Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Eur J Pharmacol ; 972: 176561, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580182

RESUMO

Neuronal depression in the thalamus underlies anesthetic-induced loss of consciousness, while the precise sub-thalamus nuclei and molecular targets involved remain to be elucidated. The present study investigated the role of extrasynaptic GABAA receptors in the central medial thalamic nucleus (CM) in anesthesia induced by gaboxadol (THIP) and diazepam (DZP) in rats. Local lesion of the CM led to a decrease in the duration of loss of righting reflex induced by THIP and DZP. CM microinjection of THIP but not DZP induced anesthesia. The absence of righting reflex in THIP-treated rats was consistent with the increase of low frequency oscillations in the delta band in the medial prefrontal cortex. CM microinjection of GABAA receptor antagonist SR95531 significantly attenuated the anesthesia induced by systemically-administered THIP, but not DZP. Moreover, the rats with declined expression of GABAA receptor δ-subunit in the CM were less responsive to THIP or DZP. These findings explained a novel mechanism of THIP-induced loss of consciousness and highlighted the role of CM extrasynaptic GABAA receptors in mediating anesthesia.


Assuntos
Anestesia , Isoxazóis , Receptores de GABA-A , Animais , Receptores de GABA-A/metabolismo , Masculino , Ratos , Isoxazóis/farmacologia , Diazepam/farmacologia , Ratos Sprague-Dawley , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Núcleo Mediodorsal do Tálamo/metabolismo , Núcleo Mediodorsal do Tálamo/fisiologia , Reflexo de Endireitamento/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
2.
J Neurophysiol ; 131(5): 876-890, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568510

RESUMO

At the heart of the prefrontal network is the mediodorsal (MD) thalamus. Despite the importance of MD in a broad range of behaviors and neuropsychiatric disorders, little is known about the physiology of neurons in MD. We injected the retrograde tracer cholera toxin subunit B (CTB) into the medial prefrontal cortex (mPFC) of adult wild-type mice. We prepared acute brain slices and used current clamp electrophysiology to measure and compare the intrinsic properties of the neurons in MD that project to mPFC (MD→mPFC neurons). We show that MD→mPFC neurons are located predominantly in the medial (MD-M) and lateral (MD-L) subnuclei of MD. MD-L→mPFC neurons had shorter membrane time constants and lower membrane resistance than MD-M→mPFC neurons. Relatively increased hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity in MD-L neurons accounted for the difference in membrane resistance. MD-L neurons had a higher rheobase that resulted in less readily generated action potentials compared with MD-M→mPFC neurons. In both cell types, HCN channels supported generation of burst spiking. Increased HCN channel activity in MD-L neurons results in larger after-hyperpolarization potentials compared with MD-M neurons. These data demonstrate that the two populations of MD→mPFC neurons have divergent physiologies and support a differential role in thalamocortical information processing and potentially behavior.NEW & NOTEWORTHY To realize the potential of circuit-based therapies for psychiatric disorders that localize to the prefrontal network, we need to understand the properties of the populations of neurons that make up this network. The mediodorsal (MD) thalamus has garnered attention for its roles in executive functioning and social/emotional behaviors mediated, at least in part, by its projections to the medial prefrontal cortex (mPFC). Here, we identify and compare the physiology of the projection neurons in the two MD subnuclei that provide ascending inputs to mPFC in mice. Differences in intrinsic excitability between the two populations of neurons suggest that neuromodulation strategies targeting the prefrontal thalamocortical network will have differential effects on these two streams of thalamic input to mPFC.


Assuntos
Núcleo Mediodorsal do Tálamo , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Camundongos , Núcleo Mediodorsal do Tálamo/fisiologia , Núcleo Mediodorsal do Tálamo/citologia , Masculino , Neurônios/fisiologia , Vias Neurais/fisiologia , Potenciais de Ação/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo
3.
Sheng Li Xue Bao ; 76(2): 233-246, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658373

