Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Sci Rep ; 14(1): 21165, 2024 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256449

RESUMO

Diabetes mellitus (DM) is a well-documented risk factor of intervertebral disc degeneration (IVDD). The current study was aimed to clarify the effects and mechanisms of NADH: ubiquinone oxidoreductase subunit A3 (NDUFA3) in human nucleus pulposus cells (HNPCs) exposed to high glucose. NDUFA3 was overexpressed in HNPCs via lenti-virus transduction, which were co-treated with high glucose and rotenone (a mitochondrial complex I inhibitor) for 48 h. Cell activities were assessed for cell viability, cell apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) ratio, oxygen consumption rate (OCR) and mitochondrial complexes I activities. High glucose decreased cell viability, increased apoptotic cells, increased ROS production, decreased MMP levels and OCR values in HNPCs in a dose-dependent manner. Rotenone co-treatment augmented the high glucose-induced injuries on cell viability, apoptosis, ROS production and mitochondrial function. NDUFA3 overexpression counteracted the high glucose-induced injuries in HNPCs. HDAC/H3K27ac mechanism was involved in regulating NDUFA3 transcription. NDUFA3 knockdown decreased cell viability and increased apoptotic cells, which were reversed by ROS scavenger N-acetylcysteine. HDAC/H3K27ac-mediated transcription of NDUFA3 protects HNPCs against high glucose-induced injuries through suppressing cell apoptosis, eliminating ROS, improving mitochondrial function and oxidative phosphorylation. This study sheds light on candidate therapeutic targets and deepens the understanding of molecular mechanisms behind DM-induced IVDD.


Assuntos
Apoptose , Complexo I de Transporte de Elétrons , Glucose , Histonas , Mitocôndrias , Núcleo Pulposo , Humanos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Glucose/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Histonas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Transcrição Gênica/efeitos dos fármacos
2.
Inflammopharmacology ; 32(5): 3443-3459, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39207637

RESUMO

BACKGROUND: The nucleus pulposus (NP) degradation is a primary factor in intervertebral disk degeneration (IVD) and a major contributor to low back pain. Intervertebral disk-derived stem cell (IVDSC) therapy presents a promising solution, yet identifying suitable cell carriers for NP transplantation remains challenging. The present study investigates this issue by developing smart injectable hydrogels incorporating vanillin (V) and hyaluronic acid (HA) encapsulated with IVDSCs to facilitate IVD regeneration. MATERIALS AND METHODS: The hydrogel was cross linked by carbodiimide-succinimide (EDC-NHS) method. Enhanced mechanical properties were achieved by integrating collagen and HA into the hydrogel. The rheological analysis revealed the pre-gel viscoelastic and shear-thinning characteristics. RESULTS: In vitro, cell viability was maintained up to 500 µg/mL, with a high proliferation rate observed over 14 days. The hydrogels supported multilineage differentiation, as confirmed by osteogenic and adipogenic induction. Anti-inflammatory effects were demonstrated by reduced cytokine release (TNF-α, IL-6, IL-1ß) after 24 h of treatment. Gene expression studies indicated elevated levels of chondrocyte markers (Acan, Sox9, Col2). In vivo, hydrogel injection into the NP was monitored via X-ray imaging, showing a significant increase in disk height index (DHI%) after 8 weeks, alongside improved histologic scores. Biomechanical testing revealed that the hydrogel effectively mimicked NP properties, enhancing compressive stiffness and reducing neutral zone stiffness post-denucleation. CONCLUSION: The results suggest that the synthesized VCHA-NP hydrogel can be used as an alternative to NPs, offering a promising path for IVD regeneration.


Assuntos
Benzaldeídos , Diferenciação Celular , Hidrogéis , Degeneração do Disco Intervertebral , Ratos Sprague-Dawley , Animais , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Ratos , Benzaldeídos/farmacologia , Benzaldeídos/administração & dosagem , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células-Tronco/efeitos dos fármacos , Núcleo Pulposo/efeitos dos fármacos , Modelos Animais de Doenças , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Disco Intervertebral/efeitos dos fármacos , Disco Intervertebral/patologia , Masculino , Células Cultivadas , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo
3.
Eur J Med Res ; 29(1): 433, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192377

RESUMO

BACKGROUND: Reduction of inflammatory damage and inhibition of nucleus pulposus (NP) apoptosis are considered to be the main effective therapy idea to reverse the intervertebral disc degeneration (IDD) and alleviate the chronic low back pain. The adenosine A2A receptor (A2AR), as a member of G protein-coupled receptor families, plays an important role in the anti-inflammation and relieving pain. So far, the impact of A2AR on IDD therapy is unclear. The aim of this study was to explore the role of Adenosine A2A receptor (A2AR) in the intervertebral disc degeneration (IDD) and clarify potential mechanism. MATERIALS AND METHODS: IL-1ß and acupuncture was used to establish IDD model rats. A2AR agonist CGS-21680 and A2AR antagonist SCH442416 were used to investigate the therapeutical effects for IDD. Histological examination, western blotting analysis and RT-PCR were employed to evaluate the the association between A2AR and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway. RESULTS: A2AR activity of the intervertebral disc tissues was up-regulated in feedback way, and cAMP, PKA and CREB expression were also increased. But in general, IL-1ß-induced IDD promoted the significant up-regulation the expression of inflammatory factors. The nucleus pulposus (NP) inflammation was exacerbated in result of MMP3 and Col-II decline through activating NF-κB signaling pathway. A2AR agonist CGS-21680 exhibited a disc protective effect through significantly increasing A2AR activity, then further activated cAMP/PKA signaling pathway with attenuating the release of TNF-α and IL-6 via down-regulating NF-κB. In contrast, SCH442416 inhibited A2AR activation, consistent with lower expression levels of cAMP and PKA, further leading to the acceleration of IDD. CONCLUSIONS: The activation of A2AR can prevent inflammatory responses and mitigates degradation of IDD thus suggest a potential novel therapeutic strategy of IDD.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Inflamação , Degeneração do Disco Intervertebral , NF-kappa B , Receptor A2A de Adenosina , Transdução de Sinais , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor A2A de Adenosina/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Inflamação/metabolismo , Masculino , Ratos Sprague-Dawley , Fenetilaminas/farmacologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Núcleo Pulposo/efeitos dos fármacos , AMP Cíclico/metabolismo , Agonistas do Receptor A2 de Adenosina/farmacologia , Modelos Animais de Doenças , Adenosina/análogos & derivados
4.
Int J Mol Med ; 54(2)2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38963023

RESUMO

Metformin has been the go­to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP­activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Metformina , Metformina/uso terapêutico , Metformina/farmacologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/prevenção & controle , Degeneração do Disco Intervertebral/metabolismo , Humanos , Animais , Progressão da Doença , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Autofagia/efeitos dos fármacos
5.
Int J Biol Macromol ; 276(Pt 1): 133868, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009266

RESUMO

Intervertebral disc degeneration is a clinical disease that reduces the quality of patient's life. The degeneration usually initiates in the nucleus pulposus (NP), hence the use of hydrogels represents a promising therapeutic approach. However, the viscoelastic nature of hydrogel and its ability to provide biomimetic architecture and biochemical cues influence the regeneration capability. This study focused on tuning the physical nature of a glycosaminoglycan hydrogel (κ-carrageenan) as well as the release kinetics of a chondrogenic factor (kartogenin - KGN) through physical cross-linking. For this, κ-carrageenan was cross linked with 2.5 % and 5 % potassium chloride (KCl) for 15 and 30 min and loaded with KGN molecule at 50 µM and 100 µM. The tight network structure with low water retention and degradation property was seen in hydrogel cross-linked with increased KCl concentration and time. However, optimal degradation along with NP mimicking viscoelastic nature was exhibited by 5 wt% KCl treated hydrogel (H3 hydrogel). All hydrogel groups exhibited burst KGN release at 24 h followed by a sustained release for 5 days. However, hydrogel cross-linked with 5 wt% KCl enhanced chondrogenic differentiation, mainly at lower KGN dose. In summary, this study shows the potential application of biomimetic KGN laden carrageenan hydrogel in NP regeneration.


