Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hypertens ; 42(6): 984-999, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690903

RESUMO

Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.


Assuntos
Hipertensão , Músculo Liso Vascular , NADPH Oxidase 1 , Isomerases de Dissulfetos de Proteínas , Ratos Endogâmicos SHR , Regulação para Cima , Animais , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/genética , Hipertensão/fisiopatologia , Hipertensão/genética , Hipertensão/metabolismo , Ratos , Músculo Liso Vascular/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ratos Wistar , Transcrição Gênica
2.
Biomolecules ; 11(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34439810

RESUMO

Mitochondria are essential organelles in physiology and kidney diseases, because they produce cellular energy required to perform their function. During mitochondrial metabolism, reactive oxygen species (ROS) are produced. ROS function as secondary messengers, inducing redox-sensitive post-translational modifications (PTM) in proteins and activating or deactivating different cell signaling pathways. However, in kidney diseases, ROS overproduction causes oxidative stress (OS), inducing mitochondrial dysfunction and altering its metabolism and dynamics. The latter processes are closely related to changes in the cell redox-sensitive signaling pathways, causing inflammation and apoptosis cell death. Although mitochondrial metabolism, ROS production, and OS have been studied in kidney diseases, the role of redox signaling pathways in mitochondria has not been addressed. This review focuses on altering the metabolism and dynamics of mitochondria through the dysregulation of redox-sensitive signaling pathways in kidney diseases.


Assuntos
Injúria Renal Aguda/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal Crônica/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Apoptose/genética , Ácidos Graxos/metabolismo , Humanos , Rim/metabolismo , Rim/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial , Mitofagia/genética , NADPH Oxidase 1/genética , NADPH Oxidase 1/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação Oxidativa , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
3.
Cell Death Dis ; 11(8): 633, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32801314

RESUMO

Oxidative stress is implicated in retinal cell injury associated with glaucoma and other retinal diseases. However, the mechanism by which oxidative stress leads to retinal damage is not completely understood. Transient receptor potential ankyrin 1 (TRPA1) is a redox-sensitive channel that, by amplifying the oxidative stress signal, promotes inflammation and tissue injury. Here, we investigated the role of TRPA1 in retinal damage evoked by ischemia (1 hour) and reperfusion (I/R) in mice. In wild-type mice, retinal cell numbers and thickness were reduced at both day-2 and day-7 after I/R. By contrast, mice with genetic deletion of TRPA1 were protected from the damage seen in their wild-type littermates. Daily instillation of eye drops containing two different TRPA1 antagonists, an oxidative stress scavenger, or a NADPH oxidase-1 inhibitor also protected the retinas of C57BL/6J mice exposed to I/R. Mice with genetic deletion of the proinflammatory TRP channels, vanilloid 1 (TRPV1) or vanilloid 4 (TRPV4), were not protected from I/R damage. Surprisingly, genetic deletion or pharmacological blockade of TRPA1 also attenuated the increase in the number of infiltrating macrophages and in the levels of the oxidative stress biomarker, 4-hydroxynonenal, and of the apoptosis biomarker, active caspase-3, evoked by I/R. These findings suggest that TRPA1 mediates the oxidative stress burden and inflammation that result in murine retinal cell death. We also found that TRPA1 (both mRNA and protein) is expressed by human retinal cells. Thus, it is possible that inhibition of a TRPA1-dependent pathway could also attenuate glaucoma-related retinal damage.


Assuntos
Traumatismo por Reperfusão/metabolismo , Retina/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Morte Celular , Inflamação , Isquemia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 1/metabolismo , Estresse Oxidativo/fisiologia , Reperfusão , Traumatismo por Reperfusão/fisiopatologia , Retina/fisiologia , Doenças Retinianas , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/genética
4.
Arch Biochem Biophys ; 679: 108220, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812669