RESUMO

The high-order cognitive and executive functions are necessary for an individual to survive. The densely bidirectional innervations between the medial prefrontal cortex (mPFC) and the mediodorsal thalamus (MD) play a vital role in regulating high-order functions. Pyramidal neurons in mPFC have been classified into several subclasses according to their morphological and electrophysiological properties, but the properties of the input-specific pyramidal neurons in mPFC remain poorly understood. The present study aimed to profile the morphological and electrophysiological properties of mPFC pyramidal neurons innervated by MD. In the past, the studies for characterizing the morphological and electrophysiological properties of neurons mainly relied on the electrophysiological recording of a large number of neurons and their morphologic reconstructions. But, it is a low efficient method for characterizing the circuit-specific neurons. The present study combined the advantages of traditional morphological and electrophysiological methods with machine learning to address the shortcomings of the past method, to establish a classification model for the morphological and electrophysiological properties of mPFC pyramidal neurons, and to achieve more accurate and efficient identification of the properties from a small size sample of neurons. We labeled MD-innervated pyramidal neurons of mPFC using the trans-synaptic neural circuitry tracing method and obtained their morphological properties using whole-cell patch-clamp recording and morphologic reconstructions. The results showed that the classification model established in the present study could predict the electrophysiological properties of MD-innervated pyramidal neurons based on their morphology. MD-innervated pyramidal neurons exhibit larger basal dendritic length but lower apical dendrite complexity compared to non-MD-innervated neurons in the mPFC. The morphological characteristics of the two subtypes (ET-1 and ET-2) of mPFC pyramidal neurons innervated by MD are different, with the apical dendrites of ET-1 neurons being longer and more complex than those of ET-2 neurons. These results suggest that the electrophysiological properties of MD- innervated pyramidal neurons within mPFC correlate with their morphological properties, indicating that the different roles of these two subclasses in local circuits within PFC, as well as in PFC-cortical/subcortical brain region circuits.


Assuntos
Córtex Pré-Frontal , Células Piramidais , Células Piramidais/fisiologia , Células Piramidais/citologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Animais , Ratos , Núcleo Mediodorsal do Tálamo/fisiologia , Núcleo Mediodorsal do Tálamo/citologia , Masculino , Fenômenos Eletrofisiológicos , Vias Neurais/fisiologia , Vias Neurais/citologia , Aprendizado de Máquina , Ratos Sprague-Dawley , Técnicas de Patch-Clamp
4.
Neuropsychopharmacology ; 49(8): 1318-1329, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38438592

RESUMO

Clinical studies have shown that the mediodorsal thalamus (MD) may play an important role in the development of depression. However, the molecular and circuit mechanisms by which the mediodorsal thalamus (MD) participates in the pathological processes of depression remain unclear. Here, we show that in male chronic social defeat stress (CSDS) mice, the calcium signaling activity of glutamatergic neurons in MD is reduced. By combining conventional neurotracer and transneuronal virus tracing techniques, we identify a synaptic circuit connecting MD and medial prefrontal cortex (mPFC) in the mouse. Brain slice electrophysiology and fiber optic recordings reveal that the reduced activity of MD glutamatergic neurons leads to an excitatory-inhibitory imbalance of pyramidal neurons in mPFC. Furthermore, activation of MD glutamatergic neurons restores the electrophysiological properties abnormal in mPFC. Optogenetic activation of the MD-mPFC circuit ameliorates anxiety and depression-like behaviors in CSDS mice. Taken together, these data support the critical role of MD-mPFC circuit on CSDS-induced depression-like behavior and provide a potential mechanistic explanation for depression.


Assuntos
Depressão , Camundongos Endogâmicos C57BL , Vias Neurais , Optogenética , Córtex Pré-Frontal , Derrota Social , Estresse Psicológico , Animais , Córtex Pré-Frontal/metabolismo , Estresse Psicológico/fisiopatologia , Masculino , Depressão/fisiopatologia , Vias Neurais/fisiopatologia , Camundongos , Núcleo Mediodorsal do Tálamo , Neurônios/fisiologia , Neurônios/metabolismo , Células Piramidais/fisiologia
5.
Eur J Neurosci ; 59(4): 641-661, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38221670

