Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
Mol Med ; 30(1): 87, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877413

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS: Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/ß-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/ß-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/ß-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS: S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1ß-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/ß-catenin signaling pathway. CONCLUSIONS: This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/ß-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.


Assuntos
Apoptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Proteína A6 Ligante de Cálcio S100 , Via de Sinalização Wnt , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Apoptose/genética , Humanos , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Animais , Masculino , Feminino , Ratos , Adulto , Pessoa de Meia-Idade , beta Catenina/metabolismo , beta Catenina/genética , Ratos Sprague-Dawley , Modelos Animais de Doenças , Proteínas de Ciclo Celular
2.
J Cell Mol Med ; 28(12): e18492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890795

RESUMO

Intervertebral disc degeneration (IVDD) severely affects the work and the quality of life of people. We previously demonstrated that silencing activation transcription factor 3 (ATF3) blocked the IVDD pathological process by regulating nucleus pulposus cell (NPC) ferroptosis, apoptosis, inflammation, and extracellular matrix (ECM) metabolism. Nevertheless, whether miR-874-3p mediated the IVDD pathological process by targeting ATF3 remains unclear. We performed single-cell RNA sequencing (scRNA-seq) and bioinformatics analysis to identify ATF3 as a key ferroptosis gene in IVDD. Then, Western blotting, flow cytometry, ELISA, and animal experiments were performed to validate the roles and regulatory mechanisms of miR-874-3p/ATF3 signalling axis in IVDD. ATF3 was highly expressed in IVDD patients and multiple cell types of IVDD rat, as revealed by scRNA-seq and bioinformatics analysis. GO analysis unveiled the involvement of ATF3 in regulating cell apoptosis and ECM metabolism. Furthermore, we verified that miR-874-3p might protect against IVDD by inhibiting NPC ferroptosis, apoptosis, ECM degradation, and inflammatory response by targeting ATF3. In vivo experiments displayed the protective effect of miR-874-3p/ATF3 axis on IVDD. These findings propose the potential of miR-874-3p and ATF3 as biomarkers of IVDD and suggest that targeting the miR-874-3p/ATF3 axis may be a therapeutic target for IVDD.


Assuntos
Fator 3 Ativador da Transcrição , Ferroptose , Degeneração do Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Ratos , Ferroptose/genética , Masculino , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Análise de Célula Única/métodos , Apoptose/genética , Transdução de Sinais , Feminino , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Análise de Sequência de RNA/métodos , Matriz Extracelular/metabolismo , Adulto , Regulação da Expressão Gênica , Modelos Animais de Doenças , Biologia Computacional/métodos
3.
J Orthop Surg Res ; 19(1): 308, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773639

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is an increasingly important cause of low back pain (LBP) that results in substantial health and economic burdens. Inflammatory pathway activation and the production of reactive oxygen species (ROS) play vital roles in the progression of IDD. Several studies have suggested that phillyrin has a protective role and inhibits inflammation and the production of ROS. However, the role of phillyrin in IDD has not been confirmed. PURPOSE: The purpose of this study was to investigate the role of phillyrin in IDD and its mechanisms. STUDY DESIGN: To establish IDD models in vivo, ex-vivo, and in vitro to verify the function of phillyrin in IDD. METHOD: The effects of phillyrin on extracellular matrix (ECM) degeneration, inflammation, and oxidation in nucleus pulposus (NP) cells were assessed using immunoblotting and immunofluorescence analysis. Additionally, the impact of phillyrin administration on acupuncture-mediated intervertebral disc degeneration (IDD) in rats was evaluated using various techniques such as MRI, HE staining, S-O staining, and immunohistochemistry (IHC). RESULT: Pretreatment with phillyrin significantly inhibited the IL-1ß-mediated reduction in the degeneration of ECM and apoptosis by alleviating activation of the NF-κB inflammatory pathway and the generation of ROS. In addition, in vivo and ex-vivo experiments verified the protective effect of phillyrin against IDD. CONCLUSION: Phillyrin can attenuate the progression of IDD by reducing ROS production and activating inflammatory pathways.


