Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 132: 111992, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38569428

RESUMO

Intervertebral disc degeneration (IDD) is one of the primary causes of low back pain (LBP), which seriously affects patients' quality of life. In recent years, interleukin (IL)-17 has been shown to be highly expressed in the intervertebral disc (IVD) tissues and serum of patients with IDD, and IL-17A has been shown to promote IDD through multiple pathways. We first searched databases such as PubMed, Cochrane, Embase, and Web of Science using the search terms "IL-17 or interleukin 17″ and "intervertebral discs". The search period ranged from the inception of the databases to December 2023. A total of 24 articles were selected after full-text screening. The main conclusion of the clinical studies was that IL-17A levels are significantly increased in the IVD tissues and serum of IDD patients. The results from the in vitro studies indicated that IL-17A can activate signaling pathways such as the NF-κB and MAPK pathways; promote inflammatory responses, extracellular matrix degradation, and angiogenesis; and inhibit autophagy in nucleus pulposus cells. The main finding of the in vivo experiments was that puncture of animal IVDs resulted in elevated levels of IL-17A within the IVD, thereby inducing IDD. Clinical studies, in vitro experiments, and in vivo experiments confirmed that IL-17A is closely related to IDD. Therefore, drugs that target IL-17A may be novel treatments for IDD, providing a new theoretical basis for IDD therapy.


Assuntos
Interleucina-17 , Degeneração do Disco Intervertebral , Degeneração do Disco Intervertebral/imunologia , Degeneração do Disco Intervertebral/metabolismo , Humanos , Interleucina-17/metabolismo , Animais , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Disco Intervertebral/imunologia , Transdução de Sinais , Núcleo Pulposo/metabolismo , Núcleo Pulposo/imunologia , Núcleo Pulposo/patologia , Dor Lombar/imunologia , Dor Lombar/metabolismo
2.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576108

RESUMO

Ozone therapy has been used to treat disc herniation for more than four decades. There are several papers describing results and mechanism of action. However, it is very important to define the characteristics of extruded disc herniation. Although ozone therapy showed excellent results in the majority of spinal diseases, it is not yet fully accepted within the medical community. Perhaps it is partly due to the fact that, sometimes, indications are not appropriately made. The objective of our work is to explain the mechanisms of action of ozone therapy on the extruded disc herniation. Indeed, these mechanisms are quite different from those exerted by ozone on the protruded disc herniation and on the degenerative disc disease because the inflammatory response is very different between the various cases. Extruded disc herniation occurs when the nucleus squeezes through a weakness or tear in the annulus. Host immune system considers the nucleus material to be a foreign invader, which triggers an immune response and inflammation. We think ozone therapy modulates this immune response, activating macrophages, which produce phagocytosis of extruded nucleus pulposus. Ozone would also facilitate the passage from the M1 to M2 phase of macrophages, going from an inflammatory phase to a reparative phase. Further studies are needed to verify the switch of macrophages.


Assuntos
Inflamação/tratamento farmacológico , Deslocamento do Disco Intervertebral/tratamento farmacológico , Núcleo Pulposo/patologia , Ozônio/uso terapêutico , Humanos , Fatores Imunológicos/uso terapêutico , Inflamação/complicações , Inflamação/imunologia , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/imunologia , Dor Lombar/etiologia , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/imunologia , Ozônio/farmacologia
3.
Front Immunol ; 12: 666361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168643

RESUMO

The accumulation of macrophages in degenerated discs is a common phenomenon. However, the roles and mechanisms of M2a macrophages in intervertebral disc degeneration (IDD) have not been illuminated. This study investigated the expression of the M2a macrophage marker (CD206) in human and rat intervertebral disc tissues by immunohistochemistry. To explore the roles of M2a macrophages in IDD, nucleus pulposus (NP) cells were co-cultured with M2a macrophages in vitro. To clarify whether the CHI3L1 protein mediates the effect of M2a macrophages on NP cells, siRNA was used to knock down CHI3L1 transcription. To elucidate the underlying mechanisms, NP cells were incubated with recombinant CHI3L1 proteins, then subjected to western blotting analysis of the IL-13Rα2 receptor and MAPK pathway. CD206-positive cells were detected in degenerated human and rat intervertebral disc tissues. Notably, M2a macrophages promoted the expression of catabolism genes (MMP-3 and MMP-9) and suppressed the expression of anabolism genes (aggrecan and collagen II) in NP cells. These effects were abrogated by CHI3L1 knockdown in M2a macrophages. Exposure to recombinant CHI3L1 promoted an extracellular matrix metabolic imbalance in NP cells via the IL-13Rα2 receptor, along with activation of the ERK and JNK MAPK signaling pathways. This study elucidated the roles of M2a macrophages in IDD and identified potential mechanisms for these effects.