RESUMO

Quiescent and contractile VSMC can switch to proliferative and migratory phenotype in response to growth factors and cytokines, an effect underscored by Nox family NADPH oxidases, particularly Nox1. We previously showed that quiescin/sulfhydryl oxidase 1 (QSOX1) has a role in neointima formation in balloon-injured rat carotid. Here, we investigated the intracellular redox mechanisms underlying these effects in primary VSMC. Our results show that exogenous incubation with wild type QSOX1b (wt QSOX), or with secreted QSOX1, but not with the inactive C452S QSOX 1b (C452S QSOX) or secreted inactive C455S QSOX1, induces VSMC migration and chemotaxis. PEG-catalase (PEG-CAT) prevented, while PEG-superoxide dismutase (PEG-SOD) increased migration induced by wt QSOX. Moreover, wt QSOX-induced migration was abrogated in NOX1-null VSMC. In contrast, both wt QSOX and C452S QSOX, and both secreted QSOX1 and C455S QSOX1, induce cell proliferation. Such effect was unaltered by PEG-CAT, while being inhibited by PEG-SOD. However, QSOX1-induced proliferation was not significantly affected in NOX1-null VSMC, compared with WT VSMC. These results indicate that hydrogen peroxide and superoxide mediate, respectively, migration and proliferation. However, Nox1 was required only for QSOX1-induced migration. In parallel, QSOX1-induced proliferation was independent of its redox activity, although mediated by intracellular superoxide.


Assuntos
Movimento Celular , Músculo Liso Vascular/citologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Animais , Proliferação de Células , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Espaço Intracelular/metabolismo , Camundongos , NADPH Oxidase 1/metabolismo , Oxirredução/efeitos dos fármacos , Superóxidos/metabolismo
5.
Cell Death Dis ; 10(2): 143, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760703

RESUMO

Protein disulfide isomerases including PDIA1 are implicated in cancer progression, but underlying mechanisms are unclear. PDIA1 is known to support vascular Nox1 NADPH oxidase expression/activation. Since deregulated reactive oxygen species (ROS) production underlies tumor growth, we proposed that PDIA1 is an upstream regulator of tumor-associated ROS. We focused on colorectal cancer (CRC) with distinct KRas activation levels. Analysis of RNAseq databanks and direct validation indicated enhanced PDIA1 expression in CRC with constitutive high (HCT116) vs. moderate (HKE3) and basal (Caco2) Ras activity. PDIA1 supported Nox1-dependent superoxide production in CRC; however, we first reported a dual effect correlated with Ras-level activity: in Caco2 and HKE3 cells, loss-of-function experiments indicate that PDIA1 sustains Nox1-dependent superoxide production, while in HCT116 cells PDIA1 restricted superoxide production, a behavior associated with increased Rac1 expression/activity. Transfection of Rac1G12V active mutant into HKE3 cells induced PDIA1 to become restrictive of Nox1-dependent superoxide, while in HCT116 cells treated with Rac1 inhibitor, PDIA1 became supportive of superoxide. PDIA1 silencing promoted diminished cell proliferation and migration in HKE3, not detectable in HCT116 cells. Screening of cell signaling routes affected by PDIA1 silencing highlighted GSK3ß and Stat3. Also, E-cadherin expression after PDIA1 silencing was decreased in HCT116, consistent with PDIA1 support of epithelial-mesenchymal transition. Thus, Ras overactivation switches the pattern of PDIA1-dependent Rac1/Nox1 regulation, so that Ras-induced PDIA1 bypass can directly activate Rac1. PDIA1 may be a crucial regulator of redox-dependent adaptive processes related to cancer progression.


Assuntos
Neoplasias do Colo/metabolismo , NADPH Oxidase 1/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células CACO-2 , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HCT116 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transfecção , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
Food Funct ; 10(1): 26-32, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30604799

RESUMO

Inflammation involves the activation of redox-sensitive transcription factors, e.g., nuclear factor κB (NF-κB). Administration of (-)-epicatechin to high-fructose-fed rats prevented NF-κB activation and up-regulation of the NADPH oxidase 4 (NOX4) in the kidney cortex. These results add mechanistic insights into the action of (-)-epicatechin diminishing inflammatory responses.