Assuntos
Progressão da Doença , Degeneração do Disco Intervertebral , NF-kappa B , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Animais , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Ratos , Masculino , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Transdução de Sinais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Modelos Animais de Doenças , Células Cultivadas , Humanos , Apoptose/efeitos dos fármacos
4.
Free Radic Biol Med ; 220: 139-153, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705495

RESUMO

Epigenetic changes are important considerations for degenerative diseases. DNA methylation regulates crucial genes by epigenetic mechanism, impacting cell function and fate. DNA presents hypermethylation in degenerated nucleus pulposus (NP) tissue, but its role in intervertebral disc degeneration (IVDD) remains elusive. This study aimed to demonstrate that methyltransferase mediated hypermethylation was responsible for IVDD by integrative bioinformatics and experimental verification. Methyltransferase DNMT3B was highly expressed in severely degenerated NP tissue (involving human and rats) and in-vitro degenerated human NP cells (NPCs). Bioinformatics elucidated that hypermethylated genes were enriched in oxidative stress and ferroptosis, and the ferroptosis suppressor gene SLC40A1 was identified with lower expression and higher methylation in severely degenerated human NP tissue. Cell culture using human NPCs showed that DNMT3B induced ferroptosis and oxidative stress in NPCs by downregulating SLC40A1, promoting a degenerative cell phenotype. An in-vivo rat IVDD model showed that DNA methyltransferase inhibitor 5-AZA alleviated puncture-induced IVDD. Taken together, DNA methyltransferase DNMT3B aggravates ferroptosis and oxidative stress in NPCs via regulating SLC40A1. Epigenetic mechanism within DNA methylation is a promising therapeutic biomarker for IVDD.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA Metiltransferase 3B , Ferroptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Estresse Oxidativo , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Azacitidina/farmacologia , Modelos Animais de Doenças , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética , Ferroptose/genética , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Ratos Sprague-Dawley , Regulação para Cima
5.
Exp Cell Res ; 439(1): 114089, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38740166

RESUMO

Nucleus pulposus cells (NPCs) apoptosis and inflammation are the extremely critical factors of intervertebral disc degeneration (IVDD). Nevertheless, the underlying procedure remains mysterious. Macrophage migration inhibitory factor (MIF) is a cytokine that promotes inflammation and has been demonstrated to have a significant impact on apoptosis and inflammation. For this research, we employed a model of NPCs degeneration stimulated by lipopolysaccharides (LPS) and a rat acupuncture IVDD model to examine the role of MIF in vitro and in vivo, respectively. Initially, we verified that there was a significant rise of MIF expression in the NP tissues of individuals with IVDD, as well as in rat models of IVDD. Furthermore, this augmented expression of MIF was similarly evident in degenerated NPCs. Afterwards, it was discovered that ISO-1, a MIF inhibitor, effectively decreased the quantity of cells undergoing apoptosis and inhibited the release of inflammatory molecules (TNF-α, IL-1ß, IL-6). Furthermore, it has been shown that the PI3K/Akt pathway plays a vital part in the regulation of NPCs degeneration by MIF. Ultimately, we showcased that the IVDD process was impacted by the MIF inhibitor in the rat model. In summary, our experimental results substantiate the significant involvement of MIF in the degeneration of NPCs, and inhibiting MIF activity can effectively mitigate IVDD.


Assuntos
Apoptose , Inflamação , Degeneração do Disco Intervertebral , Fatores Inibidores da Migração de Macrófagos , Núcleo Pulposo , Ratos Sprague-Dawley , Animais , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Apoptose/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Ratos , Masculino , Humanos , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Feminino , Isoxazóis/farmacologia , Adulto , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fosfatidilinositol 3-Quinases/metabolismo
6.
Int Immunopharmacol ; 134: 112202, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723371