Assuntos
Proteína 1 Semelhante à Quitinase-3/imunologia , Matriz Extracelular/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Degeneração do Disco Intervertebral/imunologia , Sistema de Sinalização das MAP Quinases , Macrófagos/imunologia , Animais , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Matriz Extracelular/patologia , Feminino , Humanos , Degeneração do Disco Intervertebral/patologia , Lectinas Tipo C/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Pessoa de Meia-Idade , Núcleo Pulposo/imunologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Ratos , Receptores de Superfície Celular/metabolismo
4.
Front Immunol ; 12: 666355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122424

RESUMO

Intervertebral disc (IVD) degeneration and its inflammatory microenvironment ultimately led to discogenic pain, which is thought to originate in the nucleus pulposus (NP). In this study, key genes involved in NP tissue immune infiltration in lumbar disc herniation (LDH) were identified by bioinformatic analysis. Gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. The CIBERSORT algorithm was used to analyze the immune infiltration into NP tissue between the LDH and control groups. Hub genes were identified by the WGCNA R package in Bioconductor and single-cell sequencing data was analyzed using R packages. Gene expression levels were evaluated by quantitative real-time polymerase chain reaction. The immune infiltration profiles varied significantly between the LDH and control groups. Compared with control tissue, LDH tissue contained a higher proportion of regulatory T cells and macrophages, which are associated with the macrophage polarization process. The most significant module contained three hub genes and four subclusters of NP cells. Functional analysis of these genes was performed, the hub gene expression pattern was confirmed by PCR, and clinical features of the patients were investigated. Finally, we identified TGF-ß and MAPK signaling pathways as crucial in this process and these pathways may provide diagnostic markers for LDH. We hypothesize that the hub genes expressed in the specific NP subclusters, along with the infiltrating macrophages play important roles in the pathogenesis of IVD degeneration and ultimately, disc herniation.


Assuntos
Degeneração do Disco Intervertebral/diagnóstico , Degeneração do Disco Intervertebral/imunologia , Deslocamento do Disco Intervertebral/diagnóstico , Deslocamento do Disco Intervertebral/imunologia , Biomarcadores/metabolismo , Citocinas/metabolismo , Bases de Dados Genéticas , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/genética , Deslocamento do Disco Intervertebral/patologia , Macrófagos/metabolismo , Masculino , Núcleo Pulposo/imunologia , Núcleo Pulposo/metabolismo , Prognóstico , Análise de Célula Única , Linfócitos T Reguladores/metabolismo
5.
Life Sci ; 277: 119408, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33781831

RESUMO

OBJECTIVE: MicroRNAs are well-established players in post-transcriptional gene modulation. We aim to explore the role of microRNA-15a-5p (miR-15a-5p)/sex determining region Y-box 9 (Sox9)/nuclear factor-κB (NF-κB) axis in inflammation and apoptosis of murine nucleus pulposus cells (NPCs) in intervertebral disc degeneration (IVDD). METHODS: Expression levels of miR-15a-5p and Sox9 in disc tissues from IVDD patients were determined. The IVDD mouse models were established by disc puncture, and the modeled mice were accordingly injected with miR-15a-5p antagomir and/or overexpressed Sox9 plasmid, or their negative controls. Then, the expression of miR-15a-5p, Sox9 and p-p65, pathological changes and the apoptosis of NPCs in IVDD mouse intervertebral disc tissues were measured. The NPCs were isolated and cultured, which were then transfected with miR-15a-5p inhibitor, overexpressed or silenced Sox9 plasmids, or the NCs. Next, the expression of miR-15a-5p and Sox9, apoptosis, proliferation and cell cycle distribution of NPCs, and the contents of inflammatory factors in the NPCs were evaluated. RESULTS: MiR-15a-5p expression was increased while Sox9 expression was reduced in intervertebral disc tissues from IVDD patients and mice. Mouse NPCs were successfully isolated. The down-regulated miR-15a-5p could elevate Sox9 to activate p-p65 expression, suppress NPC apoptosis and inflammatory factor contents, promote proliferation of NPCs, and arrest the NPCs at S and G2/M phases. However, these effects could be reversed by silencing Sox9. CONCLUSION: Reduction of miR-15a-5p elevated Sox9 to inhibit the inflammatory response and apoptosis of NPCs in IVDD mice through the NF-κB pathway. This study may be helpful for IVDD treatment.


Assuntos
Apoptose , Degeneração do Disco Intervertebral/patologia , MicroRNAs/genética , NF-kappa B/metabolismo , Núcleo Pulposo/patologia , Fatores de Transcrição SOX9/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/imunologia , Degeneração do Disco Intervertebral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Núcleo Pulposo/imunologia , Núcleo Pulposo/metabolismo , Fatores de Transcrição SOX9/genética , Adulto Jovem
6.
Inflammation ; 44(2): 506-517, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32965648

