Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 16204, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376756

RESUMO

Calcitonin gene related peptide (CGRP) expressing neurons in the parabrachial nucleus have been shown to encode danger. Through projections to the amygdala and other forebrain structures, they regulate food intake and trigger adaptive behaviors in response to threats like inflammation, intoxication, tumors and pain. Despite the fact that this danger-encoding neuronal population has been defined based on its CGRP expression, it is not clear if CGRP is critical for its function. It is also not clear if CGRP in other neuronal structures is involved in danger-encoding. To examine the role of CGRP in danger-related motivational responses, we used male and female mice lacking αCGRP, which is the main form of CGRP in the brain. These mice had no, or only very weak, CGRP expression. Despite this, they did not behave differently compared to wildtype mice when they were tested for a battery of danger-related responses known to be mediated by CGRP neurons in the parabrachial nucleus. Mice lacking αCGRP and wildtype mice showed similar inflammation-induced anorexia, conditioned taste aversion, aversion to thermal pain and pain-induced escape behavior, although it should be pointed out that the study was not powered to detect any possible differences that were minor or sex-specific. Collectively, our findings suggest that αCGRP is not necessary for many threat-related responses, including some that are known to be mediated by CGRP neurons in the parabrachial nucleus.


Assuntos
Anorexia/fisiopatologia , Comportamento Animal , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Condicionamento Clássico/fisiologia , Medo/psicologia , Neurônios/patologia , Dor/patologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Transtorno Alimentar Restritivo Evitativo , Ingestão de Alimentos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Motivação , Neurônios/metabolismo , Nociceptividade , Dor/metabolismo , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/patologia
2.
J Neurosci ; 37(36): 8678-8687, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28821663

RESUMO

To maintain energy homeostasis, orexigenic (appetite-inducing) and anorexigenic (appetite suppressing) brain systems functionally interact to regulate food intake. Within the hypothalamus, neurons that express agouti-related protein (AgRP) sense orexigenic factors and orchestrate an increase in food-seeking behavior. In contrast, calcitonin gene-related peptide (CGRP)-expressing neurons in the parabrachial nucleus (PBN) suppress feeding. PBN CGRP neurons become active in response to anorexigenic hormones released following a meal, including amylin, secreted by the pancreas, and cholecystokinin (CCK), secreted by the small intestine. Additionally, exogenous compounds, such as lithium chloride (LiCl), a salt that creates gastric discomfort, and lipopolysaccharide (LPS), a bacterial cell wall component that induces inflammation, exert appetite-suppressing effects and activate PBN CGRP neurons. The effects of increasing the homeostatic drive to eat on feeding behavior during appetite suppressing conditions are unknown. Here, we show in mice that food deprivation or optogenetic activation of AgRP neurons induces feeding to overcome the appetite suppressing effects of amylin, CCK, and LiCl, but not LPS. AgRP neuron photostimulation can also increase feeding during chemogenetic-mediated stimulation of PBN CGRP neurons. AgRP neuron stimulation reduces Fos expression in PBN CGRP neurons across all conditions. Finally, stimulation of projections from AgRP neurons to the PBN increases feeding following administration of amylin, CCK, and LiCl, but not LPS. These results demonstrate that AgRP neurons are sufficient to increase feeding during noninflammatory-based appetite suppression and to decrease activity in anorexigenic PBN CGRP neurons, thereby increasing food intake during homeostatic need.SIGNIFICANCE STATEMENT The motivation to eat depends on the relative balance of activity in distinct brain regions that induce or suppress appetite. An abnormal amount of activity in neurons that induce appetite can cause obesity, whereas an abnormal amount of activity in neurons that suppress appetite can cause malnutrition and a severe reduction in body weight. The purpose of this study was to determine whether a population of neurons known to induce appetite ("AgRP neurons") could induce food intake to overcome appetite-suppression following administration of various appetite-suppressing compounds. We found that stimulating AgRP neurons could overcome various forms of appetite suppression and decrease neural activity in a separate population of appetite-suppressing neurons, providing new insights into how the brain regulates food intake.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Anorexia/fisiopatologia , Regulação do Apetite , Ingestão de Alimentos , Inibição Neural , Neurônios/metabolismo , Núcleos Parabraquiais/fisiopatologia , Proteína Relacionada com Agouti/genética , Animais , Anorexia/patologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Núcleos Parabraquiais/patologia
3.
eNeuro ; 4(3)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28660248