RESUMO

Intervertebral disc (IVD) degeneration, induced by aging and irregular mechanical strain, is highly prevalent in the elderly population, serving as a leading cause of chronic low back pain and disability. Evolving evidence has revealed the involvement of nucleus pulposus (NP) pyroptosis in the pathogenesis of IVD degeneration, while the precise regulatory mechanisms of NP pyroptosis remain obscure. Misshapen/Nck-interacting kinase (NIK)-related kinase 1 (MINK1), a serine-threonine protein kinase, has the potential to modulate the activation of NLRP3 inflammasome, indicating its pivotal role in governing pyroptosis. In this study, to assess the significance of MINK1 in NP pyroptosis and IVD degeneration, NP tissues from patients with varying degrees of IVD degeneration, and IVD tissues from both aging-induced and lumbar spine instability (LSI) surgery-induced IVD degeneration mouse models, with or without MINK1 ablation, were meticulously evaluated. Our findings indicated a notable decline in MINK1 expression in NP tissues of patients with IVD degeneration and both mouse models as degeneration progresses, accompanied by heightened matrix degradation and increased NP pyroptosis. Moreover, MINK1 ablation led to substantial activation of NP pyroptosis in both mouse models, and accelerating ECM degradation and intensifying the degeneration phenotype in mechanically stress-induced mice. Mechanistically, MINK1 deficiency triggered NF-κB signaling in NP tissues. Overall, our data illustrate an inverse correlation between MINK1 expression and severity of IVD degeneration, and the absence of MINK1 stimulates NP pyroptosis, exacerbating IVD degeneration by activating NF-κB signaling, highlighting a potential innovative therapeutic target in treating IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Piroptose , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais de Doenças , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Núcleo Pulposo/patologia , Núcleo Pulposo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
7.
Free Radic Biol Med ; 221: 245-256, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38806104

RESUMO

Low back pain (LBP) may profoundly impact the quality of life across the globe, and intervertebral disc degeneration (IVDD) is the major cause of LBP; however, targeted pharmaceutical interventions for IVDD are still lacking. Ferroptosis is a novel form of iron-dependent programmed cell death. Studies have showed that ferroptosis may closely associate with IVDD; thus, targeting ferroptosis may have great potential for IVDD therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) are the first-line medications for LBP, while nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key inhibitory protein for ferroptosis. In the current study, we conducted a molecular docking screening between NSAIDs library and Nrf2 protein. Tinoridine was shown to have a high binding affinity to Nrf2. The in vitro study in nucleus pulposus (NP) cells showed that Tinoridine may promote the expression and activity of Nrf2, it may also rescue RSL3-induced ferroptosis in NP cells. Knockdown of Nrf2 reverses the protective effect of Tinoridine on RSL3-induced ferroptosis in NP cells, suggesting that the inhibitory effect of Tinoridine on ferroptosis is through Nrf2. In vivo study demonstrated that Tinoridine may attenuate the progression of IVDD in rats. As NSAIDs are already clinically used for LBP therapy, the current study supports Tinoridine's application from the view of ferroptosis inhibition.


Assuntos
Anti-Inflamatórios não Esteroides , Ferroptose , Degeneração do Disco Intervertebral , Fator 2 Relacionado a NF-E2 , Ferroptose/efeitos dos fármacos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Anti-Inflamatórios não Esteroides/farmacologia , Humanos , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Simulação de Acoplamento Molecular , Masculino , Ratos Sprague-Dawley , Dor Lombar/tratamento farmacológico , Dor Lombar/patologia
8.
Matrix Biol ; 131: 46-61, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38806135

RESUMO

Syndecan 4 (SDC4), a cell surface heparan sulfate proteoglycan, is known to regulate matrix catabolism by nucleus pulposus cells in an inflammatory milieu. However, the role of SDC4 in the aging spine has never been explored. Here we analyzed the spinal phenotype of Sdc4 global knockout (KO) mice as a function of age. Micro-computed tomography showed that Sdc4 deletion severely reduced vertebral trabecular and cortical bone mass, and biomechanical properties of vertebrae were significantly altered in Sdc4 KO mice. These changes in vertebral bone were likely due to elevated osteoclastic activity. The histological assessment showed subtle phenotypic changes in the intervertebral disc. Imaging-Fourier transform-infrared analyses showed a reduced relative ratio of mature collagen crosslinks in young adult nucleus pulposus (NP) and annulus fibrosus (AF) of KO compared to wildtype discs. Additionally, relative chondroitin sulfate levels increased in the NP compartment of the KO mice. Transcriptomic analysis of NP tissue using CompBio, an AI-based tool showed biological themes associated with prominent dysregulation of heparan sulfate GAG degradation, mitochondria metabolism, autophagy, endoplasmic reticulum (ER)-associated misfolded protein processes and ER to Golgi protein processing. Overall, this study highlights the important role of SDC4 in fine-tuning vertebral bone homeostasis and extracellular matrix homeostasis in the mouse intervertebral disc.


Assuntos
Envelhecimento , Doenças Ósseas Metabólicas , Homeostase , Camundongos Knockout , Sindecana-4 , Animais , Camundongos , Sindecana-4/metabolismo , Sindecana-4/genética , Envelhecimento/metabolismo , Envelhecimento/genética , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Microtomografia por Raio-X , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia , Coluna Vertebral/diagnóstico por imagem , Anel Fibroso/metabolismo , Anel Fibroso/patologia , Osteoclastos/metabolismo
9.
Int Immunopharmacol ; 134: 112161, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728878

RESUMO

Intervertebral disc degeneration (IVDD) is a leading cause of degenerative spinal disorders, involving complex biological processes. This study investigates the role of the kallikrein-kinin system (KKS) in IVDD, focusing on the protective effects of bradykinin (BK) on nucleus pulposus cells (NPCs) under oxidative stress. Clinical specimens were collected, and experiments were conducted using human and rat primary NPCs to elucidate BK's impact on tert-butyl hydroperoxide (TBHP)-induced oxidative stress and damage. The results demonstrate that BK significantly inhibits TBHP-induced NPC apoptosis and restores mitochondrial function. Further analysis reveals that this protective effect is mediated through the BK receptor 2 (B2R) and its downstream PI3K/AKT pathway. Additionally, BK/PLGA sustained-release microspheres were developed and validated in a rat model, highlighting their potential therapeutic efficacy for IVDD. Overall, this study sheds light on the crucial role of the KKS in IVDD pathogenesis and suggests targeting the B2R as a promising therapeutic strategy to delay IVDD progression and promote disc regeneration.


Assuntos
Apoptose , Bradicinina , Degeneração do Disco Intervertebral , Núcleo Pulposo , Estresse Oxidativo , Ratos Sprague-Dawley , terc-Butil Hidroperóxido , Animais , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Núcleo Pulposo/metabolismo , terc-Butil Hidroperóxido/toxicidade , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Humanos , Masculino , Bradicinina/farmacologia , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Células Cultivadas , Receptor B2 da Bradicinina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Microesferas , Transdução de Sinais/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças
10.
Am J Physiol Cell Physiol ; 326(5): C1384-C1397, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690917

RESUMO

Metabolic dysfunction of the extracellular matrix (ECM) is one of the primary causes of intervertebral disc degeneration (IVDD). Previous studies have demonstrated that the transcription factor Brachyury (Bry) has the potential to promote the synthesis of collagen II and aggrecan, while the specific mechanism is still unknown. In this study, we used a lipopolysaccharide (LPS)-induced model of nucleus pulposus cell (NPC) degeneration and a rat acupuncture IVDD model to elucidate the precise mechanism through which Bry affects collagen II and aggrecan synthesis in vitro and in vivo. First, we confirmed Bry expression decreased in degenerated human nucleus pulposus (NP) cells (NPCs). Knockdown of Bry exacerbated the decrease in collagen II and aggrecan expression in the lipopolysaccharide (LPS)-induced NPCs degeneration in vitro model. Bioinformatic analysis indicated that Smad3 may participate in the regulatory pathway of ECM synthesis regulated by Bry. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays demonstrated that Bry enhances the transcription of Smad3 by interacting with a specific motif on the promoter region. In addition, Western blot and reverse transcription-qPCR assays demonstrated that Smad3 positively regulates the expression of aggrecan and collagen II in NPCs. The following rescue experiments revealed that Bry-mediated regulation of ECM synthesis is partially dependent on Smad3 phosphorylation. Finally, the findings from the in vivo rat acupuncture-induced IVDD model were consistent with those obtained from in vitro assays. In conclusion, this study reveals that Bry positively regulates the synthesis of collagen II and aggrecan in NP through transcriptional activation of Smad3.NEW & NOTEWORTHY Mechanically, in the nucleus, Bry enhances the transcription of Smad3, leading to increased expression of Smad3 protein levels; in the cytoplasm, elevated substrate levels further lead to an increase in the phosphorylation of Smad3, thereby regulating collagen II and aggrecan expression. Further in vivo experiments provide additional evidence that Bry can alleviate IVDD through this mechanism.


Assuntos
Agrecanas , Matriz Extracelular , Proteínas Fetais , Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos Sprague-Dawley , Proteína Smad3 , Proteínas com Domínio T , Proteína Smad3/metabolismo , Proteína Smad3/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Animais , Matriz Extracelular/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Humanos , Ratos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Agrecanas/metabolismo , Agrecanas/genética , Masculino , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Regulação da Expressão Gênica , Feminino , Adulto , Pessoa de Meia-Idade , Células Cultivadas , Transcrição Gênica
11.
Commun Biol ; 7(1): 539, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714886

RESUMO

Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples. We also found abnormal palmitic acid (PA) accumulation in IDD nucleus pulposus cells, and PA exposure resulted in lipid droplet accumulation and cell senescence in an endoplasmic reticulum stress-dependent manner. Complementary transcriptome and proteome profiles enabled us to identify solute carrier transporter (SLC) 43A3 involvement in the regulation of the intracellular PA level. SLC43A3 was expressed at low levels and negatively correlated with intracellular lipid content in IDD nucleus pulposus cells. Overexpression of SLC43A3 significantly alleviated PA-induced endoplasmic reticulum stress, lipid droplet accumulation and cell senescence by inhibiting PA uptake. This work provides novel integration analysis-based insight into the metabolic profile alterations in IDD and further reveals new therapeutic targets for IDD treatment.


Assuntos
Senescência Celular , Estresse do Retículo Endoplasmático , Degeneração do Disco Intervertebral , Gotículas Lipídicas , Núcleo Pulposo , Ácido Palmítico , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Núcleo Pulposo/citologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Senescência Celular/efeitos dos fármacos , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Humanos , Gotículas Lipídicas/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
12.
Arch Biochem Biophys ; 756: 109990, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636690

RESUMO

Nucleus pulposus (NP) cell apoptosis is a significant indication of accelerated intervertebral disc degeneration; however, the precise mechanism is unelucidated as of yet. Ephrin B2 (EFNB2), the only gene down-regulated in the three degraded intervertebral disc tissue microarray groups (GSE70362, GSE147383 and GSE56081), was screened for examination in this study. Subsequently, EFNB2 was verified to be down-regulated in degraded NP tissue samples. Interleukin-1 (IL-1ß) treatment of NP cells to simulate the IDD environment indicated that IL-1ß treatment decreased EFNB2 expression. In degenerative NP cells stimulated by IL-1ß, EFNB2 knockdown significantly increased the rate of apoptosis as well as the apoptosis-related molecules cleaved-caspase-3 and the Bax to Bcl-2 ratio. EFNB2 was found to promote AKT, PI3K, and mTOR phosphorylation; the PI3K/AKT signaling role was investigated using the PI3K inhibitor LY294002. EFNB2 overexpression significantly increased PI3K/AKT pathway activity in IL-1ß-stimulated NP cells than the normal control. Moreover, EFNB2 partially alleviated NP cell apoptosis induced by IL-1ß, reduced the cleaved-cas3 level, and decreased the Bax/Bcl-2 ratio after the addition of the inhibitor LY294002. Additionally, EFNB2 overexpression inhibited the ERK1/2 phosphorylation; the effects of EFNB2 overexpression on ERK1/2 phosphorylation, degenerative NP cell viability, and cell apoptosis were partially reversed by ERK signaling activator Ceramide C6. EFNB2 comprehensively inhibited the apoptosis of NP cells by activating the PI3K/AKT signaling and inhibiting the ERK signaling, obviating the exacerbation of IDD. EFNB2 could be a potential target to protect against degenerative disc changes.


Assuntos
Apoptose , Efrina-B2 , Degeneração do Disco Intervertebral , Núcleo Pulposo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Núcleo Pulposo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/genética , Efrina-B2/metabolismo , Efrina-B2/genética , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interleucina-1beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Adulto , Feminino , Serina-Treonina Quinases TOR/metabolismo , Células Cultivadas , Pessoa de Meia-Idade
13.
BMC Musculoskelet Disord ; 25(1): 321, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654287