RESUMO

Intervertebral disc degeneration (IDD) is a main contributor to low back pain. A close relationship exists between inflammation and pain. Estrogen can affect inflammation and may play a crucial role in IDD and pain. Substance P (SP) can also regulate the expression of pro-inflammatory cytokines in intervertebral disc (IVD). This study aimed to investigate the potential role of SP in estrogen regulation of IDD. Nine-week-old C57BL/6 female mice were divided into four groups as follows: sham surgery (sham), ovariectomy (OVX), ovariectomy plus estrogen replacement therapy (ERT) group (OVX+E2), and ovariectomy, ERT plus neurokinin 1 receptor (NK1R) agonist (OVX+E2+G). Serum E2, body, and uterus weight were recorded. Immunohistochemistry study and quantitative real-time PCR were used for SP, NK1R, IL-1ß, IL-6, and TNF-α examination and comparison in IVD at protein and gene levels. After OVX, the gene and protein expression of TNF-α, IL-1ß, IL-6, SP, and NK1R in NP cells significantly increased compared with the sham group. ERT can reverse these impacts. ERT plays anti-inflammatory and anti-hyperalgesic roles in IDD of OVX mice. The estrogen-induced changes of the pro-inflammatory cytokines, TNF-α, IL-1ß, and IL-6, are significantly inhibited by NK1R agonists. SP may be a mediator of estrogen regulating pro-inflammatory factors in IDD. Estrogen may affect IVD inflammation through two ways: one is to directly affect the level of pro-inflammatory cytokines and the other is by means of modulation of SP.


Assuntos
Citocinas/imunologia , Estrogênios/imunologia , Inflamação/metabolismo , Degeneração do Disco Intervertebral/imunologia , Núcleo Pulposo/imunologia , Substância P/imunologia , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Estrogênios/metabolismo , Feminino , Imuno-Histoquímica , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/metabolismo , Dor Lombar/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Pulposo/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Substância P/metabolismo
7.
World Neurosurg ; 143: e215-e223, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32712400

RESUMO

BACKGROUND: Previous studies have suggested that interleukin (IL)-17A is a key factor that contributes to intervertebral disc degeneration (IDD), whereas autophagy has been shown to be a protective mechanism in IDD. However, the relationship between IL-17A and autophagy in IDD remains to be fully elucidated. This study sought to evaluate the association between IL-17 and autophagy and the potential mechanism through which IL-17A affects autophagy in IDD. METHODS: Intervertebral disc specimens were collected from 10 patients with lumbar disc herniation. Human degenerated nucleus pulposus (NP) cells were cultured in the presence or absence of IL-17A treatment. Western blot and monodansylcadaverine staining were used to measure autophagy levels in human degenerated NP cells. Subsequently, phosphatidylinositol 3-kinase (PI3K)/Akt/Bcl-2 pathway inhibitors were used to reveal the potential mechanism. RESULTS: IL-17A treatment inhibited the autophagic activity in human NP cells in a time- and dose-dependent manner. Moreover, monodansylcadaverine staining showed that cells treated with IL-17A had significantly fewer changes in their autophagic vacuoles compared with control-treated cells. After IL-17A treatment, expression levels of PI3K, p-Akt, and Bcl-2 in NP cells were significantly increased. Further assays with PI3K/Akt/Bcl-2 inhibitors revealed that IL-17A suppressed autophagy in NP cells by activating the PI3K/Akt/Bcl-2 signaling pathway. CONCLUSIONS: These data suggest that IL-17A promotes IDD by inhibiting autophagy through activation of the PI3K/Akt/Bcl-2 signaling pathway and may offer new insights for targeted therapy of this disease.


Assuntos
Autofagia/imunologia , Interleucina-17/imunologia , Degeneração do Disco Intervertebral/imunologia , Núcleo Pulposo/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Idoso , Autofagia/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Interleucina-17/farmacologia , Degeneração do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Transdução de Sinais
8.
Aging (Albany NY) ; 12(12): 11732-11753, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32526705

RESUMO

Now days, obesity is a major risk factor for intervertebral disc degeneration (IDD). However, adipokine, such as chemerin is a novel cytokine, which is secreted by adipose tissue, and are thought to be played major roles in various degenerative diseases. Obese individuals are known to have high concentration of serum chemerin. Our purpose was to study whether chemerin acts as a biochemical relationship between obesity, and IDD. In this study, we found that the expression level of chemerin was significantly increased in the human degenerated nucleus pulposus (NP) tissues, and had higher level in the obese people than the normal people. Chemerin significantly increased the inflammatory mediator level, contributing to ECM degradation in nucleus pulposus cells (NPCs). Furthermore, chemerin overexpression aggravates the puncture-induced IVDD progression in rats, while knockdown CMKLR1 reverses IVDD progression. Chemerin activates the NF-kB signaling pathway via its receptors CMKLR1, and TLR4 to release inflammatory mediators, which cause matrix degradation, and cell aging. These findings generally provide novel evidence supporting the causative role of obesity in IDD, which is essentially important to literally develop novel preventative or generally therapeutic treatment in the disc degenerative disorders.


