/patologia , Adulto , Idoso , Tronco Encefálico/patologia , Imagem de Tensor de Difusão , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal , Medição da Dor
15.
Physiol Behav ; 142: 57-65, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25660342

RESUMO

It is commonly accepted that psychological stress contributes to the development of temporomandibular joint disorders, in which chronic orofacial pain is the main symptom. However, the central mechanism underlying the development of these disorders has remained unclear. The current study was performed to determine the involvement of the glia in the trigeminal spinal subnucleus caudalis in stress-induced increases in masseter muscle hyperalgesia in rats. After being subjected to chronic restraint stress, the animals showed decreased body weight gain, behavioral changes and marked masseter allodynia. We also found that astrocytes, but not microglia, in the trigeminal subnucleus caudalis (Vc) were dramatically activated. A further analysis was undertaken to investigate the contribution of the glia; we intrathecally injected l-α-aminoadipate (astrocyte-specific inhibitor) and/or minocycline (microglia-specific inhibitor) into the stressed rats. Our results showed that l-α-aminoadipate (LAA), but not minocycline, could significantly attenuate the mechanical masseter allodynia and behavioral changes induced by restraint stress. In addition, the expression of interleukin-1ß (IL-1ß) and phosphorylated N-methyl-d-aspartic acid receptor 1 (p-NR1) in the Vc was significantly increased after chronic restraint stress, whereas LAA dramatically inhibited the overexpression of IL-1ß and p-NR1. Taken together, these results suggest that activated astrocytes in the Vc may be one of the most important factors in the pathophysiology of masseter hyperalgesia induced by restraint stress and the following overexpression of IL-1ß and excessive NMDAR phosphorylation may ultimately contribute to masseter hyperalgesia. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for the treatment of orofacial pain induced by stress.


Assuntos
Astrócitos/fisiologia , Hiperalgesia/fisiopatologia , Músculo Masseter/fisiopatologia , Estresse Psicológico/fisiopatologia , Núcleo Espinal do Trigêmeo/fisiopatologia , Adipatos/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Peso Corporal , Fármacos do Sistema Nervoso Central/farmacologia , Doença Crônica , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Injeções Espinhais , Interleucina-1beta/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/patologia , Microglia/fisiologia , Minociclina/farmacologia , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Restrição Física , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/patologia , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/patologia
16.
CNS Neurol Disord Drug Targets ; 14(3): 350-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25106627

RESUMO

Probenecid has been widely used in the treatment of gout, but evidence suggests that it may also have antinociceptive effects in different inflammatory and pain conditions. We examined the potential modulatory effects of probenecid on behavioural and morphological markers in the orofacial formalin test of the rat. One hour after pre-treatment with vehicle or probenecid (1 mmol/kg body weight) intraperitoneally, 50µl 1.5% formalin solution or physiological saline was injected subcutaneously into the right whisker pad of rats. The rubbing activity directed to the injected whisker pad was then measured for a period of 45 minutes. Four hours after formalin injection, the caudal part of spinal trigeminal nucleus was removed and subjected to c-Fos and neuronal nitric oxide synthase (nNOS) immunohistochemistry and to interleukin-1ß and NAD(P)H: quinone oxidoreductase 1 (NQO1) Western blot. There was a significant decrease in formalin-induced biphasic behavioural response and c-Fos and nNOS immunoreactivity in the rats that were pre-treated with probenecid. However there were no alterations in expression of interleukin-1ß or NQO1 after formalin administration. Our results suggest that probenecid has an anti-nociceptive effect in the trigeminal inflammatory pain model. This effect may be through influencing the release of prostaglandin E2 or desensitizing the transient receptor potential channel subtype A member 1 or the transient receptor potential channel subtype V member 2 or the effect may be through modulating kynurenic acid levels in the central nervous system. Thus, probenecid might be a potential candidate for the treatment of trigeminal activation related pain conditions.