RESUMO

Sleep spindles are major oscillatory components of Non-Rapid Eye Movement (NREM) sleep, reflecting hyperpolarization-rebound sequences of thalamocortical neurons. Reports suggest a link between sleep spindles and several forms of high-frequency oscillations which are considered as expressions of pathological off-line neural plasticity in the central nervous system. Here we investigated the relationship between thalamic sleep spindles and ripples in the anterior and mediodorsal nuclei (ANT and MD) of epilepsy patients. Whole-night LFP from the ANT and MD were co-registered with scalp EEG/polysomnography by using externalized leads in 15 epilepsy patients undergoing a Deep Brain Stimulation protocol. Slow (~12 Hz) and fast (~14 Hz) sleep spindles were present in the human ANT and MD and roughly, 20% of them were associated with ripples. Ripple-associated thalamic sleep spindles were characterized by longer duration and exceeded pure spindles in terms of spindle power as indicated by time-frequency analysis. Furthermore, ripple amplitude was modulated by the phase of sleep spindles within both thalamic nuclei. No signs of pathological processes were correlated with measures of ripple and spindle association, furthermore, the density of ripple-associated sleep spindles in the ANT showed a positive correlation with verbal comprehension. Our findings indicate the involvement of the human thalamus in coalescent spindle-ripple oscillations of NREM sleep.


Assuntos
Epilepsia , Sono , Humanos , Sono/fisiologia , Tálamo/fisiologia , Eletroencefalografia , Núcleo Mediodorsal do Tálamo
6.
J Neurosci ; 43(46): 7780-7798, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37709539

RESUMO

Animal studies have established that the mediodorsal nucleus (MD) of the thalamus is heavily and reciprocally connected with all areas of the prefrontal cortex (PFC). In humans, however, these connections are difficult to investigate. High-resolution imaging protocols capable of reliably tracing the axonal tracts linking the human MD with each of the PFC areas may thus be key to advance our understanding of the variation, development, and plastic changes of these important circuits, in health and disease. Here, we tested in adult female and male humans the reliability of a new reconstruction protocol based on in vivo diffusion MRI to trace, measure, and characterize the fiber tracts interconnecting the MD with 39 human PFC areas per hemisphere. Our protocol comprised the following three components: (1) defining regions of interest; (2) preprocessing diffusion data; and, (3) modeling white matter tracts and tractometry. This analysis revealed largely separate PFC territories of reciprocal MD-PFC tracts bearing striking resemblance with the topographic layout observed in macaque connection-tracing studies. We then examined whether our protocol could reliably reconstruct each of these MD-PFC tracts and their profiles across test and retest sessions. Results revealed that this protocol was able to trace and measure, in both left and right hemispheres, the trajectories of these 39 area-specific axon bundles with good-to-excellent test-retest reproducibility. This protocol, which has been made publicly available, may be relevant for cognitive neuroscience and clinical studies of normal and abnormal PFC function, development, and plasticity.SIGNIFICANCE STATEMENT Reciprocal MD-PFC interactions are critical for complex human cognition and learning. Reliably tracing, measuring and characterizing MD-PFC white matter tracts using high-resolution noninvasive methods is key to assess individual variation of these systems in humans. Here, we propose a high-resolution tractography protocol that reliably reconstructs 39 area-specific MD-PFC white matter tracts per hemisphere and quantifies structural information from diffusion MRI data. This protocol revealed a detailed mapping of thalamocortical and corticothalamic MD-PFC tracts in four different PFC territories (dorsal, medial, orbital/frontal pole, inferior frontal) showing structural connections resembling those observed in tracing studies with macaques. Furthermore, our automated protocol revealed high test-retest reproducibility and is made publicly available, constituting a step forward in mapping human MD-PFC circuits in clinical and academic research.


Assuntos
Núcleo Mediodorsal do Tálamo , Córtex Pré-Frontal , Adulto , Animais , Humanos , Masculino , Feminino , Reprodutibilidade dos Testes , Córtex Pré-Frontal/diagnóstico por imagem , Tálamo , Cognição , Macaca , Vias Neurais/diagnóstico por imagem
8.
Schizophr Res ; 256: 26-35, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37126979