Assuntos
Quimiocinas/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/patologia , Obesidade/complicações , Receptores de Quimiocinas/metabolismo , Receptor 4 Toll-Like/metabolismo , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Quimiocinas/análise , Quimiocinas/genética , Modelos Animais de Doenças , Matriz Extracelular/patologia , Feminino , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Humanos , Mediadores da Inflamação/metabolismo , Degeneração do Disco Intervertebral/sangue , Degeneração do Disco Intervertebral/diagnóstico , Degeneração do Disco Intervertebral/imunologia , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Núcleo Pulposo/diagnóstico por imagem , Núcleo Pulposo/imunologia , Obesidade/sangue , Obesidade/imunologia , Ratos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Adulto Jovem
9.
PLoS One ; 14(11): e0225527, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31751427

RESUMO

Rabbits with naturally high levels of cholesterol ester transfer protein (CETP), unlike rodents, have become an interesting animal model for the study of lipid metabolism and atherosclerosis, as they have similarities to humans in lipid metabolism, cardiovascular physiology and susceptibility to develop atherosclerosis. Rodents, such as mice, are not prone to atherosclerosis as they lack the mass and activity of CETP, as a key player in lipoprotein metabolism. Recently, APOE-knockout in rabbits has been shown to promote atherosclerosis and associated premature IVD degeneration that mimic the symptoms of atherosclerosis and structural changes of IVDs in humans. Here we examined whether APOE-knockout promoted IVD degeneration in rabbits is associated with imbalanced inflammatory catabolic activities, as the underlying problem of biological deterioration that mimic the symptoms of advanced IVD degeneration in humans. We analysed in lumbar nucleus pulposus (NP) of APOE-knockout rabbits the cell viabilities and the intracellular levels of inflammatory, catabolic, anti-catabolic and anabolic proteins derogating IVD matrix. Grades of IVD degeneration were evaluated by magnetic resonance imaging. NP cells were isolated from homozygous APOE-knockout and wild-type New Zealand White rabbits of similar age. Three-dimensional cell culture with low-glucose was completed in alginate hydrogel. Cell proliferation and intracellular levels of target proteins were examined by MTT and ELISA assays. Alike human NP cells of different disc degeneration grades, NP cells of APOE-knockout and wild-type rabbits showed significantly different in vivo cell population densities (p<0.0001) and similar in vitro proliferation rates. Furthermore, they showed differences in overexpression of selective inflammatory and catabolic proteins (p<0.0001) similar to those found in human NP cells of different disc degeneration grades, such as IL-1ß, TNF-α, ADAMTS-4, ADAMTS-5 and MMP-3. This study showed that premature IVD degeneration in APOE-knockout rabbits was promoted by the accumulation of selective inflammatory catabolic factors that enhanced imbalances between catabolic and anabolic factors mimicking the symptoms of advanced IVD degeneration in humans. Thus, APOE-knockout rabbits could be used as a promising model for therapeutic approaches of degenerative disc disorders.


Assuntos
Apolipoproteínas E/genética , Citocinas/metabolismo , Degeneração do Disco Intervertebral/diagnóstico por imagem , Núcleo Pulposo/citologia , Animais , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Proteínas de Transferência de Ésteres de Colesterol , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/imunologia , Imageamento por Ressonância Magnética , Masculino , Núcleo Pulposo/imunologia , Coelhos
10.
Biosci Rep ; 39(6)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31213577

RESUMO

Intervertebral disc degeneration (IDD) is a natural progression of the aging process associated with inflammation. Higenamine, a plant-based alkaloid, has been identified to possess various pharmacological properties, including anti-inflammatory activity. In the present study, we aimed to evaluate the role of higenamine in interleukin (IL)-1ß-induced inflammation in human nucleus pulposus cells (NPCs). The results showed that higenamine improved cell viability in IL-1ß-induced NPCs. The IL-1ß-dependent up-regulation of inflammatory molecules including inducible nitric oxide synthase (iNOS), nitric oxide (NO), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), and IL-6 was attenuated by higenamine in NPCs. The increased productions of matrix metalloproteinases (MMP-3 and MMP-13), as well as a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-4 and ADAMTS-5) were significantly mitigated by higenamine treatment. Furthermore, we also found that higenamine suppressed the IL-1ß-induced activation of NF-κB signaling pathway in NPCs. In conclusion, the present study proved that higenamine exhibited anti-inflammatory activity against IL-1ß-induced inflammation in NPCs via inhibiting NF-κB signaling pathway. These results suggested that higenamine might be a therapeutic agent for the treatment of IDD.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Inflamação/tratamento farmacológico , Interleucina-1beta/imunologia , Núcleo Pulposo/efeitos dos fármacos , Tetra-Hidroisoquinolinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Inflamação/imunologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/imunologia , Núcleo Pulposo/imunologia
11.
J Cell Biochem ; 120(8): 13302-13309, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30891836

RESUMO

Inflammation has been demonstrated to be the key factor for intervertebral disc degeneration (IVD), which remains a major public health problem. Isofraxidin is a coumarin compound that possesses strong anti-inflammatory activity. However, the role of isofraxidin in IVD remains unclear. The aim of this study was to evaluate the effects of isofraxidin on inflammatory response in human nucleus pulposus cells (NPCs) exposed to interleukin-1ß (IL-1ß). The results proved that isofraxidin attenuated the IL-1ß-induced significant increases in inflammatory mediators and cytokines including nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), and IL-6. Besides, isofraxidin also inhibited the induction effect of IL-1ß on matrix metalloproteinases (MMP)-3 and MMP-13. Moreover, the NF-κB activation caused by IL-1ß was significantly inhibited by isofraxidin treatment. These findings suggested that isofraxidin alleviates IL-1ß-induced inflammation in NPCs. Our work provided an idea that isofraxidin might act as a novel preventive role in IVD.


Assuntos
Cumarínicos/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-1beta/farmacologia , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Núcleo Pulposo/imunologia , Transdução de Sinais/efeitos dos fármacos
12.
J Mol Med (Berl) ; 97(1): 25-35, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30397790

RESUMO

Latent infection of Propionibacterium acnes was considered as a new pathogeny for low back pain (LBP); however, there is no credible animal evidence or mechanism hypothesis. This study proved that P. acnes is a causative pathogen of bacteria-induced LBP and investigated its underlying mechanism. For this, P. acnes was firstly identified in patients' degenerated intervertebral disc (IVDs) samples. The results of patients' Japanese Orthopaedic Association Back Pain Evaluation Questionnaire (JOABPEQ), Japanese Orthopaedic Association (JOA), and Oswestry Disability Index (ODI) scores indicated that P. acnes-positive patients showed more severe LBP and physical disability. Then, a P. acnes-inoculated lumbar IVDs model was established in rats. The results of paw/foot withdrawal threshold and qRT-PCR indicated that P. acnes-inoculated rats had obvious LBP in behavioral evaluation and over-expression of substance P (SP) and calcitonin gene-related peptide (CGRP) in IVDs. Subsequently, enzyme-linked immunosorbent assay (ELISA) results demonstrated that increased expression of IL-8 or CINC-1 (the homolog of IL-8 in rats) in the P. acnes-positive IVDs of human and rats. The CINC-1 injected animal model proved that the cytokines were able to induce LBP. Finally, the co-culture experiments showed that nucleus pulposus cells (NPCs) were able to respond to P. acnes and secreted IL-8/CINC-1 via TLR-2/NF-κB p65 pathway. In conclusion, P. acnes had strong association with LBP by stimulating NPCs to secrete pro-algesic factor of IL-8/CINC-1 via TLR2/NF-κBp65 pathway. The finding may provide a promising alternative therapy strategy for LBP in clinical. KEY MESSAGES: Patients with P. acnes-positive IVDs tended to have more severe LBP, physical disability, and increased IL-8 expressions. P. acnes can induce LBP via IL-8/CINC-1 in IVDs. P. acnes stimulate the NPCs to secrete pro-algesic factor of IL-8/CINC-1 via TLR2/NF-κBp65 pathway.


Assuntos
Quimiocina CXCL1/imunologia , Infecções por Bactérias Gram-Positivas/complicações , Interleucina-8/imunologia , Degeneração do Disco Intervertebral/microbiologia , Dor Lombar/microbiologia , Propionibacterium acnes/imunologia , Animais , Células Cultivadas , Quimiocina CXCL1/análise , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Interleucina-8/análise , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/imunologia , Dor Lombar/complicações , Dor Lombar/imunologia , Núcleo Pulposo/imunologia , Núcleo Pulposo/microbiologia , Núcleo Pulposo/patologia , Propionibacterium acnes/fisiologia , Ratos , Transdução de Sinais , Receptor 2 Toll-Like/análise , Receptor 2 Toll-Like/imunologia , Fator de Transcrição RelA/análise , Fator de Transcrição RelA/imunologia
13.
Cell Prolif ; 52(2): e12542, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30430692

RESUMO

OBJECTIVES: Tumour necrosis factor alpha (TNF-α) expressed by nucleus pulposus cells (NPCs) plays a critical role in intervertebral disc (IVD) degeneration. A key unfolded protein response (UPR) component, X-box binding protein 1 (XBP1) and nuclear factor-kappa B (NF-κB) are essential for cell survival and proliferation. The aim of our study was to elucidate the roles of XBP1 and NF-κB in IVD degeneration (IDD). MATERIALS AND METHODS: Rat NPCs were cultured with TNF-α in the presence or absence of XBP1 and NF-κB-p65 small interfering RNA. The associated genes and proteins were evaluated through quantitative real-time PCR, Western blot analyses and immunofluorescence staining to monitor UPR and NF-κB signalling and identify the regulatory mechanism of p65 by XBP1. Cell counting kit-8 assay, cell cycle analysis and related gene and protein expression were performed to examine the proliferation of NPCs. RESULTS: The acute exposure of TNF-α accelerated the proliferation of rat NPCs by activating the UPR/XBP1 pathway. XBP1 signalling favoured the phosphorylation and nuclear translocation of p65 subunit of NF-κB. The activation of NF-κB in the later phase also enhanced NPC proliferation. CONCLUSIONS: Unfolded protein response reinforces the survival and proliferation of NPCs under TNF-α stimulation by activating the XBP1 pathway, and NF-κB serves as a vital mediator in these events. The XBP1 signalling of UPR can be a novel therapeutic target in IDD.