Assuntos
Analgésicos/farmacologia , Dor Facial/tratamento farmacológico , Probenecid/farmacologia , Animais , Modelos Animais de Doenças , Dor Facial/patologia , Dor Facial/fisiopatologia , Formaldeído , Injeções Intraperitoneais , Interleucina-1beta/metabolismo , Masculino , Atividade Motora , NAD(P)H Desidrogenase (Quinona)/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Medição da Dor , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/metabolismo , Núcleo Espinal do Trigêmeo/patologia , Vibrissas
18.
Neuroscience ; 228: 334-48, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23103796

RESUMO

Although trigeminal neuropathic pain is one of the most common chronic pain syndromes, the etiology is still unknown. Here, a rat model was generated using chronic constrictive injury (CCI) with ligation of the infraorbital nerve to test the hypothesis that collapse of chloride homeostasis in trigeminal neurons causes impairment of γ-aminobutyric acid-ergic (GABAergic) inhibition and induces trigeminal allodynia. Rats showed a reduction and increase in pain threshold and pain response scores, respectively, to mechanical stimulation, 1 and 3weeks after CCI. In situ hybridization and immunohistochemical analysis showed that inward-directed Na(+), K(+)-2Cl(-) cotransporter (NKCC1) mRNA and protein were upregulated in the small-sized and large-sized primary neurons in the injured side of the trigeminal ganglion and in the peripherin-positive terminal, respectively, for the first 2weeks, while outward-directed K(+)-Cl(-) cotransporter (KCC2) mRNA and protein were downregulated in secondary relay neurons on the injured side of the spinal trigeminal nucleus caudalis (Sp5C). Optical imaging of evoked synaptic responses using a voltage-sensitive dye revealed that pre- and post-synaptic GABA actions were disinhibited and excitatory in the injured side, respectively, but inhibited in the sham-operated side of the Sp5C. This downregulation of KCC2 in the Sp5C may result in an excitatory switch by impairing postsynaptic GABA inhibition. GABA-mediated presynaptic disinhibition was attenuated by bumetanide, suggesting that NKCC1 upregulation in primary neurons may facilitate pain transmission by presynaptic GABAergic depolarization. Such Cl(-) homeostatic disruption resulting in perturbation of the inhibitory system possibly increases pain transmission, which may underlie the pathophysiology of trigeminal neuropathic pain.


Assuntos
Cloretos/metabolismo , Modelos Animais de Doenças , Homeostase/fisiologia , Neuralgia/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Células HEK293 , Humanos , Masculino , Neuralgia/patologia , Técnicas de Cultura de Órgãos , Limiar da Dor/fisiologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Ratos , Ratos Wistar , Potenciais Sinápticos/fisiologia , Núcleo Espinal do Trigêmeo/patologia
19.
Mol Brain ; 5: 44, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23270529

RESUMO

BACKGROUND: Trigeminal neuropathic pain attacks can be excruciating for patients, even after being lightly touched. Although there are rodent trigeminal nerve research models to study orofacial pain, few models have been applied to studies in mice. A mouse trigeminal inflammatory compression (TIC) model is introduced here which successfully and reliably promotes vibrissal whisker pad hypersensitivity. RESULTS: The chronic orofacial neuropathic pain model is induced after surgical placement of chromic gut suture in the infraorbital nerve fissure in the maxillary bone. Slight compression and chemical effects of the chromic gut suture on the portion of the infraorbital nerve contacted cause mild nerve trauma. Nerve edema is observed in the contacting infraorbital nerve bundle as well as macrophage infiltration in the trigeminal ganglia. Centrally in the spinal trigeminal nucleus, increased immunoreactivity for an activated microglial marker is evident (OX42, postoperative day 70). Mechanical thresholds of the affected whisker pad are significantly decreased on day 3 after chromic gut suture placement, persisting at least 10 weeks. The mechanical allodynia is reversed by suppression of microglial activation. Cold allodynia was detected at 4 weeks. CONCLUSIONS: A simple, effective, and reproducible chronic mouse model mimicking clinical orofacial neuropathic pain (Type 2) is induced by placing chromic gut suture between the infraorbital nerve and the maxillary bone. The method produces mild inflammatory compression with significant continuous mechanical allodynia persisting at least 10 weeks and cold allodynia measureable at 4 weeks.


Assuntos
Dor Facial/patologia , Inflamação/patologia , Síndromes de Compressão Nervosa/patologia , Neuralgia/patologia , Órbita/inervação , Órbita/patologia , Nervo Trigêmeo/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Dor Facial/complicações , Hiperalgesia/complicações , Hiperalgesia/patologia , Imidazóis/farmacologia , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , Minociclina/farmacologia , Síndromes de Compressão Nervosa/complicações , Neuralgia/complicações , Neurônios/efeitos dos fármacos , Neurônios/patologia , Órbita/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Tetrazóis/farmacologia , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/patologia , Nervo Trigêmeo/efeitos dos fármacos , Neuralgia do Trigêmeo/complicações , Neuralgia do Trigêmeo/patologia , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA