Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.724
Filtrar
1.
PLoS One ; 19(7): e0304027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39018315

RESUMO

Rhythms are the most natural cue for temporal anticipation because many sounds in our living environment have rhythmic structures. Humans have cortical mechanisms that can predict the arrival of the next sound based on rhythm and periodicity. Herein, we showed that temporal anticipation, based on the regularity of sound sequences, modulates peripheral auditory responses via efferent innervation. The medial olivocochlear reflex (MOCR), a sound-activated efferent feedback mechanism that controls outer hair cell motility, was inferred noninvasively by measuring the suppression of otoacoustic emissions (OAE). First, OAE suppression was compared between conditions in which sound sequences preceding the MOCR elicitor were presented at regular (predictable condition) or irregular (unpredictable condition) intervals. We found that OAE suppression in the predictable condition was stronger than that in the unpredictable condition. This implies that the MOCR is strengthened by the regularity of preceding sound sequences. In addition, to examine how many regularly presented preceding sounds are required to enhance the MOCR, we compared OAE suppression within stimulus sequences with 0-3 preceding tones. The OAE suppression was strengthened only when there were at least three regular preceding tones. This suggests that the MOCR was not automatically enhanced by a single stimulus presented immediately before the MOCR elicitor, but rather that it was enhanced by the regularity of the preceding sound sequences.


Assuntos
Estimulação Acústica , Cóclea , Humanos , Masculino , Adulto , Feminino , Adulto Jovem , Cóclea/fisiologia , Núcleo Olivar/fisiologia , Reflexo/fisiologia , Som , Percepção Auditiva/fisiologia , Emissões Otoacústicas Espontâneas/fisiologia , Reflexo Acústico/fisiologia
2.
PLoS One ; 19(6): e0304832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900820

RESUMO

Neurons of the lateral superior olive (LSO) in the auditory brainstem play a fundamental role in binaural sound localization. Previous theoretical studies developed various types of neuronal models to study the physiological functions of the LSO. These models were usually tuned to a small set of physiological data with specific aims in mind. Therefore, it is unclear whether and how they can be related to each other, how widely applicable they are, and which model is suitable for what purposes. In this study, we address these questions for six different single-compartment integrate-and-fire (IF) type LSO models. The models are divided into two groups depending on their subthreshold responses: passive (linear) models with only the leak conductance and active (nonlinear) models with an additional low-voltage-activated potassium conductance that is prevalent among the auditory system. Each of these two groups is further subdivided into three subtypes according to the spike generation mechanism: one with simple threshold-crossing detection and voltage reset, one with threshold-crossing detection plus a current to mimic spike shapes, and one with a depolarizing exponential current for spiking. In our simulations, all six models were driven by identical synaptic inputs and calibrated with common criteria for binaural tuning. The resulting spike rates of the passive models were higher for intensive inputs and lower for temporally structured inputs than those of the active models, confirming the active function of the potassium current. Within each passive or active group, the simulated responses resembled each other, regardless of the spike generation types. These results, in combination with the analysis of computational costs, indicate that an active IF model is more suitable than a passive model for accurately reproducing temporal coding of LSO. The simulation of realistic spike shapes with an extended spiking mechanism added relatively small computational costs.


Assuntos
Modelos Neurológicos , Complexo Olivar Superior , Complexo Olivar Superior/fisiologia , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Humanos , Simulação por Computador , Núcleo Olivar/fisiologia , Animais , Localização de Som/fisiologia
3.
J Acoust Soc Am ; 155(5): 3183-3194, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738939

RESUMO

Medial olivocochlear (MOC) efferents modulate outer hair cell motility through specialized nicotinic acetylcholine receptors to support encoding of signals in noise. Transgenic mice lacking the alpha9 subunits of these receptors (α9KOs) have normal hearing in quiet and noise, but lack classic cochlear suppression effects and show abnormal temporal, spectral, and spatial processing. Mice deficient for both the alpha9 and alpha10 receptor subunits (α9α10KOs) may exhibit more severe MOC-related phenotypes. Like α9KOs, α9α10KOs have normal auditory brainstem response (ABR) thresholds and weak MOC reflexes. Here, we further characterized auditory function in α9α10KO mice. Wild-type (WT) and α9α10KO mice had similar ABR thresholds and acoustic startle response amplitudes in quiet and noise, and similar frequency and intensity difference sensitivity. α9α10KO mice had larger ABR Wave I amplitudes than WTs in quiet and noise. Other ABR metrics of hearing-in-noise function yielded conflicting findings regarding α9α10KO susceptibility to masking effects. α9α10KO mice also had larger startle amplitudes in tone backgrounds than WTs. Overall, α9α10KO mice had grossly normal auditory function in quiet and noise, although their larger ABR amplitudes and hyperreactive startles suggest some auditory processing abnormalities. These findings contribute to the growing literature showing mixed effects of MOC dysfunction on hearing.


Assuntos
Estimulação Acústica , Comportamento Animal , Ruído , Animais , Feminino , Masculino , Camundongos , Vias Auditivas/fisiologia , Vias Auditivas/fisiopatologia , Percepção Auditiva/fisiologia , Limiar Auditivo , Cóclea/fisiologia , Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico , Audição , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ruído/efeitos adversos , Núcleo Olivar/fisiologia , Mascaramento Perceptivo , Fenótipo , Receptores Nicotínicos/genética , Receptores Nicotínicos/deficiência , Reflexo de Sobressalto
4.
Hear Res ; 449: 109036, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797037

RESUMO

Although rats and mice are among the preferred animal models for investigating many characteristics of auditory function, they are rarely used to study an essential aspect of binaural hearing: the ability of animals to localize the sources of low-frequency sounds by detecting the interaural time difference (ITD), that is the difference in the time at which the sound arrives at each ear. In mammals, ITDs are mostly encoded in the medial superior olive (MSO), one of the main nuclei of the superior olivary complex (SOC). Because of their small heads and high frequency hearing range, rats and mice are often considered unable to use ITDs for sound localization. Moreover, their MSO is frequently viewed as too small or insignificant compared to that of mammals that use ITDs to localize sounds, including cats and gerbils. However, recent research has demonstrated remarkable similarities between most morphological and physiological features of mouse MSO neurons and those of MSO neurons of mammals that use ITDs. In this context, we have analyzed the structure and neural afferent and efferent connections of the rat MSO, which had never been studied by injecting neuroanatomical tracers into the nucleus. The rat MSO spans the SOC longitudinally. It is relatively small caudally, but grows rostrally into a well-developed column of stacked bipolar neurons. By placing small, precise injections of the bidirectional tracer biotinylated dextran amine (BDA) into the MSO, we show that this nucleus is innervated mainly by the most ventral and rostral spherical bushy cells of the anteroventral cochlear nucleus of both sides, and by the most ventrolateral principal neurons of the ipsilateral medial nucleus of the trapezoid body. The same experiments reveal that the MSO densely innervates the most dorsolateral region of the central nucleus of the inferior colliculus, the central region of the dorsal nucleus of the lateral lemniscus, and the most lateral region of the intermediate nucleus of the lateral lemniscus of its own side. Therefore, the MSO is selectively innervated by, and sends projections to, neurons that process low-frequency sounds. The structural and hodological features of the rat MSO are notably similar to those of the MSO of cats and gerbils. While these similarities raise the question of what functions other than ITD coding the MSO performs, they also suggest that the rat MSO is an appropriate model for future MSO-centered research.


Assuntos
Vias Auditivas , Axônios , Localização de Som , Complexo Olivar Superior , Animais , Complexo Olivar Superior/fisiologia , Complexo Olivar Superior/anatomia & histologia , Vias Auditivas/fisiologia , Vias Auditivas/anatomia & histologia , Axônios/fisiologia , Ratos , Masculino , Dextranos/metabolismo , Biotina/análogos & derivados , Estimulação Acústica , Vias Eferentes/fisiologia , Vias Eferentes/anatomia & histologia , Núcleo Olivar/fisiologia , Núcleo Olivar/anatomia & histologia , Feminino , Técnicas de Rastreamento Neuroanatômico , Ratos Wistar
5.
PLoS Biol ; 22(4): e3002586, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683852

RESUMO

Having two ears enables us to localize sound sources by exploiting interaural time differences (ITDs) in sound arrival. Principal neurons of the medial superior olive (MSO) are sensitive to ITD, and each MSO neuron responds optimally to a best ITD (bITD). In many cells, especially those tuned to low sound frequencies, these bITDs correspond to ITDs for which the contralateral ear leads, and are often larger than the ecologically relevant range, defined by the ratio of the interaural distance and the speed of sound. Using in vivo recordings in gerbils, we found that shortly after hearing onset the bITDs were even more contralaterally leading than found in adult gerbils, and travel latencies for contralateral sound-evoked activity clearly exceeded those for ipsilateral sounds. During the following weeks, both these latencies and their interaural difference decreased. A computational model indicated that spike timing-dependent plasticity can underlie this fine-tuning. Our results suggest that MSO neurons start out with a strong predisposition toward contralateral sounds due to their longer neural travel latencies, but that, especially in high-frequency neurons, this predisposition is subsequently mitigated by differential developmental fine-tuning of the travel latencies.


Assuntos
Estimulação Acústica , Gerbillinae , Neurônios , Complexo Olivar Superior , Animais , Neurônios/fisiologia , Complexo Olivar Superior/fisiologia , Localização de Som/fisiologia , Masculino , Núcleo Olivar/fisiologia , Som , Feminino
6.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242692

RESUMO

The olivocerebellar system, which is critical for sensorimotor performance and learning, functions through modules with feedback loops. The main feedback to the inferior olive comes from the cerebellar nuclei (CN), which are predominantly GABAergic and contralateral. However, for the subnucleus d of the caudomedial accessory olive (cdMAO), a crucial region for oculomotor and upper body movements, the source of GABAergic input has yet to be identified. Here, we demonstrate the existence of a disynaptic inhibitory projection from the medial CN (MCN) to the cdMAO via the superior colliculus (SC) by exploiting retrograde, anterograde, and transsynaptic viral tracing at the light microscopic level as well as anterograde classical and viral tracing combined with immunocytochemistry at the electron microscopic level. Retrograde tracing in Gad2-Cre mice reveals that the cdMAO receives GABAergic input from the contralateral SC. Anterograde transsynaptic tracing uncovered that the SC neurons receiving input from the contralateral MCN provide predominantly inhibitory projections to contralateral cdMAO, ipsilateral to the MCN. Following ultrastructural analysis of the monosynaptic projection about half of the SC terminals within the contralateral cdMAO are GABAergic. The disynaptic GABAergic projection from the MCN to the ipsilateral cdMAO mirrors that of the monosynaptic excitatory projection from the MCN to the contralateral cdMAO. Thus, while completing the map of inhibitory inputs to the olivary subnuclei, we established that the MCN inhibits the cdMAO via the contralateral SC, highlighting a potential push-pull mechanism in directional gaze control that appears unique in terms of laterality and polarity among olivocerebellar modules.


Assuntos
Cerebelo , Complexo Olivar Inferior , Camundongos , Animais , Núcleo Olivar/fisiologia , Núcleo Olivar/ultraestrutura , Transmissão Sináptica , Núcleos Cerebelares/fisiologia
7.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38195508

RESUMO

The olivo-cerebellar system plays an important role in vertebrate sensorimotor control. Here, we investigate sensory representations in the inferior olive (IO) of larval zebrafish and their spatial organization. Using single-cell labeling of genetically identified IO neurons, we find that they can be divided into at least two distinct groups based on their spatial location, dendritic morphology, and axonal projection patterns. In the same genetically targeted population, we recorded calcium activity in response to a set of visual stimuli using two-photon imaging. We found that most IO neurons showed direction-selective and binocular responses to visual stimuli and that the functional properties were spatially organized within the IO. Light-sheet functional imaging that allowed for simultaneous activity recordings at the soma and axonal level revealed tight coupling between functional properties, soma location, and axonal projection patterns of IO neurons. Taken together, our results suggest that anatomically defined classes of IO neurons correspond to distinct functional types, and that topographic connections between IO and cerebellum contribute to organization of the cerebellum into distinct functional zones.


Assuntos
Núcleo Olivar , Peixe-Zebra , Animais , Larva , Núcleo Olivar/fisiologia , Neurônios/fisiologia , Cerebelo/fisiologia
8.
Cerebellum ; 23(2): 284-328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36690829

RESUMO

Olov Oscarsson's review on the functional organization of spinocerebellar paths is a prime demonstration of the great skills and huge knowledge base of the electrophysiologists of his era working on communication systems in the brain. Oscarsson describes and characterizes in detail no less than ten different communication lines between the spinal cord and the cerebellum. As such, his work proved to be a highly fertile basis for ongoing physiological and anatomical research. However, even after 50 years of continuing cerebellar research, many questions are still open and even care must be taken that the differentiation in spinocerebellar paths, so carefully demonstrated by Oscarsson, is not lost in present-day research.


Assuntos
Cerebelo , Núcleo Olivar , Vias Neurais/anatomia & histologia , Cerebelo/fisiologia , Vias Aferentes , Núcleo Olivar/fisiologia , Células de Purkinje/fisiologia
9.
J Assoc Res Otolaryngol ; 24(6): 619-631, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079021

RESUMO

PURPOSE: The role of the medial olivocochlear system in speech perception in noise has been debated over the years, with studies showing mixed results. One possible reason for this could be the dependence of this relationship on the parameters used in assessing the speech perception ability (age, stimulus, and response-related variables). METHODS: The current study assessed the influence of the type of speech stimuli (monosyllables, words, and sentences), the signal-to-noise ratio (+5, 0, -5, and -10 dB), the metric used to quantify the speech perception ability (percent-correct, SNR-50, and slope of the psychometric function) and age (young vs old) on the relationship between medial olivocochlear reflex (quantified by contralateral inhibition of transient evoked otoacoustic emissions) and speech perception in noise. RESULTS: A linear mixed-effects model revealed no significant contributions of the medial olivocochlear reflex to speech perception in noise. CONCLUSION: The results suggest that there was no evidence of any modulatory influence of the indirectly measured medial olivocochlear reflex strength on speech perception in noise.


Assuntos
Percepção da Fala , Percepção da Fala/fisiologia , Emissões Otoacústicas Espontâneas/fisiologia , Fala , Ruído , Reflexo , Cóclea/fisiologia , Núcleo Olivar/fisiologia , Estimulação Acústica
10.
J Acoust Soc Am ; 154(6): 3644-3659, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051523

RESUMO

An auditory model has been developed with a time-varying, gain-control signal based on the physiology of the efferent system and subcortical neural pathways. The medial olivocochlear (MOC) efferent stage of the model receives excitatory projections from fluctuation-sensitive model neurons of the inferior colliculus (IC) and wide-dynamic-range model neurons of the cochlear nucleus. The response of the model MOC stage dynamically controls cochlear gain via simulated outer hair cells. In response to amplitude-modulated (AM) noise, firing rates of most IC neurons with band-enhanced modulation transfer functions in awake rabbits increase over a time course consistent with the dynamics of the MOC efferent feedback. These changes in the rates of IC neurons in awake rabbits were employed to adjust the parameters of the efferent stage of the proposed model. Responses of the proposed model to AM noise were able to simulate the increasing IC rate over time, whereas the model without the efferent system did not show this trend. The proposed model with efferent gain control provides a powerful tool for testing hypotheses, shedding insight on mechanisms in hearing, specifically those involving the efferent system.


Assuntos
Núcleo Coclear , Colículos Inferiores , Animais , Coelhos , Colículos Inferiores/fisiologia , Núcleo Coclear/fisiologia , Vias Eferentes/fisiologia , Cóclea/fisiologia , Audição/fisiologia , Núcleo Olivar/fisiologia , Vias Auditivas/fisiologia
11.
Front Neural Circuits ; 17: 1307283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107610

RESUMO

Auditory brainstem neurons in the lateral superior olive (LSO) receive excitatory input from the ipsilateral cochlear nucleus (CN) and inhibitory transmission from the contralateral CN via the medial nucleus of the trapezoid body (MNTB). This circuit enables sound localization using interaural level differences. Early studies have observed an additional inhibitory input originating from the ipsilateral side. However, many of its details, such as its origin, remained elusive. Employing electrical and optical stimulation of afferents in acute mouse brainstem slices and anatomical tracing, we here describe a glycinergic projection to LSO principal neurons that originates from the ipsilateral CN. This inhibitory synaptic input likely mediates inhibitory sidebands of LSO neurons in response to acoustic stimulation.