RESUMO

BACKGROUND: The thalamus is central to brain functions ranging from primary sensory processing to higher-order cognition. Structural deficits in thalamic association nuclei such as the pulvinar and mediodorsal nuclei have previously been reported in schizophrenia. However, the specificity with regards to clinical presentation, and whether or not bipolar disorder (BD) is associated with similar alterations is unclear. METHODS: We investigated thalamic nuclei volumes in 334 patients with schizophrenia spectrum disorders (SSD) (median age 29 years, 59 % male), 322 patients with BD (30 years, 40 % male), and 826 healthy controls (HC) (34 years, 54 % male). Volumes of 25 thalamic nuclei were extracted from T1-weighted magnetic resonance imaging using an automated Bayesian segmentation method and compared between groups. Furthermore, we explored associations with clinical characteristics across diagnostic groups, including psychotic and mood symptoms and medication use, as well as diagnostic subtype in BD. RESULTS: Significantly smaller volumes were found in the mediodorsal, pulvinar, and lateral and medial geniculate thalamic nuclei in SSD. Similarly, smaller volumes were found in BD in the same four regions, but mediodorsal nucleus volume alterations were limited to its lateral part and pulvinar alterations to its anterior region. Smaller volumes in BD compared to HC were seen only in BD type I, not BD type II. Across diagnoses, having more negative symptoms was associated with smaller pulvinar volumes. CONCLUSIONS: Structural alterations were found in both SSD and BD, mainly in the thalamic association nuclei. Structural deficits in the pulvinar may be of relevance for negative symptoms.


Assuntos
Esquizofrenia , Humanos , Masculino , Adulto , Feminino , Esquizofrenia/diagnóstico , Teorema de Bayes , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/patologia , Tálamo/patologia , Núcleo Mediodorsal do Tálamo , Imageamento por Ressonância Magnética/métodos
9.
Nat Commun ; 14(1): 1508, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932068

RESUMO

Fear extinction is a form of inhibitory learning that suppresses the expression of aversive memories and plays a key role in the recovery of anxiety and trauma-related disorders. Here, using male mice, we identify a cerebello-thalamo-cortical pathway regulating fear extinction. The cerebellar fastigial nucleus (FN) projects to the lateral subregion of the mediodorsal thalamic nucleus (MD), which is reciprocally connected with the dorsomedial prefrontal cortex (dmPFC). The inhibition of FN inputs to MD in male mice impairs fear extinction in animals with high fear responses and increases the bursting of MD neurons, a firing pattern known to prevent extinction learning. Indeed, this MD bursting is followed by high levels of the dmPFC 4 Hz oscillations causally associated with fear responses during fear extinction, and the inhibition of FN-MD neurons increases the coherence of MD bursts and oscillations with dmPFC 4 Hz oscillations. Overall, these findings reveal a regulation of fear-related thalamo-cortical dynamics by the cerebellum and its contribution to fear extinction.


Assuntos
Extinção Psicológica , Medo , Camundongos , Masculino , Animais , Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Núcleo Mediodorsal do Tálamo/fisiologia , Cerebelo
10.
J Neurosci ; 43(12): 2104-2115, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36788026

RESUMO

The medial prefrontal cortex receives converging inputs from the mediodorsal thalamic nucleus (MD) and basolateral amygdala (BLA). Although many studies reported that the BLA also projects to MD, there is conflicting evidence regarding this projection, with some data suggesting that it originates from GABAergic or glutamatergic neurons. Therefore, the present study aimed to determine the neurotransmitter used by MD-projecting BLA cells in male and female rats. We first examined whether BLA cells retrogradely labeled by Fast Blue infusions in MD are immunopositive for multiple established markers of BLA interneurons. A minority of MD-projecting BLA cells expressed somatostatin (∼22%) or calretinin (∼11%) but not other interneuronal markers, suggesting that BLA neurons projecting to MD not only include glutamatergic cells, but also long-range GABAergic neurons. Second, we examined the responses of MD cells to optogenetic activation of BLA axons using whole-cell recordings in vitro Consistent with our immunohistochemical findings, among responsive MD cells, light stimuli typically elicited isolated EPSPs (73%) or IPSPs (27%) as well as coincident EPSPs and IPSPs (11%). Indicating that these IPSPs were monosynaptic, light-evoked EPSPs and IPSPs had the same latency and the IPSPs persisted in the presence of ionotropic glutamate receptor antagonists. Overall, our results indicate that the BLA sends a mixed, glutamatergic-GABAergic projection to MD, which likely influences coordination of activity between BLA, MD, and medial prefrontal cortex. An important challenge for future studies will be to examine the connections formed by MD-projecting glutamatergic and GABAergic BLA cells with each other and other populations of BLA cells.SIGNIFICANCE STATEMENT The mediodorsal thalamic nucleus (MD) and basolateral amygdala (BLA) send convergent projections to the medial prefrontal cortex. Although many studies reported that the BLA also projects to MD, there is conflicting evidence as to whether this projection is glutamatergic or GABAergic. By combining tract tracing, immunohistochemistry, optogenetics, and patch clamp recordings in vitro, we found that BLA neurons projecting to MD not only include glutamatergic cells, but also long-range GABAergic neurons. Differential recruitment of these two contingents of cells likely influences coordination of activity between the BLA, MD, and medial prefrontal cortex.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Ratos , Masculino , Feminino , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Núcleo Mediodorsal do Tálamo , Vias Neurais/fisiologia , Interneurônios , Neurônios GABAérgicos
11.
Cereb Cortex ; 33(11): 6742-6760, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36757182