RESUMO

The parabrachial complex (PB) is a functionally and anatomically complex structure involved in a range of homeostatic and sensory functions, including nociceptive transmission. There is also evidence that PB can engage descending pain-modulating systems, the best characterized of which is the rostral ventromedial medulla (RVM). Two distinct classes of RVM neurons, "ON-cells" and "OFF-cells," exert net pronociceptive and anti-nociceptive effects, respectively. PB was recently shown to be a relay of nociceptive information to RVM ON- and OFF-cells. The present experiments used optogenetic methods in a lightly anesthetized rat and an adult RVM slice to determine whether there are direct, functionally relevant inputs to RVM pain-modulating neurons from PB. Whole-cell patch-clamp recordings demonstrated that PB conveys direct glutamatergic and GABAergic inputs to RVM neurons. Consistent with this, in vivo recording showed that nociceptive-evoked responses of ON- and OFF-cells were suppressed by optogenetic inactivation of archaerhodopsin (ArchT)-expressing PB terminals in RVM, demonstrating that a net inhibitory input to OFF-cells and net excitatory input to ON-cells are engaged by acute noxious stimulation. Further, the majority of ON- and OFF-cells responded to optogenetic activation of channelrhodopsin (ChR2)-expressing terminals in the RVM, confirming a direct PB influence on RVM pain-modulating neurons. These data show that a direct connection from the PB to the RVM conveys nociceptive information to the pain-modulating neurons of RVM under basal conditions. They also reveal additional inputs from PB with the capacity to activate both classes of RVM pain-modulating neurons and the potential to be recruited under different physiological and pathophysiological conditions.


Assuntos
Bulbo/fisiopatologia , Neurônios/fisiologia , Dor Nociceptiva/fisiopatologia , Percepção da Dor/fisiologia , Núcleos Parabraquiais/fisiopatologia , Potenciais de Ação , Animais , Ácido Glutâmico/metabolismo , Masculino , Bulbo/patologia , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Neurônios/patologia , Dor Nociceptiva/patologia , Optogenética , Núcleos Parabraquiais/patologia , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/metabolismo
4.
Exp Neurol ; 293: 124-136, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28366470

RESUMO

Second-order neurons in trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C1) are critical for craniofacial pain processing and project rostrally to terminate in: ventral posteromedial thalamic nucleus (VPM), medial thalamic nuclei (MTN) and parabrachial nuclei (PBN). The contribution of each region to trigeminal nociception was assessed by the number of phosphorylated extracellular signal-regulated kinase-immunoreactive (pERK-IR) neurons co-labeled with fluorogold (FG). The phenotype of pERK-IR neurons was further defined by the expression of neurokinin 1 receptor (NK1). The retrograde tracer FG was injected into VPM, MTN or PBN of the right hemisphere and after seven days, capsaicin was injected into the left upper lip in male rats. Nearly all pERK-IR neurons were found in superficial laminae of Vc-C1 ipsilateral to the capsaicin injection. Nearly all VPM and MTN FG-labeled neurons in Vc-C1 were found contralateral to the injection site, whereas FG-labeled neurons were found bilaterally after PBN injection. The percentage of FG-pERK-NK1-IR neurons was significantly greater (>10%) for PBN projection neurons than for VPM and MTN projection neurons (<3%). pERK-NK1-IR VPM projection neurons were found mainly in the middle-Vc, while pERK-NK1-immunoreactive MTN or PBN projection neurons were found in the middle-Vc and caudal Vc-C1. These results suggest that a significant percentage of capsaicin-responsive neurons in superficial laminae of Vc-C1 project directly to PBN, while neurons that project to VPM and MTN are subject to greater modulation by pERK-IR local interneurons. Furthermore, the rostrocaudal distribution differences of FG-pERK-NK1-IR neurons in Vc-C1 may reflect functional differences between these projection areas regarding craniofacial pain.


Assuntos
Dor Facial/patologia , Nociceptores/patologia , Núcleos do Trigêmeo/patologia , Animais , Capsaicina/toxicidade , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Dor Facial/induzido quimicamente , Masculino , Núcleo Mediodorsal do Tálamo/patologia , Vias Neurais/patologia , Vias Neurais/fisiologia , Nociceptores/metabolismo , Núcleos Parabraquiais/patologia , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1/metabolismo , Fármacos do Sistema Sensorial/toxicidade , Estatísticas não Paramétricas , Estilbamidinas/metabolismo , Núcleos Ventrais do Tálamo/patologia
5.
Brain Res ; 1659: 1-7, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28109977