Assuntos
Núcleo Coclear , Localização de Som , Complexo Olivar Superior , Animais , Camundongos , Complexo Olivar Superior/fisiologia , Núcleo Coclear/fisiologia , Núcleo Olivar/fisiologia , Localização de Som/fisiologia , Neurônios/fisiologia , Vias Auditivas/fisiologia
12.
J Neurosci ; 43(46): 7766-7779, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734946

RESUMO

The medial nucleus of the trapezoid body (MNTB) in the auditory brainstem is the principal source of synaptic inhibition to several functionally distinct auditory nuclei. Prominent projections of individual MNTB neurons comprise the major binaural nuclei that are involved in the early processing stages of sound localization as well as the superior paraolivary nucleus (SPON), which contains monaural neurons that extract rapid changes in sound intensity to detect sound gaps and rhythmic oscillations that commonly occur in animal calls and human speech. While the processes that guide the development and refinement of MNTB axon collaterals to the binaural nuclei have become increasingly understood, little is known about the development of MNTB collaterals to the monaural SPON. In this study, we investigated the development of MNTB-SPON connections in mice of both sexes from shortly after birth to three weeks of age, which encompasses the time before and after hearing onset. Individual axon reconstructions and electrophysiological analysis of MNTB-SPON connectivity demonstrate a dramatic increase in the number of MNTB axonal boutons in the SPON before hearing onset. However, this proliferation was not accompanied by changes in the strength of MNTB-SPON connections or by changes in the structural or functional topographic precision. However, following hearing onset, the spread of single-axon boutons along the tonotopic axis increased, indicating an unexpected decrease in the tonotopic precision of the MNTB-SPON pathway. These results provide new insight into the development and organization of inhibition to SPON neurons and the regulation of developmental plasticity in diverging inhibitory pathways.SIGNIFICANCE STATEMENT The superior paraolivary nucleus (SPON) is a prominent auditory brainstem nucleus involved in the early detection of sound gaps and rhythmic oscillations. The ability of SPON neurons to fire at the offset of sound depends on strong and precise synaptic inhibition provided by glycinergic neurons in the medial nucleus of the trapezoid body (MNTB). Here, we investigated the anatomic and physiological maturation of MNTB-LSO connectivity in mice before and after the onset of hearing. We observed a period of bouton proliferation without accompanying changes in topographic precision before hearing onset. This was followed by bouton elimination and an unexpected decrease in the tonotopic precision after hearing onset. These results provide new insight into the development of inhibition to the SPON.


Assuntos
Complexo Olivar Superior , Corpo Trapezoide , Masculino , Feminino , Camundongos , Animais , Humanos , Vias Auditivas/fisiologia , Núcleo Olivar/fisiologia , Neurônios/fisiologia
13.
Elife ; 122023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526175

RESUMO

The inferior olive provides the climbing fibers to Purkinje cells in the cerebellar cortex, where they elicit all-or-none complex spikes and control major forms of plasticity. Given their important role in both short-term and long-term coordination of cerebellum-dependent behaviors, it is paramount to understand the factors that determine the output of olivary neurons. Here, we use mouse models to investigate how the inhibitory and excitatory inputs to the olivary neurons interact with each other, generating spiking patterns of olivary neurons that align with their intrinsic oscillations. Using dual color optogenetic stimulation and whole-cell recordings, we demonstrate how intervals between the inhibitory input from the cerebellar nuclei and excitatory input from the mesodiencephalic junction affect phase and gain of the olivary output at both the sub- and suprathreshold level. When the excitatory input is activated shortly (~50 ms) after the inhibitory input, the phase of the intrinsic oscillations becomes remarkably unstable and the excitatory input can hardly generate any olivary spike. Instead, when the excitatory input is activated one cycle (~150 ms) after the inhibitory input, the excitatory input can optimally drive olivary spiking, riding on top of the first cycle of the subthreshold oscillations that have been powerfully reset by the preceding inhibitory input. Simulations of a large-scale network model of the inferior olive highlight to what extent the synaptic interactions penetrate in the neuropil, generating quasi-oscillatory spiking patterns in large parts of the olivary subnuclei, the size of which also depends on the relative timing of the inhibitory and excitatory inputs.