RESUMO

BACKGROUND: Increasing studies have shown degeneration of nucleus pulposus cells (NPCs) as an critical part of the progression of intervertebral disc degeneration (IVDD). However, there are relatively few studies on single-cell transcriptome contrasts in human degenerated NPCs. Moreover, differences in Wnt/Ca2+ signaling in human degenerated nucleus pulposus cells have not been elucidated. The aim of this study is to investigate the differential expression of Wnt/Ca2+ signaling pathway between normal and degenerated nucleus pulposus cells in humans and try to investigate its mechanism. METHODS: We performed bioinformatics analysis using our previously published findings to construct single cell expression profiles of normal and degenerated nucleus pulposus. Then, in-depth differential analysis was used to characterize the expression of Wnt/Ca2+ signaling pathway between normal and degenerated nucleus pulposus cells in humans. RESULTS: The obtained cell data were clustered into five different chondrocytes clusters, which chondrocyte 4 and chondrocyte 5 mainly accounted for a high proportion in degenerated nucleus pulposus tissues, but rarely in normal nucleus pulposus tissues. Genes associated within the Wnt/Ca2+ signaling pathway, such as Wnt5B, FZD1, PLC (PLCB1), CaN (PPP3CA) and NAFATC1 are mainly present in chondrocyte 3, chondrocyte 4 and chondrocyte 5 from degenerated nucleus pulposus tissues. In addition, as a receptor that activates Wnt signaling pathway, LRP5 is mainly highly expressed in chondrocyte 5 of degenerated nucleus pulposus cells. Six genes, ANGPTL4, PTGES, IGFBP3, GDF15, TRIB3 and TNFRSF10B, which are associated with apoptosis and inflammatory responses, and are widespread in chondrocyte 4 and chondrocyte 5, may be closely related to degenerative of nucleus pulposus cells. CONCLUSIONS: Single-cell RNA sequencing revealed differential expression of Wnt/Ca2+ signaling in human normal and degenerated nucleus pulposus cells, and this differential expression may be closely related to the abundance of chondrocyte 4 and chondrocyte 5 in degenerated nucleus pulposus cells. In degenerated nucleus pulposus cells, LRP5 activate Wnt5B, which promotes nucleus pulposus cell apoptosis and inflammatory response by regulating the Wnt/Ca2+ signaling pathway, thereby promoting disc degeneration. ANGPTL4, IGFBP3, PTGES in chondrocyte 4 and TRIB3, GDF15, TNFRSF10B in chondrocyte 5 may play an important role in this process.


Assuntos
Apoptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Análise de Célula Única , Via de Sinalização Wnt , Humanos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Via de Sinalização Wnt/genética , RNA-Seq , Masculino , Pessoa de Meia-Idade , Feminino , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Adulto , Sinalização do Cálcio/genética , Condrócitos/metabolismo , Condrócitos/patologia , Transcriptoma , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Análise da Expressão Gênica de Célula Única
14.
Int Immunopharmacol ; 132: 111992, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38569428

RESUMO

Intervertebral disc degeneration (IDD) is one of the primary causes of low back pain (LBP), which seriously affects patients' quality of life. In recent years, interleukin (IL)-17 has been shown to be highly expressed in the intervertebral disc (IVD) tissues and serum of patients with IDD, and IL-17A has been shown to promote IDD through multiple pathways. We first searched databases such as PubMed, Cochrane, Embase, and Web of Science using the search terms "IL-17 or interleukin 17″ and "intervertebral discs". The search period ranged from the inception of the databases to December 2023. A total of 24 articles were selected after full-text screening. The main conclusion of the clinical studies was that IL-17A levels are significantly increased in the IVD tissues and serum of IDD patients. The results from the in vitro studies indicated that IL-17A can activate signaling pathways such as the NF-κB and MAPK pathways; promote inflammatory responses, extracellular matrix degradation, and angiogenesis; and inhibit autophagy in nucleus pulposus cells. The main finding of the in vivo experiments was that puncture of animal IVDs resulted in elevated levels of IL-17A within the IVD, thereby inducing IDD. Clinical studies, in vitro experiments, and in vivo experiments confirmed that IL-17A is closely related to IDD. Therefore, drugs that target IL-17A may be novel treatments for IDD, providing a new theoretical basis for IDD therapy.


Assuntos
Interleucina-17 , Degeneração do Disco Intervertebral , Degeneração do Disco Intervertebral/imunologia , Degeneração do Disco Intervertebral/metabolismo , Humanos , Interleucina-17/metabolismo , Animais , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Disco Intervertebral/imunologia , Transdução de Sinais , Núcleo Pulposo/metabolismo , Núcleo Pulposo/imunologia , Núcleo Pulposo/patologia , Dor Lombar/imunologia , Dor Lombar/metabolismo
15.
Int Immunopharmacol ; 133: 112101, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640717

RESUMO

Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1ß-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1ß. Furthermore, genkwanin alleviated Interleukin-1ß-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.