RESUMO

Auditory gating (AG) is an adaptive mechanism for filtering out redundant acoustic stimuli to protect the brain against information overload. AG deficits have been found in many mental illnesses, including schizophrenia (SZ). However, the neural correlates of AG remain poorly understood. Here, we found that the posterior parietal cortex (PPC) shows an intermediate level of AG in auditory thalamocortical circuits, with a laminar profile in which the strongest AG is in the granular layer. Furthermore, AG of the PPC was decreased and increased by optogenetic inactivation of the medial dorsal thalamic nucleus (MD) and auditory cortex (AC), respectively. Optogenetically activating the axons from the MD and AC drove neural activities in the PPC without an obvious AG. These results indicated that AG in the PPC is determined by the integrated signal streams from the MD and AC in a bottom-up manner. We also found that a mouse model of SZ (postnatal administration of noncompetitive N-methyl-d-aspartate receptor antagonist) presented an AG deficit in the PPC, which may be inherited from the dysfunction of MD. Together, our findings reveal a neural circuit underlying the generation of AG in the PPC and its involvement in the AG deficit of SZ.


Assuntos
Córtex Auditivo , Vigília , Camundongos , Animais , Lobo Parietal/fisiologia , Tálamo , Núcleo Mediodorsal do Tálamo , Encéfalo , Córtex Auditivo/fisiologia
12.
Brain Res ; 1796: 148083, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108782

RESUMO

The dorsomedial nucleus of the hypothalamus (DMH) is part of the brain circuits that modulate organism responses to the circadian cycle, energy balance, and psychological stress. A large group of thyrotropin-releasing hormone (Trh) neurons is localized in the DMH; they comprise about one third of the DMH neurons that project to the lateral hypothalamus area (LH). We tested their response to various paradigms. In male Wistar rats, food restriction during adulthood, or chronic variable stress (CVS) during adolescence down-regulated adult DMH Trh mRNA levels compared to those in sedentary animals fed ad libitum; two weeks of voluntary wheel running during adulthood enhanced DMH Trh mRNA levels compared to pair-fed rats. Except for their magnitude, female responses to exercise were like those in male rats; in contrast, in female rats CVS did not change DMH Trh mRNA levels. A very strong negative correlation between DMH Trh mRNA levels and serum corticosterone concentration in rats of either sex was lost in CVS rats. CVS canceled the response to food restriction, but not that to exercise in either sex. TRH receptor 1 (Trhr) cells were numerous along the rostro-caudal extent of the medial LH. In either sex, fasting during adulthood reduced DMH Trh mRNA levels, and increased LH Trhr mRNA levels, suggesting fasting may inhibit the activity of TRHDMH->LH neurons. Thus, in Wistar rats DMH Trh mRNA levels are regulated by negative energy balance, exercise and chronic variable stress through sex-dependent and -independent pathways.


Assuntos
Hipotálamo , Hormônio Liberador de Tireotropina , Animais , Feminino , Masculino , Ratos , Corticosterona , Hipotálamo/metabolismo , Núcleo Mediodorsal do Tálamo , Atividade Motora , Ratos Wistar , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , RNA Mensageiro/metabolismo , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo
13.
Neuroimage Clin ; 35: 103070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35667173