Assuntos
Proliferação de Células , NF-kappa B/imunologia , Núcleo Pulposo/citologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/imunologia , Proteína 1 de Ligação a X-Box/imunologia , Animais , Células Cultivadas , Degeneração do Disco Intervertebral/imunologia , Núcleo Pulposo/imunologia , Ratos Sprague-Dawley
14.
Int Immunopharmacol ; 64: 424-431, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30261465

RESUMO

Coenzyme Q10 (Co-Q10) is extraordinarily popular and has been used in abundant interventions as an antioxidant reagent that participates in numerous oxidation reactions. According to substantial evidence previously reported, interleukin-1ß (IL-1ß) is deemed to be one of the chief orchestrator molecules in the degeneration of intervertebral disc (IVD). However, it is unknown whether Co-Q10 is able to protect against IVD degeneration. In the current study, mouse-derived IVDs as well as primary human nucleus pulposus (NP) cells were isolated and cultured. NP cells were stimulated with IL-1ß, with or without selective addition of Co-Q10 to investigate the therapeutic effect of Co-Q10 on IVD degeneration. Levels of IL-1ß-induced inflammatory biomarkers including TNF-α, COX-2, IL-6 and iNOS were reduced by Co-Q10, which was possibly associated with inhibition of NF-κB signaling activation. Furthermore, Co-Q10 maintained the production of anabolic biomarkers in NP cells such as collagen 2, aggrecan and Sox-9 and altered the enhanced catabolism induced by IL-1ß. Moreover, the therapeutic role of Co-Q10 in sustaining IVD tissue-enhanced anabolism is potentially dependent on activation of the Akt signaling pathway. In summary, Co-Q10 may potentially represent an available molecular target that may shed light on approaches to the prevention and treatment of IVD degeneration in the future.


Assuntos
Inflamação/prevenção & controle , Interleucina-1beta/antagonistas & inibidores , Degeneração do Disco Intervertebral/tratamento farmacológico , Núcleo Pulposo/efeitos dos fármacos , Ubiquinona/análogos & derivados , Animais , Células Cultivadas , Humanos , Degeneração do Disco Intervertebral/imunologia , Camundongos , NF-kappa B/fisiologia , Núcleo Pulposo/imunologia , Células RAW 264.7 , Transdução de Sinais/fisiologia , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
15.
Acta Pharmacol Sin ; 39(6): 912-922, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29795361

RESUMO

Lower back pain (LBP) is the most common disease in orthopedic clinics world-wide. A classic Fangji of traditional Chinese medicine, Duhuo Jisheng Decoction (DHJSD), has been proven clinically effective for LBP but its therapeutic mechanisms remain unclear. We hypothesized that DHJSD might relieve LBP through inhibiting the exaggerated proinflammatory cytokines and extracellular matrix (ECM) degradation. Thus, we studied the effects of DHJSD on stromal cell-derived factor-1 (SDF-1)-induced inflammation and ECM degradation in human nucleus pulposus cells (hNPCs). The primary hNPCs were isolated from either degenerated human intervertebral disc (HID) of LBP patients or normal HID of lumbar vertebral fracture patients, and cultured in vitro. The cells were treated with SDF-1 (10 ng/mL) and subsequently with different concentrations (100-500 µg/mL) of DHJSD for 24 h, respectively. We found that application of DHJSD significantly antagonized the SDF-1-induced production of proinflammatory cytokines and reduction of aggrecan and type II collagen in the hNPCs. DHJSD also markedly reduced the SDF-1-induced increase of CXCR4 and p-p65 and inhibited the nuclear translocation of p65 in the hNPCs. DHJSD, CXCR4-siRNA, and NF-κB inhibitor (BAY11-7082) caused the same inhibition of exaggerated proinflammatory cytokines in the SDF-1-treated hNPCs. These results provided compelling evidence that DHJSD may inhibit the generation of proinflammatory mediators and ECM degradation of HID through an orchestrated targeting at multiple molecules in the SDF-1/CXCR4/NF-κB pathway, thus offered novel mechanistic insights into the clinical effectiveness of DHJSD on LBP.


Assuntos
Anti-Inflamatórios/farmacologia , Quimiocina CXCL12/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Matriz Extracelular/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Dor Lombar/tratamento farmacológico , Vértebras Lombares/efeitos dos fármacos , NF-kappa B/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Receptores CXCR4/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Degeneração do Disco Intervertebral/imunologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Dor Lombar/imunologia , Dor Lombar/metabolismo , Dor Lombar/patologia , Vértebras Lombares/imunologia , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Masculino , Metaloproteinases da Matriz Secretadas/metabolismo , Pessoa de Meia-Idade , Núcleo Pulposo/imunologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Receptores CXCR4/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Adulto Jovem
16.
Int Immunopharmacol ; 58: 80-86, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29558663

RESUMO

Moracin M, a phenolic component obtained from Mori Cortex, has been reported to have anti-inflammatory activities. The present study was designed to investigate the effects and mechanisms of Moracin M on lipopolysaccharide (LPS)-treated nucleus pulposus cells (NPCs) in intervertebral disc. NPCs were treated with moracin M at different concentrations for 1 h and then stimulated with LPS (0.5 µg/mL) for 24 h. The result demonstrated that moracin M could significantly inhibit LPS-induced inflammation. The elevated levels of IL-1ß, TNF-α and IL-6 induced by LPS could be reversed by moracin M in NPCs. Moreover, moracin M increased the expressions of autophagy-related proteins and up-regulated the phosphorylation of PI3K/Akt/mTOR in LPS-treated NPCs. In conclusion, our data demonstrated that moracin M might inhibit LPS-induced PI3K and Akt phosphorylation, which leading to promote the autophagy and inhibit the inflammatory mediator production in NPCs.


Assuntos
Anti-Inflamatórios/farmacologia , Benzofuranos/farmacologia , Inflamação/tratamento farmacológico , Disco Intervertebral/patologia , Núcleo Pulposo/efeitos dos fármacos , Resorcinóis/farmacologia , Animais , Autofagia , Células Cultivadas , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Morus/imunologia , Núcleo Pulposo/imunologia , Núcleo Pulposo/patologia , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Casca de Planta , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
17.
Lasers Med Sci ; 33(5): 1055-1064, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29502159

RESUMO

The etiology of intervertebral disc (IVD) degeneration accompanied by low back pain (LBP) is largely unknown, and there are no curative therapies. Painful IVD degeneration is associated with infiltrated macrophage-mediated inflammatory response of human nucleus pulposus (NP) cells. The present study aimed to address the hypothesis that pro-inflammatory cytokines derived from macrophages lead to the altered molecular phenotype of human NP cells and to investigate the effects of phototherapy (630, 525, 465 nm with 16, 32, 64 J/cm2) on pain-related cytokine interleukin (IL)-6 and chemokine IL-8 under inflammatory conditions in human NP cells. Human NP cells were treated with soluble factors derived from macrophages in an inflammatory microenvironment, similar to that found in degenerative IVD. Human NP cells were also treated with phototherapy (630, 525, 465 nm with 16, 32, 64 J/cm2), and their cytokine and chemokine levels were detected. The soluble factors caused modulated expression of IL-6, IL-8, and matrix metalloproteinases (MMPs) at the gene and protein levels, causing a shift toward matrix catabolism through the expression of MMPs and increased pain-related factors via preferential activation of the nuclear factor-kappa B (NF-κB) p50 protein. Importantly, phototherapy attenuated the protein and gene expression of pain-related factor IL-6 at all doses and wavelengths. Interestingly, phototherapy also modulated the protein and gene expression of IL-8, which is responsible for the anabolic response, at a wavelength of 465 nm at all doses, in human NP cells. These findings suggested that phototherapy, at an optimal dose and wavelength, might be a useful therapeutic tool to treat IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral/terapia , Núcleo Pulposo/patologia , Fototerapia , Linhagem Celular , Citocinas/metabolismo , Feminino , Expressão Gênica/efeitos da radiação , Humanos , Inflamação/metabolismo , Dor Lombar/metabolismo , Dor Lombar/terapia , Macrófagos/metabolismo , Masculino , NF-kappa B/metabolismo , Núcleo Pulposo/imunologia , Núcleo Pulposo/metabolismo
18.
Spine J ; 18(5): 831-844, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29253635

RESUMO

BACKGROUND CONTEXT: Modic changes (MCs) are magnetic resonance imaging (MRI) evidence of inflammatory and fibrotic vertebral bone marrow lesions that associate with adjacent disc degeneration and end plate damage. Although MC etiology is uncertain, historical data suggest a linkage to an autoimmune response of bone marrow triggered by the nucleus pulposus (NP). PURPOSE: The aim of this study was to test whether bone marrow has an autoimmune response to NP cells that is amplified by an inflammatory milieu and ultimately leads to MC development in vivo. We hypothesized that an inflammatory co-stimulus is required for bone marrow/NP crosstalk to stimulate MC. STUDY DESIGN: This is an in-vitro cell co-culture study plus in-vivo experiments in rat caudal vertebrae. METHODS: In in-vitro study, bone marrow mononuclear cells (BMNCs) and NP cells (NPCs) from rats were co-cultured with and without interleukin (IL)-1α stimulation. Cell viability (n=3) of BMNCs and NPCs and gene expression (n=7) were analyzed. In in-vivo study, proinflammatory lipopolysaccharide (LPS) and control disc nucleus surrogates (NP micromass pellets) were generated in vitro from rat NPCs and implanted into rat tail vertebrae, and the response was compared with sham surgery (n=12 each). Tissue changes were investigated with T1w and T2w MRI (7T), histology, and immunohistochemistry (tumor necrosis factor, CD3) 1 (n=6) and 2 weeks (n=6) after implantation. RESULTS: BMNC/NPC co-culture significantly increased lymphocyte viability (42%-69%, p<.05) and reduced NPC viability (96%-88%, p<.001), indicating immunogenicity of NPC. However, IL-1α was required to cause significant transcriptional upregulation of IL-1, IL-6, IL-10, and tropomyosin receptor kinase A. Therefore, an inflammatory activation is required to amplify the immune response. Immunogenicity of the NP was corroborated in vivo by CD3 cell accumulation around LPS and control disc surrogates at Day 7. However, only the LPS disc surrogate group demonstrated infiltration of CD3 cells at Day 14. Furthermore, end plate defects (p<.05, LPS: n=4/6, Ctrl: n=0/6, sham: n=0/6) and MC1-like MRI changes (T2w hyperintensity, p<.05) were only seen with LPS disc surrogates. CONCLUSIONS: NPCs are immunogenic but cannot trigger MC without an additional proinflammatory stimulus. Our data suggest that MC requires end plate defects that allow marrow/NPC co-mingling plus an adjacent inflammatory "MC disc" that can amplify the immune response.