Assuntos
Apoptose , Senescência Celular , Flavonoides , Degeneração do Disco Intervertebral , Transdução de Sinais , Animais , Humanos , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Integrina alfa2/metabolismo , Integrina alfa2/genética , Interleucina-1beta/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Núcleo Pulposo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
16.
PeerJ ; 12: e17212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666076

RESUMO

Intervertebral disc degeneration (IVDD) is a common and frequent disease in orthopedics, which seriously affects the quality of life of patients. Endoplasmic reticulum stress (ERS)-regulated autophagy and apoptosis play an important role in nucleus pulposus (NP) cells in IVDD. Hypoxia and serum deprivation were used to induce NP cells. Cell counting kit-8 (CCK-8) assay was used to detect cell activity and immunofluorescence (IF) was applied for the appraisement of glucose regulated protein 78 (GRP78) and green fluorescent protein (GFP)-light chain 3 (LC3). Cell apoptosis was detected by flow cytometry and the expression of LC3II/I was detected by western blot. NP cells under hypoxia and serum deprivation were induced by lipopolysaccharide (LPS), and intervened by ERS inhibitor (4-phenylbutyric acid, 4-PBA) and activator (Thapsigargin, TP). Then, above functional experiments were conducted again and western blot was employed for the evaluation of autophagy-, apoptosis and ERS-related proteins. Finally, NP cells under hypoxia and serum deprivation were stimulated by LPS and intervened using apoptosis inhibitor z-Val-Ala-DL-Asp-fluoromethyl ketone (Z-VAD-FMK) and autophagy inhibitor 3-methyladenine (3-MA). CCK-8 assay, IF, flow cytometry and western blot were performed again. Besides, the levels of inflammatory cytokines were measured with enzyme-linked immunosorbent assay (ELISA) and the protein expressions of programmed death markers were estimated with western blot. It showed that serum deprivation induces autophagy and apoptosis. ERS was significantly activated by LPS in hypoxic and serum deprivation environment, and autophagy and apoptosis were significantly promoted. Overall, ERS affects the occurrence and development of IVDD by regulating autophagy, apoptosis and other programmed death.


Assuntos
Apoptose , Autofagia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Degeneração do Disco Intervertebral , Núcleo Pulposo , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Células Cultivadas
17.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 164-168, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678607

RESUMO

This study aimed to explore the effects of miR-129-5p on inflammation and nucleus pulposus (NP) cell apoptosis in rats with intervertebral disc degeneration (IVDD) through the c-Jun N-terminal kinase (JNK) signaling pathway. A total of 20 rats were randomly divided into control group (n=10) or IVDD group (n=10). The mRNA expressions of miR-129-5p and apoptosis index Fas in IVDD tissues were determined using RT-PCR. NP cell apoptosis rate was detected via TUNEL assay. NP cells were extracted from IVDD tissues for primary culture. Subsequently, the cells were transfected with miR-129-5p inhibitor or mimic to inhibit or overexpress miR-129-5p, respectively. Furthermore, the changes in the JNK pathway indexes and apoptosis indexes were detected using Western blotting. In IVDD group, the expression of miR-129-5p was significantly down-regulated, while the transcriptional level of Fas was up-regulated compared with those in control group. Pearson correlation analysis revealed a negative correlation between the expressions of miR-129-5p and Fas mRNA (r=-0.75, P<0.05). IVDD group exhibited significantly higher levels of serum TNF-α, IL-6 and IL-1 than control group. Subsequent TUNEL assay indicated that the apoptosis rate was evidently higher in IVDD group (60.6%) than control group (2.5%). The results of Western blotting showed that the protein expressions of JNK1, JNK2 and Fas remarkably rose in IVDD group compared with those in control group. However, they declined remarkably in miR-129-5p mimic group compared with those in control group. Furthermore, such trends were significantly reversed in miR-129-5p inhibitor group. MiR-129-5p was significantly down-regulated in IVDD, whose overexpression has anti-inflammatory and anti-apoptotic effects.