RESUMO

Zinc deficiency causes various symptoms including taste disorders. In the present study, changes in expression of c-Fos immunoreactivity in neurons of the parabrachial nucleus (PBN), one of the relay nuclei for transmission of gustatory information, after bitter stimulation to the dorsal surface of the tongue were examined in zinc-deficient rats. Experimental zinc-deficient animals were created by feeding a low-zinc diet for 4weeks, and showed the following symptoms of zinc deficiency: low body weight, low serum zinc content and behavioral changes to avoid bitter stimulation. In normal control animals, intraoral application of 1mM quinine caused increased numbers of c-Fos-immunoreactive (c-Fos-IR) neurons in the external lateral subnucleus and external medial subnucleus of the PBN (elPBN and emPBN, respectively) compared with application of distilled water. However, in the zinc-deficient animals, the numbers of c-Fos-IR neurons in the elPBN and emPBN did not differ significantly between application of quinine and distilled water. After feeding the zinc-deficient animals a normal diet for 4weeks, the symptoms of zinc deficiency recovered, and the expression of c-Fos-IR neurons following intraoral bitter stimulation became identical to that in the normal control animals. The present results indicate that dietary zinc deficiency causes alterations to neuronal activities in the gustatory neural circuit, and that these neuronal alterations can be reversed by changing to a normal diet.


Assuntos
Núcleos Parabraquiais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Distúrbios do Paladar/etiologia , Distúrbios do Paladar/metabolismo , Percepção Gustatória/fisiologia , Zinco/deficiência , Ração Animal , Animais , Dieta , Modelos Animais de Doenças , Preferências Alimentares/fisiologia , Imuno-Histoquímica , Masculino , Neurônios/metabolismo , Neurônios/patologia , Núcleos Parabraquiais/patologia , Estimulação Física , Quinina/administração & dosagem , Ratos Sprague-Dawley , Distúrbios do Paladar/patologia , Zinco/sangue
6.
J Neurophysiol ; 115(6): 2721-39, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26888105

RESUMO

A large majority of neurons in the superficial layer of the dorsal horn projects to the lateral parabrachial nucleus (LPB). LPB neurons then project to the capsular part of the central amygdala (CeA; CeC), a key structure underlying the nociception-emotion link. LPB-CeC synaptic transmission is enhanced in various pain models by using electrical stimulation of putative fibers of LPB origin in brain slices. However, this approach has limitations for examining direct monosynaptic connections devoid of directly stimulating fibers from other structures and local GABAergic neurons. To overcome these limitations, we infected the LPB of rats with an adeno-associated virus vector expressing channelrhodopsin-2 and prepared coronal and horizontal brain slices containing the amygdala. We found that blue light stimulation resulted in monosynaptic excitatory postsynaptic currents (EPSCs), with very small latency fluctuations, followed by a large polysynaptic inhibitory postsynaptic current in CeC neurons, regardless of the firing pattern type. Intraplantar formalin injection at 24 h before slice preparation significantly increased EPSC amplitude in late firing-type CeC neurons. These results indicate that direct monosynaptic glutamatergic inputs from the LPB not only excite CeC neurons but also regulate CeA network signaling through robust feed-forward inhibition, which is under plastic modulation in response to persistent inflammatory pain.


Assuntos
Núcleo Central da Amígdala/fisiopatologia , Neurônios/fisiologia , Dor Nociceptiva/fisiopatologia , Núcleos Parabraquiais/fisiopatologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Núcleo Central da Amígdala/patologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Plasticidade Neuronal/fisiologia , Neurônios/patologia , Dor Nociceptiva/patologia , Núcleos Parabraquiais/patologia , Ratos Wistar , Sinapses/patologia , Técnicas de Cultura de Tecidos
7.
Neuropsychopharmacology ; 40(8): 2001-14, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25703200

RESUMO

Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 µg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback.


Assuntos
Lesões Encefálicas/patologia , Transtornos da Alimentação e da Ingestão de Alimentos/induzido quimicamente , Hipoglicemiantes/toxicidade , Núcleos Parabraquiais/patologia , Peptídeos/toxicidade , Peçonhas/toxicidade , Análise de Variância , Animais , Antimaníacos/farmacologia , Comportamento Apetitivo/efeitos dos fármacos , Lesões Encefálicas/induzido quimicamente , Ingestão de Alimentos/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Ácido Ibotênico/toxicidade , Cloreto de Lítio/administração & dosagem , Masculino , Núcleos Parabraquiais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sacarose/administração & dosagem , Paladar/efeitos dos fármacos , Privação de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...