Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurosci ; 12: 22, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21366909

RESUMO

BACKGROUND: The sphingolipids galactosylceramide (GalCer) and sulfatide are major myelin components and are thought to play important roles in myelin function. The importance of GalCer and sulfatide has been validated using UDP-galactose:ceramide galactosyltransferase-deficient (Cgt-/-) mice, which are impaired in myelin maintenance. These mice, however, are still able to form compact myelin. Loss of GalCer and sulfatide in these mice is accompanied by up-regulation of 2-hydroxylated fatty acid containing (HFA)-glucosylceramide in myelin. This was interpreted as a partial compensation of the loss of HFA-GalCer, which may prevent a more severe myelin phenotype. In order to test this hypothesis, we have generated Cgt-/- mice with an additional deletion of the fatty acid 2-hydroxylase (Fa2h) gene. RESULTS: Fa2h-/-/Cgt-/- double-deficient mice lack sulfatide, GalCer, and in addition HFA-GlcCer and sphingomyelin. Interestingly, compared to Cgt-/- mice the amount of GlcCer in CNS myelin was strongly reduced in Fa2h-/-/Cgt-/- mice by more than 80%. This was accompanied by a significant increase in sphingomyelin, which was the predominant sphingolipid in Fa2h-/-/Cgt-/- mice. Despite these significant changes in myelin sphingolipids, compact myelin was formed in Fa2h-/-/Cgt-/- mice, and g-ratios of myelinated axons in the spinal cord of 4-week-old Fa2h-/-/Cgt-/- mice did not differ significantly from that of Cgt-/- mice, and there was no obvious phenotypic difference between Fa2h-/-/Cgt-/- and Cgt-/- mice CONCLUSIONS: These data show that compact myelin can be formed with non-hydroxylated sphingomyelin as the predominant sphingolipid and suggest that the presence of HFA-GlcCer and HFA-sphingomyelin in Cgt-/- mice does not functionally compensate the loss of HFA-GalCer.


Assuntos
Amidoidrolases/deficiência , Bainha de Mielina/metabolismo , N-Acilesfingosina Galactosiltransferase/deficiência , Sistema Nervoso/metabolismo , Regulação para Cima/genética , Animais , Ceramidas/metabolismo , Cromatografia em Camada Fina/métodos , Galactosilceramidas/metabolismo , Gangliosídeos/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Knockout , Bainha de Mielina/ultraestrutura , Sistema Nervoso/anatomia & histologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
J Neurochem ; 112(3): 599-610, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19878436

RESUMO

Myelin is highly enriched in galactocerebroside (GalCer) and its sulfated form sulfatide. Mice, unable to synthesize GalCer and sulfatide (CGT(null)) or sulfatide alone (CST(null)), exhibit disorganized paranodal structures and progressive dysmyelination. To obtain insights into the molecular mechanisms underlying these defects, we examined myelin composition of these mutants by two-dimensional differential fluorescence intensity gel electrophoresis proteomic approach and immunoblotting. We identified several proteins whose expressions were significantly altered in these mutants. These proteins are known to regulate cytoskeletal dynamics, energy metabolism, vesicular trafficking or adhesion, suggesting a disruption in these physiological processes in the absence of myelin galactolipids. Further analysis of one of these proteins, nucleotide diphosphate kinase (NDK)/Nm23, showed that it was reduced in myelin of CGT(null) and increased in CST(null), but not in whole brain homogenate. Immunostaining showed an increase in its expression in the cell bodies of CGT(null)- and a decrease in CST(null)-oligodenrocytes, together leading to the hypothesis that transport of NDK/Nm23 from oligodenrocyte cell bodies into myelin may be differentially dysregulated in the absence of these galactolipids. This study provides new insights into the changes that occur in the composition/distribution of myelin proteins in mice lacking either unsulfated and/or sulfated galactolipids and reinforces the role of these lipids in intracellular trafficking.


Assuntos
Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , N-Acilesfingosina Galactosiltransferase/deficiência , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Sulfotransferases/deficiência , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Eletroforese em Gel Bidimensional/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Proteolipídica de Mielina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodendroglia/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Transporte Proteico/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
3.
J Neurosci ; 27(34): 9009-21, 2007 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-17715338

RESUMO

Metachromatic leukodystrophy is a lysosomal storage disorder caused by deficiency in the sulfolipid degrading enzyme arylsulfatase A (ASA). In the absence of a functional ASA gene, 3-O-sulfogalactosylceramide (sulfatide; SGalCer) and other sulfolipids accumulate. The storage is associated with progressive demyelination and various finally lethal neurological symptoms. Lipid storage, however, is not restricted to myelin-producing cells but also occurs in neurons. It is unclear whether neuronal storage contributes to symptoms of the patients. Therefore, we have generated transgenic ASA-deficient [ASA(-/-)] mice overexpressing the sulfatide synthesizing enzymes UDP-galactose:ceramide galactosyltransferase (CGT) and cerebroside sulfotransferase (CST) in neurons to provoke neuronal lipid storage. CGT-transgenic ASA(-/-) [CGT/ASA(-/-)] mice showed an accumulation of C18:0 fatty acid-containing SGalCer in the brain. Histochemically, an increase in sulfolipid storage could be detected in central and peripheral neurons of both CGT/ASA(-/-) and CST/ASA(-/-) mice compared with ASA(-/-) mice. CGT/ASA(-/-) mice developed severe neuromotor coordination deficits and weakness of hindlimbs and forelimbs. Light and electron microscopic analyses demonstrated nerve fiber degeneration in the spinal cord of CGT/ASA(-/-) mice. CGT/ASA(-/-) and, to a lesser extent, young ASA(-/-) mice exhibited cortical hyperexcitability, with recurrent spontaneous cortical EEG discharges lasting 5-15 s. These observations suggest that SGalCer accumulation in neurons contributes to disease phenotype.


Assuntos
Córtex Cerebral/fisiopatologia , Cerebrosídeo Sulfatase/metabolismo , Leucodistrofia Metacromática , Degeneração Neural/etiologia , Neurônios/enzimologia , Sulfoglicoesfingolipídeos/metabolismo , Análise de Variância , Animais , Comportamento Animal , Córtex Cerebral/patologia , Cerebrosídeo Sulfatase/deficiência , Modelos Animais de Doenças , Eletroencefalografia/métodos , Hibridização In Situ/métodos , Leucodistrofia Metacromática/complicações , Leucodistrofia Metacromática/metabolismo , Leucodistrofia Metacromática/patologia , Lipídeos/análise , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Destreza Motora/fisiologia , N-Acilesfingosina Galactosiltransferase/deficiência , Degeneração Neural/genética , Neurônios/ultraestrutura , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Medula Espinal/patologia , Sulfotransferases/genética
4.
Med Hypotheses ; 65(6): 1051-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16125333

RESUMO

Classic galactosemia is an autosomal recessive disorder that is caused by activity deficiency of the UDP-galactose uridyl transferase (GALT). The clinical spectrum of classic galactosemia differs according to the type and number of mutations in the GALT gene. Short-term clinical symptoms such as jaundice, hepatomegaly, splenomegaly and E. coli sepsis are typically associated with classic galactosemia. These symptoms are often severe but quickly ameliorate with dietary restriction of galactose. However, long-term symptoms such as mental retardation and primary ovarian failure do not resolve irrespective of dietary intervention or the period of initial dietary intervention. There seem to be an association between deficient galactosylation of cerebrosides and classic galactosemia. Galactocerebrosides and glucocerebrosides are the primary products of the enzyme UDP-galactose:cerebroside galactosyl transferase (CGT). There has been an observation of deficient galactosylation coupled with over glucosylation in the brain tissue specimens sampled from deceased classic galactosemia patients. The plausible mechanism with which the association between GALT and CGT had not been explained before. Yet, UDP-galactose serves as the product of GALT as well as a substrate for CGT. In classic galactosemia, there is a consistent deficiency in cerebroside galactosylation. We postulate that the molecular link between defective GALT enzyme, which result in classic galactosemia; and the cerebroside galactosyl transferase, which is responsible for galactosylation of cerebrosides is dependent on the cellular concentrations of UDP-galactose. We further hypothesize that a threshold concentration of UDP-galactose exist below which the integrity of cerebroside galactosylation suffers.


Assuntos
Galactosemias/enzimologia , Galactosemias/epidemiologia , Modelos Biológicos , N-Acilesfingosina Galactosiltransferase/deficiência , Medição de Risco/métodos , UDPglucose-Hexose-1-Fosfato Uridiltransferase/deficiência , Humanos , N-Acilesfingosina Galactosiltransferase/genética , Prognóstico , Fatores de Risco , Estatística como Assunto , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...