Assuntos
Apoptose , Inflamação , Degeneração do Disco Intervertebral , Sistema de Sinalização das MAP Quinases , MicroRNAs , Núcleo Pulposo , Ratos Sprague-Dawley , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Apoptose/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Inflamação/genética , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Ratos , Receptor fas/genética , Receptor fas/metabolismo
18.
Sci Rep ; 14(1): 9156, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644369

RESUMO

Intervertebral Disc (IVD) degeneration has been associated with a chronic inflammatory response, but knowledge on the contribution of distinct IVD cells, namely CD44, to the progression of IVD degeneration remains elusive. Here, bovine nucleus pulposus (NP) CD44 cells were sorted and compared by gene expression and proteomics with the negative counterpart. NP cells were then stimulated with IL-1b (10 ng/ml) and dynamics of CD44 gene and protein expression was analyzed upon pro-inflammatory treatment. The results emphasize that CD44 has a multidimensional functional role in IVD metabolism, ECM synthesis and production of neuropermissive factors. CD44 widespread expression in NP was partially associated with CD14 and CD45, resulting in the identification of distinct cell subsets. In conclusion, this study points out CD44 and CD44-based cell subsets as relevant targets in the modulation of the IVD pro-inflammatory/degenerative cascade.


Assuntos
Receptores de Hialuronatos , Inflamação , Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Bovinos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Inflamação/metabolismo , Inflamação/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Células Cultivadas , Interleucina-1beta/metabolismo , Proteômica/métodos
19.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 776-788, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38495003

RESUMO

Intervertebral disc degeneration (IDD) is the cause of low back pain (LBP), and recent research has suggested that inflammatory cytokines play a significant role in this process. Maslinic acid (MA), a natural compound found in olive plants ( Olea europaea), has anti-inflammatory properties, but its potential for treating IDD is unclear. The current study aims to investigate the effects of MA on TNFα-induced IDD in vitro and in other in vivo models. Our findings suggest that MA ameliorates the imbalance of the extracellular matrix (ECM) and mitigates senescence by upregulating aggrecan and collagen II levels as well as downregulating MMP and ADAMTS levels in nucleus pulposus cells (NPCs). It can also impede the progression of IDD in rats. We further find that MA significantly affects the PI3K/AKT and NF-κB pathways in TNFα-induced NPCs determined by RNA-seq and experimental verification, while the AKT agonist Sc-79 eliminates these signaling cascades. Furthermore, molecular docking simulation shows that MA directly binds to PI3K. Dysfunction of the PI3K/AKT pathway and ECM metabolism has also been confirmed in clinical specimens of degenerated nucleus pulposus. This study demonstrates that MA may hold promise as a therapeutic agent for alleviating ECM metabolism disorders and senescence to treat IDD.


Assuntos
Degeneração do Disco Intervertebral , NF-kappa B , Núcleo Pulposo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Triterpenos , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Masculino , Triterpenos/farmacologia , Ratos , Humanos , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Feminino , Células Cultivadas , Ácido Oleanólico/análogos & derivados
20.
J Cell Physiol ; 239(5): e31219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38345407

RESUMO

Mechanical environment worsening is an important predisposing factor that accelerates intervertebral disc degeneration (IDD), but its specific regulatory mechanisms remain unclear. In this study, we reveal the molecular mechanisms of WTAP/YTHDF2-mediated m6A modification in abnormal stress-induced intervertebral disc (IVD) matrix degradation. WTAP expression in human nucleus pulposus cells was elevated under tension. Similarly, high WTAP expression was detected in severe degenerated human and rat nucleus pulposus tissues. Functionally, WTAP was found to increase the TIMP3 transcript methylation level under tension, resulting in YTHDF2 recognition, binding, and induction of its degradation. Reduction in TIMP3 caused increases in active matrix metalloproteinases, ultimately inducing extracellular matrix degradation in nucleus pulposus cells. Macroscopically, this promotes IDD. Additionally, in vitro and in vivo inhibition of WTAP expression or TIMP3 overexpression significantly increased stress resistance in the nucleus pulposus, thereby alleviating IDD. Our results show that abnormal stress disrupts IVD matrix stability through WTAP/YTHDF2-dependent TIMP3 m6A modification.


Assuntos
Adenosina , Proteínas de Ciclo Celular , Degeneração do Disco Intervertebral , Núcleo Pulposo , Fatores de Processamento de RNA , Proteínas de Ligação a RNA , Estresse Mecânico , Inibidor Tecidual de Metaloproteinase-3 , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Matriz Extracelular/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Ratos Sprague-Dawley , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Adenosina/análogos & derivados , Fatores de Processamento de RNA/metabolismo , Proteínas de Ciclo Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...