Assuntos
Catequina/metabolismo , Frutose/metabolismo , Córtex Renal/enzimologia , NADPH Oxidase 1/metabolismo , NADPH Oxidase 4/metabolismo , NF-kappa B/metabolismo , Animais , Córtex Renal/metabolismo , Masculino , NADPH Oxidase 1/genética , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/genética , NF-kappa B/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 39(2): 224-236, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580571

RESUMO

Objective- PDI (protein disulfide isomerase A1) was reported to support Nox1 (NADPH oxidase) activation mediated by growth factors in vascular smooth muscle cells. Our aim was to investigate the molecular mechanism by which PDI activates Nox1 and the functional implications of PDI in Nox1 activation in vascular disease. Approach and Results- Using recombinant proteins, we identified a redox interaction between PDI and the cytosolic subunit p47phox in vitro. Mass spectrometry of crosslinked peptides confirmed redox-dependent disulfide bonds between cysteines of p47phox and PDI and an intramolecular bond between Cys 196 and 378 in p47phox. PDI catalytic Cys 400 and p47phox Cys 196 were essential for the activation of Nox1 by PDI in vascular smooth muscle cells. Transfection of PDI resulted in the rapid oxidation of a redox-sensitive protein linked to p47phox, whereas PDI mutant did not promote this effect. Mutation of p47phox Cys 196, or the redox active cysteines of PDI, prevented Nox1 complex assembly and vascular smooth muscle cell migration. Proximity ligation assay confirmed the interaction of PDI and p47phox in murine carotid arteries after wire injury. Moreover, in human atheroma plaques, a positive correlation between the expression of PDI and p47phox occurred only in PDI family members with the a' redox active site. Conclusions- PDI redox cysteines facilitate Nox1 complex assembly, thus identifying a new mechanism through which PDI regulates Nox activity in vascular disease.


Assuntos
Dissulfetos/química , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 1/metabolismo , NADPH Oxidases/química , Isomerases de Dissulfetos de Proteínas/química , Animais , Movimento Celular , Células Cultivadas , Ativação Enzimática , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Oxirredução , Superóxidos/metabolismo
8.
Andrology ; 4(3): 473-80, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27011054

RESUMO

Age is a key factor in the development of prostatic lesions. An increase in reactive oxygen species levels occurs during aging. Furthermore, the indiscriminate use of anabolic androgenic steroids and physical exercise alter the availability of hormones and may promote the appearance of lesions. This study examined whether the use of nandrolone decanoate (ND), associated or not with resistance exercise training, affects the pathways related to the inflammatory response in the ventral prostate of adult and aged rats. Sprague-Dawley rats were distributed into eight experimental groups: sedentary with ND, sedentary without ND, exercise with ND, and exercise without ND. The animals performed resistance exercise training and received ND two times/week (5 mg/kg, i.m.) for 8 weeks. Adult rats were killed immediately following treatment completion, and aged rats remained untreated until reaching 300 days of age. The adult animals that received ND and performed resistance exercise training showed a higher occurrence of lesions with TLR4 activation. Marked IL-6 expression occurred in the group that performed resistance exercise training. The group exposed to ND showed overexpression of TLR2, TLR4, NOX1, Nrf2, TNF-α, and P38MAPK. The animals that received ND and performed training showed increase levels of NFκB, IRF3, IL-6, TNF-α, and NOX1. TLR2 and TLR4 showed no upregulation in the aged animals. The groups exercise + ND showed lesions in the adult stage and after aging, followed by molecular alterations. We concluded that nandrolone decanoate and resistance exercise training can promote the onset of prostatic tumors in the adult stage, and during aging, activating pathways involved in the inflammatory response.


Assuntos
Anabolizantes/farmacologia , Inflamação/patologia , Nandrolona/análogos & derivados , Condicionamento Físico Animal , Próstata/patologia , Treinamento Resistido , Animais , Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , NADPH Oxidase 1/metabolismo , NF-kappa B/metabolismo , Nandrolona/farmacologia , Decanoato de Nandrolona , Próstata/efeitos dos fármacos , Próstata/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA