Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 1179, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446773

RESUMO

Inflammatory processes in brain tissue have been described in human epilepsy of various etiologies and in experimental models of seizures. High mobility group box-1 (HMGB1) is now recognized as representative of damage-associated molecular patterns (DAMPs). In the present study, we focused on whether anti-HMGB1 antibody treatment could relieve status epilepticus- triggered BBB breakdown and inflammation response in addition to the seizure behavior itself. Pilocarpine and methyl-scopolamine were used to establish the acute seizure model. Anti-HMGB1 mAb showed inhibitory effects on leakage of the BBB, and on the HMGB1 translocation induced by pilocarpine. The expression of inflammation-related factors, such as MCP-1, CXCL-1, TLR-4, and IL-6 in hippocampus and cerebral cortex were down-regulated by anti-HMGB1 mAb associated with the number of activated astrocytes, microglial cells as well as the expression of IL-1ß. Both hematoxylin & eosin and TUNEL staining showed that the apoptotic cells could be reduced after anti-HMGB1 mAb treatment. The onset and latency of Racine stage five were significantly prolonged in the anti-HMGB1 mAb group. These results suggested that anti-HMGB1 mAb prevented the BBB permeability, reduced HMGB1 translocation while inhibiting the expression of inflammation-related factors, protected against neural cell apoptosis and prolonged Racine stage 5 seizure onset and latency.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Proteína HMGB1/antagonistas & inibidores , Fatores Imunológicos/administração & dosagem , Estado Epiléptico/tratamento farmacológico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Córtex Cerebral/patologia , Feminino , Hipocampo/patologia , Camundongos Endogâmicos C57BL , N-Metilescopolamina/toxicidade , Pilocarpina/toxicidade , Estado Epiléptico/induzido quimicamente , Resultado do Tratamento
2.
Exp Neurol ; 293: 190-198, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28427858

RESUMO

Adult neurogenesis is significantly increased in the hippocampus of rodent models of temporal lobe epilepsy (TLE). These adult-generated neurons have recently been shown to play a contributing role in the development of spontaneous recurrent seizures (SRS). In order to eventually target pro-epileptic adult neurogenesis in the clinical setting, it will be important to identify molecular players involved in the control of aberrant neurogenesis after seizures. Here, we focused on NeuroD1 (ND1), a member of the bHLH family of transcription factors previously shown to play an essential role in the differentiation and maturation of adult-generated neurons in the hippocampus. Wild-type mice treated with pilocarpine to induce status epilepticus (SE) showed a significant up-regulation of NeuroD1+ immature neuroblasts located in both the granule cell layer (GCL), and ectopically localized to the hilar region of the hippocampus. As expected, conditional knockout (cKO) of NeuroD1 in Nestin-expressing stem/progenitors and their progeny led to a reduction in the number of NeuroD1+ adult-generated neurons after pilocarpine treatment compared to WT littermates. Surprisingly, there was no change in SRS in NeuroD1 cKO mice, suggesting that NeuroD1 cKO fails to reduce aberrant neurogenesis below the threshold needed to impact SRS. Consistent with this conclusion, the total number of adult-generated neurons in the pilocarpine model, especially the total number of Prox1+ hilar ectopic granule cells were unchanged after NeuroD1 cKO, suggesting strategies to reduce SRS will need to achieve a greater removal of aberrant adult-generated neurons.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Epilepsia/genética , Epilepsia/patologia , Hipocampo/fisiopatologia , Neurogênese/fisiologia , Regulação para Cima/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Epilepsia/induzido quimicamente , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Agonistas Muscarínicos/toxicidade , N-Metilescopolamina/toxicidade , Nestina/genética , Nestina/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurônios/metabolismo , Neurônios/patologia , Neuropeptídeos/metabolismo , Pilocarpina/toxicidade , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Epilepsia ; 57(9): 1406-15, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27500978

RESUMO

OBJECTIVE: Pharmacoresistance remains an unsolved therapeutic challenge in status epilepticus (SE) and in cholinergic SE induced by nerve agent intoxication. SE triggers a rapid internalization of synaptic γ-aminobutyric acid A (GABAA ) receptors and externalization of N-methyl-d-aspartate (NMDA) receptors that may explain the loss of potency of standard antiepileptic drugs (AEDs). We hypothesized that a drug combination aimed at correcting the consequences of receptor trafficking would reduce SE severity and its long-term consequences. METHODS: A severe model of SE was induced in adult Sprague-Dawley rats with a high dose of lithium and pilocarpine. The GABAA receptor agonist midazolam, the NMDA receptor antagonist ketamine, and/or the AED valproate were injected 40 min after SE onset in combination or as monotherapy. Measures of SE severity were the primary outcome. Secondary outcomes were acute neuronal injury, spontaneous recurrent seizures (SRS), and Morris water maze (MWM) deficits. RESULTS: Midazolam-ketamine dual therapy was more efficient than double-dose midazolam or ketamine monotherapy or than valproate-midazolam or valproate-ketamine dual therapy in reducing several parameters of SE severity, suggesting a synergistic mechanism. In addition, midazolam-ketamine dual therapy reduced SE-induced acute neuronal injury, epileptogenesis, and MWM deficits. SIGNIFICANCE: This study showed that a treatment aimed at correcting maladaptive GABAA receptor and NMDA receptor trafficking can stop SE and reduce its long-term consequences. Early midazolam-ketamine dual therapy may be superior to monotherapy in the treatment of benzodiazepine-refractory SE.


Assuntos
Anticonvulsivantes/uso terapêutico , Colinérgicos/toxicidade , Ketamina/uso terapêutico , Deficiências da Aprendizagem/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos , Midazolam/uso terapêutico , Estado Epiléptico , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Deficiências da Aprendizagem/etiologia , Cloreto de Lítio/toxicidade , Masculino , N-Metilescopolamina/toxicidade , Pilocarpina/toxicidade , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Ácido Valproico/uso terapêutico
4.
Behav Brain Res ; 265: 53-60, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24512769

RESUMO

Recent evidence supports a role for the substance P (SP) in the control of anxiety and epilepsy disorders. Aversive stimuli alter SP levels and SP immunoreactivity in limbic regions, suggesting that changes in SP-NK1 receptor signaling may modulate the neuronal excitability involved in seizures and anxiogenesis. The involvement of NK1 receptors of the dorsal hippocampus and lateral septum in the anxiogenic-like effects induced by a single injection of pilocarpine (PILO) was examined in non-convulsive rats evaluated in the elevated plus-maze (EPM). Male Wistar rats were systemically injected with methyl-scopolamine (1mg/kg) followed 30 min later by saline or PILO (350 mg/kg) and only rats that did not present status epilepticus were used. One month later, vehicle or FK888 (100 pmol) - an NK1 receptor antagonist - were infused in the dorsal hippocampus or the lateral septum of the rats and then behaviorally evaluated in the EPM. Previous treatment with PILO decreased the time spent in and the frequency of entries in the open arms of the EPM, besides altering risk-assessment behaviors such as the number of unprotected head-dipping, protected stretch-attend postures and the frequency of open-arms end activity, showing thus a long-lasting anxiogenic-like profile. FK888 did not show any effect per se but inhibited the anxiogenic responses induced by PILO when injected into the dorsal hippocampus, but not into the lateral septum. Our data suggest that SP-NK1 receptor signaling of the dorsal hippocampus is involved in the anxiogenic-like profile induced by PILO in rats evaluated in the EPM test.


Assuntos
Anticonvulsivantes/uso terapêutico , Dipeptídeos/uso terapêutico , Hipocampo/efeitos dos fármacos , Indóis/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Hipocampo/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Agonistas Muscarínicos/toxicidade , N-Metilescopolamina/toxicidade , Parassimpatolíticos/toxicidade , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente
5.
J Neurosci ; 32(38): 13264-72, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22993442

RESUMO

High-frequency oscillations (HFOs; 80-500 Hz) are thought to mirror the pathophysiological changes occurring in epileptic brains. However, the distribution of HFOs during seizures remains undefined. Here, we recorded from the hippocampal CA3 subfield, subiculum, entorhinal cortex, and dentate gyrus to quantify the occurrence of ripples (80-200 Hz) and fast ripples (250-500 Hz) during low-voltage fast-onset (LVF) and hypersynchronous-onset (HYP) seizures in the rat pilocarpine model of temporal lobe epilepsy. We discovered in LVF seizures that (1) progression from preictal to ictal activity was characterized in seizure-onset zones by an increase of ripple rates that were higher when compared with fast ripple rates and (2) ripple rates during the ictal period were higher compared with fast ripple rates in seizure-onset zones and later in regions of secondary spread. In contrast, we found in HYP seizures that (1) fast ripple rates increased during the preictal period and were higher compared with ripple rates in both seizure-onset zones and in regions of secondary spread and (2) they were still higher compared with ripple rates in both seizure-onset zones and regions of secondary spread during the ictal period. Our findings demonstrate that ripples and fast ripples show distinct time- and region-specific patterns during LVF and HYP seizures, thus suggesting that they play specific roles in ictogenesis.


Assuntos
Ondas Encefálicas/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Convulsões/classificação , Convulsões/fisiopatologia , Animais , Anticonvulsivantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Ondas Encefálicas/efeitos dos fármacos , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/patologia , Masculino , N-Metilescopolamina/toxicidade , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...