Assuntos
Núcleos Cerebelares , Núcleo Olivar , Camundongos , Animais , Núcleo Olivar/fisiologia , Neurônios/fisiologia , Células de Purkinje/fisiologia , Cerebelo/fisiologia , Potenciais de Ação/fisiologia
14.
Nat Neurosci ; 26(8): 1394-1406, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474638

RESUMO

The brain generates predictive motor commands to control the spatiotemporal precision of high-velocity movements. Yet, how the brain organizes automated internal feedback to coordinate the kinematics of such fast movements is unclear. Here we unveil a unique nucleo-olivary loop in the cerebellum and its involvement in coordinating high-velocity movements. Activating the excitatory nucleo-olivary pathway induces well-timed internal feedback complex spike signals in Purkinje cells to shape cerebellar outputs. Anatomical tracing reveals extensive axonal collaterals from the excitatory nucleo-olivary neurons to downstream motor regions, supporting integration of motor output and internal feedback signals within the cerebellum. This pathway directly drives saccades and head movements with a converging direction, while curtailing their amplitude and velocity via the powerful internal feedback mechanism. Our finding challenges the long-standing dogma that the cerebellum inhibits the inferior olivary pathway and provides a new circuit mechanism for the cerebellar control of high-velocity movements.


Assuntos
Cerebelo , Núcleo Olivar , Núcleo Olivar/fisiologia , Cerebelo/fisiologia , Neurônios/fisiologia , Células de Purkinje/fisiologia , Axônios
15.
J Comp Neurol ; 531(14): 1381-1388, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37436768

RESUMO

The principal neurons (PNs) of the lateral superior olive nucleus (LSO) are an important component of mammalian brainstem circuits that compare activity between the two ears and extract intensity and timing differences used for sound localization. There are two LSO PN transmitter types, glycinergic and glutamatergic, which also have different ascending projection patterns to the inferior colliculus (IC). Glycinergic LSO PNs project ipsilaterally while glutamatergic one's projections vary in laterality by species. In animals with good low-frequency hearing (<3 kHz) such as cats and gerbils, glutamatergic LSO PNs have both ipsilateral and contralateral projections; however, rats that lack this ability only have the contralateral pathway. Additionally, in gerbils, the glutamatergic ipsilateral projecting LSO PNs are biased to the low-frequency limb of the LSO suggesting this pathway may be an adaptation for low-frequency hearing. To further test this premise, we examined the distribution and IC projection pattern of LSO PNs in another high-frequency specialized species using mice by combining in situ hybridization and retrograde tracer injections. We observed no overlap between glycinergic and glutamatergic LSO PNs confirming they are distinct cell populations in mice as well. We found that mice also lack the ipsilateral glutamatergic projection from LSO to IC and that their LSO PN types do not exhibit pronounced tonotopic biases. These data provide insights into the cellular organization of the superior olivary complex and its output to higher processing centers that may underlie functional segregation of information.


Assuntos
Colículos Inferiores , Complexo Olivar Superior , Animais , Camundongos , Ratos , Colículos Inferiores/fisiologia , Vias Auditivas/fisiologia , Gerbillinae , Núcleo Olivar/fisiologia
16.
J Neurosci ; 43(22): 4093-4109, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37130779

RESUMO

The medial superior olive (MSO) is a binaural nucleus that is specialized in detecting the relative arrival times of sounds at both ears. Excitatory inputs to its neurons originating from either ear are segregated to different dendrites. To study the integration of synaptic inputs both within and between dendrites, we made juxtacellular and whole-cell recordings from the MSO in anesthetized female gerbils, while presenting a "double zwuis" stimulus, in which each ear received its own set of tones, which were chosen in a way that all second-order distortion products (DP2s) could be uniquely identified. MSO neurons phase-locked to multiple tones within the multitone stimulus, and vector strength, a measure for spike phase-locking, generally depended linearly on the size of the average subthreshold response to a tone. Subthreshold responses to tones in one ear depended little on the presence of sound in the other ear, suggesting that inputs from different ears sum linearly without a substantial role for somatic inhibition. The "double zwuis" stimulus also evoked response components in the MSO neuron that were phase-locked to DP2s. Bidendritic subthreshold DP2s were quite rare compared with bidendritic suprathreshold DP2s. We observed that in a small subset of cells, the ability to trigger spikes differed substantially between both ears, which might be explained by a dendritic axonal origin. Some neurons that were driven monaurally by only one of the two ears nevertheless showed decent binaural tuning. We conclude that MSO neurons are remarkably good in finding binaural coincidences even among uncorrelated inputs.SIGNIFICANCE STATEMENT Neurons in the medial superior olive are essential for precisely localizing low-frequency sounds in the horizontal plane. From their soma, only two dendrites emerge, which are innervated by inputs originating from different ears. Using a new sound stimulus, we studied the integration of inputs both within and between these dendrites in unprecedented detail. We found evidence that inputs from different dendrites add linearly at the soma, but that small increases in somatic potentials could lead to large increases in the probability of generating a spike. This basic scheme allowed the MSO neurons to detect the relative arrival time of inputs at both dendrites remarkably efficient, although the relative size of these inputs could differ considerably.