Assuntos
Doenças Autoimunes/imunologia , Células da Medula Óssea/imunologia , Degeneração do Disco Intervertebral/imunologia , Núcleo Pulposo/imunologia , Animais , Doenças Autoimunes/diagnóstico por imagem , Doenças Autoimunes/etiologia , Feminino , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/etiologia , Linfócitos/imunologia , Ratos , Ratos Sprague-Dawley
19.
Sci Rep ; 7(1): 12492, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970490

RESUMO

Low back pain (LBP) is a widespread debilitating disorder of significant socio-economic importance and intervertebral disc (IVD) degeneration has been implicated in its pathogenesis. Despite its high prevalence the underlying causes of LBP and IVD degeneration are not well understood. Recent work in musculoskeletal degenerative diseases such as osteoarthritis have revealed a critical role for immune cells, specifically mast cells in their pathophysiology, eluding to a potential role for these cells in the pathogenesis of IVD degeneration. This study sought to characterize the presence and role of mast cells within the IVD, specifically, mast cell-IVD cell interactions using immunohistochemistry and 3D in-vitro cell culture methods. Mast cells were upregulated in painful human IVD tissue and induced an inflammatory, catabolic and pro-angiogenic phenotype in bovine nucleus pulposus and cartilage endplate cells at the gene level. Healthy bovine annulus fibrosus cells, however, demonstrated a protective role against key inflammatory (IL-1ß and TNFα) and pro-angiogenic (VEGFA) genes expressed by mast cells, and mitigated neo-angiogenesis formation in vitro. In conclusion, mast cells can infiltrate and elicit a degenerate phenotype in IVD cells, enhancing key disease processes that characterize the degenerate IVD, making them a potential therapeutic target for LBP.


Assuntos
Anel Fibroso/metabolismo , Condrócitos/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Dor Lombar/metabolismo , Mastócitos/metabolismo , Neovascularização Patológica/metabolismo , Núcleo Pulposo/metabolismo , Adulto , Idoso , Animais , Anel Fibroso/imunologia , Anel Fibroso/patologia , Bovinos , Comunicação Celular/genética , Comunicação Celular/imunologia , Linhagem Celular , Condrócitos/imunologia , Condrócitos/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/imunologia , Degeneração do Disco Intervertebral/patologia , Dor Lombar/genética , Dor Lombar/imunologia , Dor Lombar/patologia , Masculino , Mastócitos/imunologia , Mastócitos/patologia , Pessoa de Meia-Idade , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Núcleo Pulposo/imunologia , Núcleo Pulposo/patologia , Cultura Primária de Células , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia
20.
Int J Surg ; 43: 163-170, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28600230

RESUMO

BACKGROUND: Lumbar degenerative spondylolisthesis (DS) develops as a result of inflammatory and remodeling processes in facet joints (FJs). Several inflammatory cytokines are involved in the osteoarthritic and remodeling changes that occur and in low-back and/or radicular pain, the most prevalent clinical symptom of disease. This study improves knowledge related to the roles that 27 cytokines, chemokines and growth factors play in the pathophysiology of lumbar DS. MATERIAL AND METHODS: Cytokine levels were examined using capture sandwich immunoassay using the Bio-Plex® 200 System and the Bio-PlexTM Human Cytokine Standard 27-Plex, Group I (Bio-Rad, Hercules, California, USA) separately in intervertebral discs (IVDs) and FJ bone tissue. The samples were obtained during primary spinal surgery from 9 patients suffering from lower segment lumbar DS. The pain intensity was assessed using a visual analog scale. The controls were tissue samples collected from both lower lumbar segment levels of 6 male subjects during a multiorgan procurement procedure. RESULTS: The Bio-Plex® assay revealed significant differences between the patients and controls in cytokines, chemokines and growth factor profiles: i, The elevated interleukin-6 (IL-6), IL-7, IL-13, tumor necrosis factor α (TNF-α), interferon γ and platelet-derived growth factor levels in lumbar DS samples of subchondral FJ bone. These indicated ongoing inflammation, bone formation and increased fibroblasts activity in the FJ bone. ii, The elevated levels of IL-6, IL-8, TNF-α, granulocyte-macrophage colony-stimulating factor and monocyte chemoattractant protein-1 in anulus fibrosus together with increased IL-6, IL-8, TNF-α and eotaxin and decreased IL-1-receptor antagonist in nucleus pulposus confirmed advanced IVD degeneration in the patient samples. CONCLUSION: This study identified, for the first time, protective levels of cytokines, chemokines and growth factors in healthy subjects and supported their significant involvement in the pathogenesis of lumbar DS. The control samples and analytical methods used avoided any false changes in the cytokine levels due to secondary factors (e.g., death of donor and limited cytokine stability).


Assuntos
Quimiocinas/fisiologia , Citocinas/fisiologia , Vértebras Lombares , Espondilolistese/imunologia , Adulto , Idoso , Quimiocinas/análise , Citocinas/análise , Feminino , Humanos , Degeneração do Disco Intervertebral/complicações , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/imunologia , Espondilolistese/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...