RESUMO

The thalamus is a subcortical structure formed by different nuclei that relay information to the neocortex. Several reports have already described alterations of this structure in patients of schizophrenia that experience auditory hallucinations. However, to date no study has addressed whether the volumes of specific thalamic nuclei are altered in chronic patients experiencing persistent auditory hallucinations. We have processed structural MRI images using Freesurfer, and have segmented them into 25 nuclei using the probabilistic atlas developed by Iglesias and collaborators (Iglesias et al., 2018). To homogenize the sample, we have matched patients of schizophrenia, with and without persistent auditory hallucinations, with control subjects, considering sex, age and their estimated intracranial volume. This rendered a group number of 41 patients experiencing persistent auditory hallucinations, 35 patients without auditory hallucinations, and 55 healthy controls. In addition, we have also correlated the volume of the altered thalamic nuclei with the total score of the PSYRATS, a clinical scale used to evaluate the positive symptoms of this disorder. We have found alterations in the volume of 8 thalamic nuclei in both cohorts of patients with schizophrenia: The medial and lateral geniculate nuclei, the anterior, inferior, and lateral pulvinar nuclei, the lateral complex and the lateral and medial mediodorsal nuclei. We have also found some significant correlations between the volume of these nuclei in patients experiencing auditory hallucinations, and the total score of the PSYRATS scale. Altogether our results indicate that volumetric alterations of thalamic nuclei involved in audition may be related to persistent auditory hallucinations in chronic schizophrenia patients, whereas alterations in nuclei related to association cortices are evident in all patients. Future studies should explore whether the structural alterations are cause or consequence of these positive symptoms and whether they are already present in first episodes of psychosis.


Assuntos
Esquizofrenia , Alucinações/diagnóstico por imagem , Alucinações/etiologia , Humanos , Imageamento por Ressonância Magnética , Núcleo Mediodorsal do Tálamo/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem
14.
Neuroimage ; 249: 118876, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998970

RESUMO

The human mediodorsal thalamic nucleus (MD) is crucial for higher cognitive functions, while the fine anatomical organization of the MD and the function of each subregion remain elusive. In this study, using high-resolution data provided by the Human Connectome Project, an anatomical connectivity-based method was adopted to unveil the topographic organization of the MD. Four fine-grained subregions were identified in each hemisphere, including the medial (MDm), central (MDc), dorsal (MDd), and lateral (MDl), which recapitulated previous cytoarchitectonic boundaries from histological studies. The subsequent connectivity analysis of the subregions also demonstrated distinct anatomical and functional connectivity patterns, especially with the prefrontal cortex. To further evaluate the function of MD subregions, partial least squares analysis was performed to examine the relationship between different prefrontal-subregion connectivity and behavioral measures in 1012 subjects. The results showed subregion-specific involvement in a range of cognitive functions. Specifically, the MDm predominantly subserved emotional-cognition domains, while the MDl was involved in multiple cognitive functions especially cognitive flexibility and inhibition. The MDc and MDd were correlated with fluid intelligence, processing speed, and emotional cognition. In conclusion, our work provides new insights into the anatomical and functional organization of the MD and highlights the various roles of the prefrontal-thalamic circuitry in human cognition.


Assuntos
Cognição/fisiologia , Conectoma , Emoções/fisiologia , Função Executiva/fisiologia , Inteligência/fisiologia , Imageamento por Ressonância Magnética , Núcleo Mediodorsal do Tálamo/fisiologia , Rede Nervosa/fisiologia , Adulto , Mapeamento Encefálico , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Núcleo Mediodorsal do Tálamo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
15.
Obesity (Silver Spring) ; 30(1): 172-182, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34889060

RESUMO

OBJECTIVE: The aim of this study was to investigate laparoscopic sleeve gastrectomy (LSG)-induced changes in connectivity between regions involved with reward/antireward and cognitive control and the extent to which these changes persist after surgery and predict sustainable weight loss. METHODS: Whole-brain local functional connectivity density (lFCD) was studied in 25 participants with obesity who underwent resting-state functional MRI before (PreLSG), 1 month after (PostLSG1 ), and 12 months after (PostLSG12 ) LSG and compared with 25 normal-weight controls. Regions with significant time effects of LSG on functional connectivity density were identified for subsequent seed-based connectivity analyses and to examine associations with behavior. RESULTS: LSG significantly increased lFCD in the mediodorsal thalamic nucleus (MD) and in the habenula (Hb) at PostLSG12 compared with PreLSG/PostLSG1 , whereas it decreased lFCD in the posterior cingulate cortex/precuneus (PCC/PreCun) at PostLSG1 /PostLSG12 , and these changes were associated with reduction in BMI. In contrast, controls had no significant lFCD differences between baseline and repeated measures. MD had stronger connectivity with PreCun and Hb at PostLSG12 compared with PreLSG/PostLSG1 , and the increased MD-left PreCun and Hb-MD connectivity correlated with decreases in hunger and BMI, respectively. PCC/PreCun had stronger connectivity with the insula at PostLSG1-12 . CONCLUSIONS: The findings highlight the importance of reward and interoceptive regions as well as that of regions mediating negative emotions in the long-term therapeutic benefits of LSG.


Assuntos
Gastrectomia , Habenula , Núcleo Mediodorsal do Tálamo , Obesidade Mórbida , Cognição/fisiologia , Gastrectomia/métodos , Habenula/anatomia & histologia , Habenula/fisiologia , Humanos , Laparoscopia/métodos , Imageamento por Ressonância Magnética , Núcleo Mediodorsal do Tálamo/anatomia & histologia , Núcleo Mediodorsal do Tálamo/fisiologia , Vias Neurais , Obesidade Mórbida/fisiopatologia , Obesidade Mórbida/cirurgia , Resultado do Tratamento , Redução de Peso
16.
WMJ ; 120(3): 247-249, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34710312

RESUMO

INTRODUCTION: The mediodorsal nucleus is a subcomponent of the thalamus hypothesized to have a role in memory pathways. Given the limited number of reported cases and associated images, its clinical significance has not yet been fully elucidated. CASE PRESENTATION: We report the case of a 53-year-old man who presented with verbal amnesia, including deficits of both recall and recognition. High-resolution magnetic resonance imaging demonstrated a well-defined infarct contained within the mediodorsal nucleus. DISCUSSION: Current literature reports a range of conclusions regarding the extent to which the mediodorsal nucleus is involved in memory pathways. Several case series have attempted to localize infarcts by combining neuropsychology testing with imaging but were constrained by dated imaging modalities often dispersed with impurities. CONCLUSION: Our case demonstrates that isolated lesions of the mediodorsal nucleus can lead to deficits in both recall and recognition and that high-resolution magnetic resonance imaging is necessary when a thalamic infarct is suspected.


Assuntos
Amnésia , Núcleo Mediodorsal do Tálamo , Amnésia/etiologia , Humanos , Infarto , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tálamo
17.
Nature ; 600(7887): 100-104, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34614503

RESUMO

Interactions between the mediodorsal thalamus and the prefrontal cortex are critical for cognition. Studies in humans indicate that these interactions may resolve uncertainty in decision-making1, but the precise mechanisms are unknown. Here we identify two distinct mediodorsal projections to the prefrontal cortex that have complementary mechanistic roles in decision-making under uncertainty. Specifically, we found that a dopamine receptor (D2)-expressing projection amplifies prefrontal signals when task inputs are sparse and a kainate receptor (GRIK4) expressing-projection suppresses prefrontal noise when task inputs are dense but conflicting. Collectively, our data suggest that there are distinct brain mechanisms for handling uncertainty due to low signals versus uncertainty due to high noise, and provide a mechanistic entry point for correcting decision-making abnormalities in disorders that have a prominent prefrontal component2-6.


Assuntos
Vias Neurais , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Animais , Tomada de Decisões , Feminino , Humanos , Interneurônios/fisiologia , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/fisiologia , Camundongos , Receptores Dopaminérgicos/metabolismo , Receptores de Ácido Caínico/metabolismo , Incerteza
18.
Cell Rep ; 34(1): 108596, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406414

RESUMO

The presence of two separate afferent channels from the olfactory glomeruli to different targets in the brain is unravelled in the lamprey. The mitral-like cells send axonal projections directly to the piriform cortex in the ventral part of pallium, whereas the smaller tufted-like cells project separately and exclusively to a relay nucleus called the dorsomedial telencephalic nucleus (dmtn). This nucleus, located at the interface between the olfactory bulb and pallium, in turn projects to a circumscribed area in the anteromedial, ventral part of pallium. The tufted-like cells are activated with short latency from the olfactory nerve and terminate with mossy fibers on the dmtn cells, wherein they elicit large unitary excitatory postsynaptic potentials (EPSPs). In all synapses along this tufted-like cell pathway, there is no concurrent inhibition, in contrast to the mitral-like cell pathway. This is similar to recent findings in rodents establishing two separate exclusive projection patterns, suggesting an evolutionarily conserved organization.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Lampreias/fisiologia , Núcleo Mediodorsal do Tálamo/fisiologia , Bulbo Olfatório/fisiologia , Nervo Olfatório/fisiologia , Telencéfalo/fisiologia , Vias Aferentes/citologia , Vias Aferentes/fisiologia , Animais , Vias Eferentes/fisiologia , Eletrofisiologia , Imuno-Histoquímica , Núcleo Mediodorsal do Tálamo/citologia , Neurônios/fisiologia , Bulbo Olfatório/citologia , Nervo Olfatório/citologia , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Córtex Piriforme/fisiologia , Sinapses/fisiologia , Telencéfalo/citologia
19.
Acta Neurol Belg ; 121(4): 921-926, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32107716

RESUMO

We assessed the state of the thalamocortical connection between the mediodorsal nucleus (MD) and the dorsolateral prefrontal cortex (DLPFC) in patients with corona radiata infarct using diffusion tensor tractography (DTT). Altogether, 110 patients with corona radiata infarct were recruited, all of whom underwent DTT at an early stage following infarct onset. Based on the integrity of CST (CST+: CST was preserved around the infarct, CST-: CST was interrupted by the infarct) and the integrity of thalamocortical connection between the MD of thalamus and the DLPFC (DLPFC+: the connection was preserved, DLPFC-: the connection was interrupted), patients were divided into 4 groups: CST+/DLPFC+ (37 patients), CST+/DLPFC- (21 patients), CST-/DLPFC+ (25 patients), and CST-/DLPFC- (27 patients) groups. Motor function was evaluated using the upper Motricity Index (MI), lower MI, modified Brunnstrom classification, and the functional ambulation category at baseline and at 6 months post-onset. In patients with preserved CST integrity, the status of the thalamocortical connection had no impact on the assessed motor outcomes at 6 months post-stroke. However, in patients with disrupted CST integrity, those with preserved thalamocortical connection integrity had significantly higher motor function scores in all assessed outcomes 6 months post-stroke than those with disrupted thalamocortical connection integrity. The preservation or disruption of the thalamocortical connection between the MD of the thalamus and the DLPFC is an important factor for motor function recovery when CST integrity is also disrupted.


Assuntos
Infarto Cerebral/diagnóstico por imagem , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem , Núcleo Mediodorsal do Tálamo/diagnóstico por imagem , Desempenho Psicomotor/fisiologia , Recuperação de Função Fisiológica/fisiologia , Idoso , Infarto Cerebral/fisiopatologia , Imagem de Tensor de Difusão/métodos , Córtex Pré-Frontal Dorsolateral/fisiopatologia , Feminino , Humanos , Masculino , Núcleo Mediodorsal do Tálamo/fisiopatologia , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Estudos Retrospectivos
20.
Neuron ; 109(2): 314-330.e4, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33188733

RESUMO

Interactions between the thalamus and prefrontal cortex (PFC) play a critical role in cognitive function and arousal. Here, we use anatomical tracing, electrophysiology, optogenetics, and 2-photon Ca2+ imaging to determine how ventromedial (VM) and mediodorsal (MD) thalamus target specific cell types and subcellular compartments in layer 1 (L1) of mouse PFC. We find thalamic inputs make distinct connections in L1, where VM engages neuron-derived neurotrophic factor (NDNF+) cells in L1a and MD drives vasoactive intestinal peptide (VIP+) cells in L1b. These separate populations of L1 interneurons participate in different inhibitory networks in superficial layers by targeting either parvalbumin (PV+) or somatostatin (SOM+) interneurons. NDNF+ cells also inhibit the apical dendrites of L5 pyramidal tract (PT) cells to suppress action potential (AP)-evoked Ca2+ signals. Lastly, NDNF+ cells mediate a unique form of thalamus-evoked inhibition at PT cells, selectively blocking VM-evoked dendritic Ca2+ spikes. Together, our findings reveal how two thalamic nuclei differentially communicate with the PFC through distinct L1 micro-circuits.


Assuntos
Núcleo Mediodorsal do Tálamo/fisiologia , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Feminino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Núcleo Mediodorsal do Tálamo/química , Núcleo Mediodorsal do Tálamo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/química , Rede Nervosa/citologia , Optogenética/métodos , Córtex Pré-Frontal/química , Córtex Pré-Frontal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...