Assuntos
Localização de Som , Complexo Olivar Superior , Animais , Feminino , Complexo Olivar Superior/fisiologia , Gerbillinae , Neurônios/fisiologia , Estimulação Acústica , Localização de Som/fisiologia , Núcleo Olivar/fisiologia , Vias Auditivas/fisiologia
17.
Sci Rep ; 13(1): 7114, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130860

RESUMO

The olivocerebellar projection is organized into an intricate topographical connection from the inferior olive (IO) subdivisions to the longitudinally-striped compartments of cerebellar Purkinje Cells (PCs), to play an essential role in cerebellar coordination and learning. However, the central mechanisms for forming topography need to be clarified. IO neurons and PCs are generated during overlapping periods of a few days in embryonic development. Therefore, we examined whether their neurogenic timing is specifically involved in the olivocerebellar topographic projection relationship. First, we mapped neurogenic timing in the entire IO by using the neurogenic-tagging system of neurog2-CreER (G2A) mice and specific labeling of IO neurons with FoxP2. IO subdivisions were classified into three groups depending on their neurogenic timing range. Then, we examined the relationships in the neurogenic-timing gradient between IO neurons and PCs by labeling topographic olivocerebellar projection patterns and PC neurogenic timing. Early, intermediate, and late groups of IO subdivisions projected to late, intermediate, and early groups of the cortical compartments, respectively, except for a few particular areas. The results indicated that the olivocerebellar topographic relationship is essentially arranged according to the reverse neurogenic-timing gradients of the origin and target.


Assuntos
Cerebelo , Núcleo Olivar , Feminino , Gravidez , Camundongos , Animais , Núcleo Olivar/fisiologia , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Núcleos Cerebelares , Proteínas do Tecido Nervoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos
18.
Zoolog Sci ; 40(2): 141-150, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37042693

RESUMO

The cerebellum receives inputs via the climbing fibers originating from the inferior olivary nucleus in the ventral medulla. In mammals, the climbing fibers entwine and terminate onto both major and peripheral branches of dendrites of the Purkinje cells. In this study, the inferior olivary nucleus and climbing fiber in the goldfish were investigated with several histological techniques. By neural tracer application to the hemisphere of the cerebellum, labeled inferior olivary neurons were found in the ventral edge of the contralateral medulla. Kainate stimulated Co + + uptake and gephyrin immunoreactivities were found in inferior olivary neurons, indicating, respectively, that they receive both excitatory (glutamatergic) and inhibitory (GABAergic or glycinergic) inputs. Inferior olivary neurons express vglut2.1 transcripts, suggesting they are glutamatergic. Around 85% of inferior olivary neurons were labeled with anti-calretinin antiserum. Calretinin immunoreactive (ir) climbing fiber terminal-like structures were distributed near the Purkinje cells and in the molecular layer. Double labeling immunofluorescence with anti-calretinin and zebrin II antisera revealed that the calretinin-ir climbing fibers run along and made synaptic-like contacts on the major dendrites of the zebrin II-ir Purkinje cells. In teleost fish, cerebellar efferent neurons, eurydendroid cells, also lie near the Purkinje cells and extend dendrites outward to intermingle with dendrites of the Purkinje cells within the molecular layer. Here we found no contacts between the climbing fiber terminals and the eurydendroid cell dendrites. These results support the idea that Purkinje cells, but not eurydendroid cells, receive strong inputs via the climbing fibers, similar to the mammalian situation.


Assuntos
Carpa Dourada , Núcleo Olivar , Animais , Núcleo Olivar/fisiologia , Fibras Nervosas/fisiologia , Neurônios , Células de Purkinje/fisiologia , Mamíferos
19.
Commun Biol ; 6(1): 432, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076594

RESUMO

Principal neurons (PNs) of the lateral superior olive nucleus (LSO) in the brainstem of mammals compare information between the two ears and enable sound localization on the horizontal plane. The classical view of the LSO is that it extracts ongoing interaural level differences (ILDs). Although it has been known for some time that LSO PNs have intrinsic relative timing sensitivity, recent reports further challenge conventional thinking, suggesting the major function of the LSO is detection of interaural time differences (ITDs). LSO PNs include inhibitory (glycinergic) and excitatory (glutamatergic) neurons which differ in their projection patterns to higher processing centers. Despite these distinctions, intrinsic property differences between LSO PN types have not been explored. The intrinsic cellular properties of LSO PNs are fundamental to how they process and encode information, and ILD/ITD extraction places disparate demands on neuronal properties. Here we examine the ex vivo electrophysiology and cell morphology of inhibitory and excitatory LSO PNs in mice. Although overlapping, properties of inhibitory LSO PNs favor time coding functions while those of excitatory LSO PNs favor integrative level coding. Inhibitory and excitatory LSO PNs exhibit different activation thresholds, potentially providing further means to segregate information in higher processing centers. Near activation threshold, which may be physiologically similar to the sensitive transition point in sound source location for LSO, all LSO PNs exhibit single-spike onset responses that can provide optimal time encoding ability. As stimulus intensity increases, LSO PN firing patterns diverge into onset-burst cells, which can continue to encode timing effectively regardless of stimulus duration, and multi-spiking cells, which can provide robust individually integrable level information. This bimodal response pattern may produce a multi-functional LSO which can encode timing with maximum sensitivity and respond effectively to a wide range of sound durations and relative levels.


Assuntos
Localização de Som , Complexo Olivar Superior , Animais , Camundongos , Vias Auditivas/fisiologia , Localização de Som/fisiologia , Núcleo Olivar/fisiologia , Neurônios/fisiologia , Mamíferos
20.
Elife ; 122023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36876911

RESUMO

Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days.


Just as our pupils dilate or shrink depending on the amount of light available to our eyes, our ears adjust their sensitivity based on the sound environment we encounter. Evidence suggests that a group of cells known as olivocochlear neurons (OCNs for short) may be involved in this process. These cells are located in the brainstem but project into the cochlea, the inner ear structure that converts sound waves into the electrical impulses relayed to the brain. OCNs may mediate how sounds are detected and encoded "at the source." Historically, OCNs have been divided into two groups (medial or lateral OCNs) based on different morphologies and roles in hearing. For instance, medial OCNs are thought to protect our ears against loud sounds by sending molecular signals to the inner ear cells that amplify certain auditory signals. However, it remains difficult to disentangle the precise function of the different types of OCNs, in part because scientists still lack markers that would allow them to distinguish between medial and lateral cells simply based on genetic activity. Frank et al. aimed to eliminate this bottleneck by identifying which genes were switched on and to what degree in individual mouse medial and lateral OCNs; this was done throughout development and after exposure to loud noises. The experiments uncovered a range of genetic markers for medial and lateral OCNs, showing that these cells switch on different sets of genes relevant to their role over development. This gene expression data also revealed that two distinct groups of lateral OCNs exist, one of which is characterised by the production of large amounts of neuropeptides, a type of chemical messenger that can modulate neural circuit activity. Further work in both developing and adult mice showed that this production is shaped by the activity of the cells, with the neuropeptide levels increasing when the animals are exposed to damaging levels of noise. This change lasts for several days, suggesting that such an experience can have long-lasting effects on how the brain provides feedback to the ear. Overall, the results by Frank et al. will help to better identify and characterize the different types of OCNs and the role that they have in hearing. By uncovering the chemical messengers that mediate the response to loud noises, this research may contribute to a better understanding of how to prevent or reduce hearing loss.


Assuntos
Perda Auditiva Provocada por Ruído , Núcleo Olivar , Camundongos , Animais , Núcleo Olivar/fisiologia , Retroalimentação , Audição/genética , Cóclea/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...