Assuntos
Carragenina , Hidrogéis , Núcleo Pulposo , Ácidos Ftálicos , Regeneração , Carragenina/química , Carragenina/farmacologia , Núcleo Pulposo/efeitos dos fármacos , Hidrogéis/química , Regeneração/efeitos dos fármacos , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Condrogênese/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Anilidas
6.
Int Immunopharmacol ; 139: 112717, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39067404

RESUMO

Intervertebral disc degeneration (IVDD), a common degenerative disc disease, is a major etiological factor for back pain, affecting a significant number of middle-aged and elderly individuals worldwide. Thus, IVDD is a major socio-economic burden. The factors contributing to the complex IVDD etiology, which has not been elucidated, include inflammation, oxidative stress, and natural aging. In particular, inflammation and aging of nucleus pulposus cells are considered primary pathogenic factors. Isorhapontigenin (ISO) is a polyphenolic compound commonly found in traditional Chinese herbs and grapes. We have demonstrated that ISO exerts anti-inflammatory and anti-aging effects and mitigates extracellular matrix (ECM) degradation. In this study, in vitro experiments revealed that, ISO delays aging and ECM degradation by promoting PI3K/AKT/mTOR-mediated autophagy. Meanwhile, in vivo experiments affirmed that ISO delays the progression of IVDD.


Assuntos
Autofagia , Senescência Celular , Matriz Extracelular , Degeneração do Disco Intervertebral , Núcleo Pulposo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Senescência Celular/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ratos , Células Cultivadas , Estilbenos
7.
BMC Musculoskelet Disord ; 25(1): 537, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997667

RESUMO

BACKGROUND: Human intervertebral disk degeneration (IVDD) is a sophisticated degenerative pathological process. A key cause of IVDD progression is nucleus pulposus cell (NPC) degeneration, which contributes to excessive endoplasmic reticulum stress in the intervertebral disk. However, the mechanisms underlying IVDD and NPC degeneration remain unclear. METHODS: We used interleukin (IL)-1ß stimulation to establish an NPC-degenerated IVDD model and investigated whether human urine-derived stem cell (USC) exosomes could prevent IL-1ß-induced NPC degeneration using western blotting, quantitative real-time polymerase chain reaction, flow cytometry, and transcriptome sequencing techniques. RESULTS: We successfully extracted and identified USCs and exosomes from human urine. IL-1ß substantially downregulated NPC viability and induced NPC degeneration while modulating the expression of SOX-9, collagen II, and aggrecan. Exosomes from USCs could rescue IL-1ß-induced NPC degeneration and restore the expression levels of SOX-9, collagen II, and aggrecan. CONCLUSIONS: USC-derived exosomes can prevent NPCs from degeneration following IL-1ß stimulation. This finding can aid the development of a potential treatment strategy for IVDD.


Assuntos
Exossomos , Interleucina-1beta , Degeneração do Disco Intervertebral , Núcleo Pulposo , Fatores de Transcrição SOX9 , Humanos , Interleucina-1beta/metabolismo , Exossomos/metabolismo , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/terapia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Núcleo Pulposo/citologia , Núcleo Pulposo/efeitos dos fármacos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Animais , Células-Tronco/metabolismo , Células Cultivadas , Agrecanas/metabolismo , Agrecanas/genética , Masculino , Urina/citologia , Urina/química , Feminino , Colágeno Tipo II/metabolismo
8.
J Nanobiotechnology ; 22(1): 412, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997713

RESUMO

The senescence of nucleus pulposus (NP) cells (NPCs), which is induced by the anomalous accumulation of reactive oxygen species (ROS), is a major cause of intervertebral disc degeneration (IVDD). In this research, glutathione-doped carbon dots (GSH-CDs), which are novel carbon dot antioxidant nanozymes, were successfully constructed to remove large amounts of ROS for the maintenance of NP tissue at the physical redox level. After significantly scavenging endogenous ROS via exerting antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity, GSH-CDs with good biocompatibility have been demonstrated to effectively improve mitochondrial dysfunction and rescue NPCs from senescence, catabolism, and inflammatory factors in vivo and in vitro. In vivo imaging data and histomorphological indicators, such as the disc height index (DHI) and Pfirrmann grade, demonstrated prominent improvements in the progression of IVDD after the topical application of GSH-CDs. In summary, this study investigated the GSH-CDs nanozyme, which possesses excellent potential to inhibit the senescence of NPCs with mitochondrial lesions induced by the excessive accumulation of ROS and improve the progression of IVDD, providing potential therapeutic options for clinical treatment.


Assuntos
Carbono , Glutationa , Degeneração do Disco Intervertebral , Núcleo Pulposo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Carbono/química , Carbono/farmacologia , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pontos Quânticos/química , Antioxidantes/farmacologia , Masculino , Senescência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Catalase/metabolismo , Catalase/farmacologia , Superóxido Dismutase/metabolismo
9.
Aging (Albany NY) ; 16(13): 10868-10881, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38949514

RESUMO

As a common disease, cervical spondylosis (CS) results from the degeneration of the cervical intervertebral disc. However, there are still no effective clinical strategies for the treatment of this disease. Needle-scalpel (Ns), a therapy guided by traditional Chinese medicine theory, alleviates intervertebral disc degradation and is widely used in the clinic to treat CS. Stromal cell-derived factor-1 (SDF-1) and its receptor CXC receptor 4 (CXCR4) in nucleus pulposus cells play an important role in CS onset and development. This study aimed to explore whether Ns can relieve pain and regulate the SDF-1/CXCR4 axis in nucleus pulposus cells to inhibit apoptosis, thereby delaying cervical intervertebral disc degradation in a rat model of CS. It was found that the Ns-treated groups exhibited higher mechanical allodynia scores than the model group, and H&E staining, MRI, and scanning electron microscopy revealed that Ns therapy inhibited intervertebral disc degeneration. Additionally, Ns therapy significantly inhibited increases in the RNA and protein expression levels of SDF-1 and CXCR4. Furthermore, these treatments alleviated the apoptosis of nucleus pulposus cells, which manifested as a decline in the proportion of apoptotic nucleus pulposus cells and inhibition of the decrease in the levels of Bcl-2/Bax. These findings indicated that Ns mitigated CS-induced pain, inhibited the apoptosis of nucleus pulposus cells, and alleviated intervertebral disc degeneration in CS rats. These effects may be mediated by specifically regulating the SDF-1/CXCR4 signaling axis. Based on these findings, we conclude that Ns might serve as a promising therapy for the treatment of CS.


Assuntos
Apoptose , Quimiocina CXCL12 , Modelos Animais de Doenças , Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos Sprague-Dawley , Receptores CXCR4 , Animais , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Quimiocina CXCL12/metabolismo , Apoptose/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Ratos , Masculino , Vértebras Cervicais , Transdução de Sinais/efeitos dos fármacos , Espondilose/metabolismo , Espondilose/patologia
10.
Acta Biomater ; 185: 336-349, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38969077

RESUMO

Presently, the clinical treatment of intervertebral disc degeneration (IVDD) remains challenging, but the strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) has become an effective way to alleviate IVDD. IL-1ra, a natural antagonist against IL-1ß, can mitigate inflammation and promote regeneration in IVDD. Chondroitin sulfate (CS), an important component of the NP, can promote ECM synthesis and delay IVDD. Thus, these were chosen and integrated into functionalized microspheres to achieve their synergistic effects. First, CS-functionalized microspheres (GelMA-CS) with porous microstructure, good monodispersion, and about 200 µm diameter were efficiently and productively fabricated using microfluidic technology. After lyophilization, the microspheres with good local injection and tissue retention served as the loading platform for IL-1ra and achieved sustained release. In in vitro experiments, the IL-1ra-loaded microspheres exhibited good cytocompatibility and efficacy in inhibiting the inflammatory response of NP cells induced by lipopolysaccharide (LPS) and promoting the secretion of ECM. In in vivo experiments, the microspheres showed good histocompatibility, and local, minimally invasive injection of the IL-1ra-loaded microspheres could reduce inflammation, maintain the height of the intervertebral disc (IVD) and the water content of NP close to about 70 % in the sham group, and retain the integrated IVD structure. In summary, the GelMA-CS microspheres served as an effective loading platform for IL-1ra, eliminated inflammation through the controlled release of IL-1ra, and promoted ECM synthesis via CS to delay IVDD, thereby providing a promising intervention strategy for IVDD. STATEMENT OF SIGNIFICANCE: The strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in nucleus pulposus (NP) has shown great potential prospects for alleviating intervertebral disc degeneration (IVDD). From the perspective of clinical translation, this study developed chondroitin sulfate functionalized microspheres to act as the effective delivery platform of IL-1ra, a natural antagonist of interleukin-1ß. The IL-1ra loading microspheres (GelMA-CS-IL-1ra) showed good biocompatibility, good injection with tissue retention, and synergistic effects of inhibiting the inflammatory response induced by lipopolysaccharide and promoting the secretion of ECM in NPCs. In vivo, they also showed the beneficial effect of reducing the inflammatory response, maintaining the height of the intervertebral disc and the water content of the NP, and preserving the integrity of the intervertebral disc structure after only one injection. All demonstrated that the GelMA-CS-IL-1ra microspheres would have great promise for the minimally invasive treatment of IVDD.


Assuntos
Sulfatos de Condroitina , Proteína Antagonista do Receptor de Interleucina 1 , Degeneração do Disco Intervertebral , Microesferas , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Animais , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Coelhos , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Núcleo Pulposo/metabolismo , Masculino , Matriz Extracelular/metabolismo
11.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 192-198, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836662

RESUMO

Intervertebral disc degeneration (IDD) is characterized by the decreased function and number of nucleus pulposus cells (NPCs) caused by excessive intervertebral disc (IVD) pressure. This research aims to provide novel insights into IDD prevention and treatment by clarifying the effect of andrographolide (ANDR) on IDD cell autophagy and oxidative stress under mechanical stress. Human primary NPCs were extracted from the nucleus pulposus tissue of non-IDD trauma patients. An IDD cell model was established by posing mechanical traction on NPCs. Through the construction of an IDD rat model, the influence of ANDR on IDD pathological changes was explored in vivo. The proliferation and autophagy of NPCs were decreased while the apoptosis rate and oxidative stress reaction were increased by mechanical traction. ANDR intervention obviously alleviated this situation. MiR-9 showed upregulated expression in IDD cell model, while FoxO3 and PINK1/Parkin were downregulated. Decreased proliferation and autophagy as well as enhanced apoptosis and oxidative stress response of NPCs were observed following miR-9 mimics and H89 intervention, while the opposite trend was observed after FoxO3 overexpression. FoxO3 is a direct target downstream miR-9. The in vivo experiments revealed that after ANDR intervention, the number of apoptotic cells in rat IVD tissue decreased and the autophagy increased. In conclusion, ANDR improves NPC proliferation, and autophagy, inhibits apoptosis and oxidative stress, and alleviates the pathological changes of IDD via the miR-9/FoxO3/PINK1/Parkin axis, which may be a new and effective treatment for IDD in the future.


Assuntos
Autofagia , Diterpenos , Proteína Forkhead Box O3 , Degeneração do Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Estresse Oxidativo , Proteínas Quinases , Ratos Sprague-Dawley , Estresse Mecânico , Ubiquitina-Proteína Ligases , MicroRNAs/metabolismo , MicroRNAs/genética , Autofagia/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Humanos , Diterpenos/farmacologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Ratos , Masculino , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Feminino , Adulto , Modelos Animais de Doenças
12.
Int Immunopharmacol ; 137: 112444, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38901245

RESUMO

OBJECTIVE: The continuously increasing extracellular matrix stiffness during intervertebral disc degeneration promotes disease progression. In an attempt to obtain novel treatment methods, this study aims to investigate the changes in nucleus pulposus cells under the stimulation of a stiff microenvironment. DESIGN: RNA sequencing and metabolomics experiments were combined to evaluate the primary nucleus pulposus and screen key targets under mechanical biological stimulation. Additionally, small molecules work in vitro were used to confirm the target regulatory effect and investigate the mechanism. In vivo, treatment effects were validated using a rat caudal vertebrae compression model. RESULTS: Our research results revealed that by activating TRPC6, hyperforin, a herbaceous extract can rescue the inflammatory phenotype caused by the stiff microenvironment, hence reducing intervertebral disc degeneration (IDD). Mechanically, it activates mitochondrial fission to inhibit PFKFB3. CONCLUSION: In summary, this study reveals the important bridging role of TRPC6 between mechanical stiffness, metabolism, and inflammation in the context of nucleus pulposus degeneration. TRPC6 activation with hyperforin may become a promising treatment for IDD.


Assuntos
Matriz Extracelular , Degeneração do Disco Intervertebral , Dinâmica Mitocondrial , Núcleo Pulposo , Floroglucinol , Ratos Sprague-Dawley , Animais , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Núcleo Pulposo/efeitos dos fármacos , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Ratos , Floroglucinol/farmacologia , Floroglucinol/análogos & derivados , Floroglucinol/uso terapêutico , Dinâmica Mitocondrial/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Masculino , Células Cultivadas , Humanos , Terpenos/farmacologia , Terpenos/uso terapêutico , Canais de Cátion TRPC/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico
13.
Int J Biol Macromol ; 273(Pt 1): 132828, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834125

RESUMO

Intervertebral disc degeneration arises from damage or degeneration of the nucleus pulposus (NP). In this study, we developed a photo-crosslinkable hydrogel incorporating FG4592 to support the growth and differentiation of bone-marrow-derived mesenchymal stem cells (BMSC). Initially, hyaluronic acid was modified with tyramine and combined with collagen to introduce riboflavin as a photo-crosslinker. This hydrogel transitioned from liquid to gel upon exposure to blue light in 3 min. The results showed that the hydrogel was biodegradable and had mechanical properties comparable to those of human NP tissues. Scanning electron microscopy after BMSC seeding in the hydrogel revealed an even distribution, and cells adhered to the collagen fibers in the hydrogel with minimal cell mortality. The effect of FG4592 on BMSC proliferation and differentiation was examined, revealing the capability of FG4592 to promote BMSC proliferation and direct differentiation resembling human NP cells. After cultivating BMSCs in the photo-crosslinked hydrogel, there was an upregulation in the expression of glycosaminoglycans, aggrecan, type II collagen, and keratin 19 proteins. Cross-species analyses of rat and human BMSCs revealed consistent results. For potential clinical applications, BMSC loaded with photo-crosslinked hydrogels can be injected into damaged intervertebral disc to facilitate NP regeneration.


Assuntos
Diferenciação Celular , Proliferação de Células , Colágeno , Ácido Hialurônico , Hidrogéis , Células-Tronco Mesenquimais , Núcleo Pulposo , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Núcleo Pulposo/citologia , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Humanos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Colágeno/química , Ratos , Reagentes de Ligações Cruzadas/química , Ratos Sprague-Dawley , Anilidas , Ácidos Ftálicos
14.
Biochem Pharmacol ; 226: 116389, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38914318

RESUMO

Intervertebral disc degeneration (IVDD) is a common degenerative disease which is closely related to low back pain (LBP) and brings huge economic and social burdens. In this study, we explored the therapeutic effects of Homoplantaginin (Hom) for IVDD due to its convincing anti-inflammatory and antioxidant functions. TNF-α was used to simulate the inflammatory environment for nucleus pulposus (NP) cells in vitro. We verified that Hom could alleviate the TNF-α-induced inflammation and disturbance of ECM homeostasis through blocking the NF-κB/MAPK signaling pathways. Subsequently, we screened the binding targets of Hom and confirmed that Hom could directly bind to TAK1 and inhibit its phosphorylation to down-regulate the inflammation-related pathways. The therapeutic effects of Hom on IVDD were further validated through a needle puncture rat model in vivo. Overall, Hom was a promising small molecule for IVDD early intervention, possessing huge clinical translational value.


Assuntos
Degeneração do Disco Intervertebral , MAP Quinase Quinase Quinases , NF-kappa B , Animais , Humanos , Masculino , Ratos , Células Cultivadas , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Ligação Proteica/fisiologia , Ligação Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
15.
Free Radic Biol Med ; 221: 245-256, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38806104

RESUMO

Low back pain (LBP) may profoundly impact the quality of life across the globe, and intervertebral disc degeneration (IVDD) is the major cause of LBP; however, targeted pharmaceutical interventions for IVDD are still lacking. Ferroptosis is a novel form of iron-dependent programmed cell death. Studies have showed that ferroptosis may closely associate with IVDD; thus, targeting ferroptosis may have great potential for IVDD therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) are the first-line medications for LBP, while nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key inhibitory protein for ferroptosis. In the current study, we conducted a molecular docking screening between NSAIDs library and Nrf2 protein. Tinoridine was shown to have a high binding affinity to Nrf2. The in vitro study in nucleus pulposus (NP) cells showed that Tinoridine may promote the expression and activity of Nrf2, it may also rescue RSL3-induced ferroptosis in NP cells. Knockdown of Nrf2 reverses the protective effect of Tinoridine on RSL3-induced ferroptosis in NP cells, suggesting that the inhibitory effect of Tinoridine on ferroptosis is through Nrf2. In vivo study demonstrated that Tinoridine may attenuate the progression of IVDD in rats. As NSAIDs are already clinically used for LBP therapy, the current study supports Tinoridine's application from the view of ferroptosis inhibition.


Assuntos
Anti-Inflamatórios não Esteroides , Ferroptose , Degeneração do Disco Intervertebral , Fator 2 Relacionado a NF-E2 , Ferroptose/efeitos dos fármacos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Anti-Inflamatórios não Esteroides/farmacologia , Humanos , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Simulação de Acoplamento Molecular , Masculino , Ratos Sprague-Dawley , Dor Lombar/tratamento farmacológico , Dor Lombar/patologia
16.
Int Immunopharmacol ; 134: 112161, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728878

RESUMO

Intervertebral disc degeneration (IVDD) is a leading cause of degenerative spinal disorders, involving complex biological processes. This study investigates the role of the kallikrein-kinin system (KKS) in IVDD, focusing on the protective effects of bradykinin (BK) on nucleus pulposus cells (NPCs) under oxidative stress. Clinical specimens were collected, and experiments were conducted using human and rat primary NPCs to elucidate BK's impact on tert-butyl hydroperoxide (TBHP)-induced oxidative stress and damage. The results demonstrate that BK significantly inhibits TBHP-induced NPC apoptosis and restores mitochondrial function. Further analysis reveals that this protective effect is mediated through the BK receptor 2 (B2R) and its downstream PI3K/AKT pathway. Additionally, BK/PLGA sustained-release microspheres were developed and validated in a rat model, highlighting their potential therapeutic efficacy for IVDD. Overall, this study sheds light on the crucial role of the KKS in IVDD pathogenesis and suggests targeting the B2R as a promising therapeutic strategy to delay IVDD progression and promote disc regeneration.


Assuntos
Apoptose , Bradicinina , Degeneração do Disco Intervertebral , Núcleo Pulposo , Estresse Oxidativo , Ratos Sprague-Dawley , terc-Butil Hidroperóxido , Animais , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Núcleo Pulposo/metabolismo , terc-Butil Hidroperóxido/toxicidade , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Humanos , Masculino , Bradicinina/farmacologia , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Células Cultivadas , Receptor B2 da Bradicinina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Microesferas , Transdução de Sinais/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças
17.
Mil Med Res ; 11(1): 28, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711073

RESUMO

BACKGROUND: Intervertebral disc degeneration (IVDD) is a multifaceted condition characterized by heterogeneity, wherein the balance between catabolism and anabolism in the extracellular matrix of nucleus pulposus (NP) cells plays a central role. Presently, the available treatments primarily focus on relieving symptoms associated with IVDD without offering an effective cure targeting its underlying pathophysiological processes. D-mannose (referred to as mannose) has demonstrated anti-catabolic properties in various diseases. Nevertheless, its therapeutic potential in IVDD has yet to be explored. METHODS: The study began with optimizing the mannose concentration for restoring NP cells. Transcriptomic analyses were employed to identify the mediators influenced by mannose, with the thioredoxin-interacting protein (Txnip) gene showing the most significant differences. Subsequently, small interfering RNA (siRNA) technology was used to demonstrate that Txnip is the key gene through which mannose exerts its effects. Techniques such as colocalization analysis, molecular docking, and overexpression assays further confirmed the direct regulatory relationship between mannose and TXNIP. To elucidate the mechanism of action of mannose, metabolomics techniques were employed to pinpoint glutamine as a core metabolite affected by mannose. Next, various methods, including integrated omics data and the Gene Expression Omnibus (GEO) database, were used to validate the one-way pathway through which TXNIP regulates glutamine. Finally, the therapeutic effect of mannose on IVDD was validated, elucidating the mechanistic role of TXNIP in glutamine metabolism in both intradiscal and orally treated rats. RESULTS: In both in vivo and in vitro experiments, it was discovered that mannose has potent efficacy in alleviating IVDD by inhibiting catabolism. From a mechanistic standpoint, it was shown that mannose exerts its anti-catabolic effects by directly targeting the transcription factor max-like protein X-interacting protein (MondoA), resulting in the upregulation of TXNIP. This upregulation, in turn, inhibits glutamine metabolism, ultimately accomplishing its anti-catabolic effects by suppressing the mitogen-activated protein kinase (MAPK) pathway. More importantly, in vivo experiments have further demonstrated that compared with intradiscal injections, oral administration of mannose at safe concentrations can achieve effective therapeutic outcomes. CONCLUSIONS: In summary, through integrated multiomics analysis, including both in vivo and in vitro experiments, this study demonstrated that mannose primarily exerts its anti-catabolic effects on IVDD through the TXNIP-glutamine axis. These findings provide strong evidence supporting the potential of the use of mannose in clinical applications for alleviating IVDD. Compared to existing clinically invasive or pain-relieving therapies for IVDD, the oral administration of mannose has characteristics that are more advantageous for clinical IVDD treatment.


Assuntos
Proteínas de Ciclo Celular , Glutamina , Degeneração do Disco Intervertebral , Manose , Degeneração do Disco Intervertebral/tratamento farmacológico , Manose/farmacologia , Manose/uso terapêutico , Animais , Ratos , Glutamina/farmacologia , Glutamina/metabolismo , Masculino , Ratos Sprague-Dawley , Humanos , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo
18.
J Orthop Surg Res ; 19(1): 308, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773639

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is an increasingly important cause of low back pain (LBP) that results in substantial health and economic burdens. Inflammatory pathway activation and the production of reactive oxygen species (ROS) play vital roles in the progression of IDD. Several studies have suggested that phillyrin has a protective role and inhibits inflammation and the production of ROS. However, the role of phillyrin in IDD has not been confirmed. PURPOSE: The purpose of this study was to investigate the role of phillyrin in IDD and its mechanisms. STUDY DESIGN: To establish IDD models in vivo, ex-vivo, and in vitro to verify the function of phillyrin in IDD. METHOD: The effects of phillyrin on extracellular matrix (ECM) degeneration, inflammation, and oxidation in nucleus pulposus (NP) cells were assessed using immunoblotting and immunofluorescence analysis. Additionally, the impact of phillyrin administration on acupuncture-mediated intervertebral disc degeneration (IDD) in rats was evaluated using various techniques such as MRI, HE staining, S-O staining, and immunohistochemistry (IHC). RESULT: Pretreatment with phillyrin significantly inhibited the IL-1ß-mediated reduction in the degeneration of ECM and apoptosis by alleviating activation of the NF-κB inflammatory pathway and the generation of ROS. In addition, in vivo and ex-vivo experiments verified the protective effect of phillyrin against IDD. CONCLUSION: Phillyrin can attenuate the progression of IDD by reducing ROS production and activating inflammatory pathways.


Assuntos
Progressão da Doença , Degeneração do Disco Intervertebral , NF-kappa B , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Animais , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Ratos , Masculino , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Transdução de Sinais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Modelos Animais de Doenças , Células Cultivadas , Humanos , Apoptose/efeitos dos fármacos
19.
Commun Biol ; 7(1): 539, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714886

RESUMO

Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples. We also found abnormal palmitic acid (PA) accumulation in IDD nucleus pulposus cells, and PA exposure resulted in lipid droplet accumulation and cell senescence in an endoplasmic reticulum stress-dependent manner. Complementary transcriptome and proteome profiles enabled us to identify solute carrier transporter (SLC) 43A3 involvement in the regulation of the intracellular PA level. SLC43A3 was expressed at low levels and negatively correlated with intracellular lipid content in IDD nucleus pulposus cells. Overexpression of SLC43A3 significantly alleviated PA-induced endoplasmic reticulum stress, lipid droplet accumulation and cell senescence by inhibiting PA uptake. This work provides novel integration analysis-based insight into the metabolic profile alterations in IDD and further reveals new therapeutic targets for IDD treatment.


Assuntos
Senescência Celular , Estresse do Retículo Endoplasmático , Degeneração do Disco Intervertebral , Gotículas Lipídicas , Núcleo Pulposo , Ácido Palmítico , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Núcleo Pulposo/citologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Senescência Celular/efeitos dos fármacos , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Humanos , Gotículas Lipídicas/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
20.
Int Immunopharmacol ; 133: 112101, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640717

RESUMO

Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1ß-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1ß. Furthermore, genkwanin alleviated Interleukin-1ß-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.


Assuntos
Apoptose , Senescência Celular , Flavonoides , Degeneração do Disco Intervertebral , Transdução de Sinais , Animais , Humanos , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Integrina alfa2/metabolismo , Integrina alfa2/genética , Interleucina-1beta/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Núcleo Pulposo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA