Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.344
Filtrar
1.
Int J Nanomedicine ; 19: 6731-6756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979531

RESUMO

Osteoarthritis (OA) is the most common degenerative joint disease, affecting more than 595 million people worldwide. Nanomaterials possess superior physicochemical properties and can influence pathological processes due to their unique structural features, such as size, surface interface, and photoelectromagnetic thermal effects. Unlike traditional OA treatments, which suffer from short half-life, low stability, poor bioavailability, and high systemic toxicity, nanotherapeutic strategies for OA offer longer half-life, enhanced targeting, improved bioavailability, and reduced systemic toxicity. These advantages effectively address the limitations of traditional therapies. This review aims to inspire researchers to develop more multifunctional nanomaterials and promote their practical application in OA treatment.


Assuntos
Nanoestruturas , Osteoartrite , Osteoartrite/tratamento farmacológico , Osteoartrite/terapia , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Animais , Nanomedicina/métodos , Disponibilidade Biológica
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000136

RESUMO

Nanomedicine could improve the treatment of diabetes by exploiting various therapeutic mechanisms through the use of suitable nanoformulations. For example, glucose-sensitive nanoparticles can release insulin in response to high glucose levels, mimicking the physiological release of insulin. Oral nanoformulations for insulin uptake via the gut represent a long-sought alternative to subcutaneous injections, which cause pain, discomfort, and possible local infection. Nanoparticles containing oligonucleotides can be used in gene therapy and cell therapy to stimulate insulin production in ß-cells or ß-like cells and modulate the responses of T1DM-associated immune cells. In contrast, viral vectors do not induce immunogenicity. Finally, in diabetic wound healing, local delivery of nanoformulations containing regenerative molecules can stimulate tissue repair and thus provide a valuable tool to treat this diabetic complication. Here, we describe these different approaches to diabetes treatment with nanoformulations and their potential for clinical application.


Assuntos
Diabetes Mellitus , Nanomedicina , Nanopartículas , Humanos , Nanomedicina/métodos , Animais , Diabetes Mellitus/tratamento farmacológico , Nanopartículas/química , Terapia Genética/métodos , Insulina/metabolismo , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos
3.
Int J Nanomedicine ; 19: 6619-6641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975321

RESUMO

The high malignant degree and poor prognosis of pancreatic cancer (PC) pose severe challenges to the basic research and clinical translation of next-generation therapies. The rise of immunotherapy has improved the treatment of a variety of solid tumors, while the application in PC is highly restricted by the challenge of immunosuppressive tumor microenvironment. The latest progress of nanotechnology as drug delivery platform and immune adjuvant has improved drug delivery in a variety of disease backgrounds and enhanced tumor therapy based on immunotherapy. Based on the immune loop of PC and the status quo of clinical immunotherapy of tumors, this article discussed and critically analyzed the key transformation difficulties of immunotherapy adaptation to the treatment of PC, and then proposed the rational design strategies of new nanocarriers for drug delivery and immune regulation, especially the design of combined immunotherapy. This review also put forward prospective views on future research directions, so as to provide information for the new means of clinical treatment of PC combined with the next generation of nanotechnology and immunotherapy.


Assuntos
Imunoterapia , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Imunoterapia/métodos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanomedicina/métodos
4.
Int J Nanomedicine ; 19: 6757-6776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983132

RESUMO

Glioma is a primary malignant tumor in the central nervous system. In recent years, the treatment of glioma has developed rapidly, but the overall survival of glioma patients has not significantly improved. Due to the presence of the blood-brain barrier and intracranial tumor barrier, many drugs with good effects to cure glioma in vitro cannot be accurately transported to the corresponding lesions. In order to enable anti-tumor drugs to overcome the barriers and target glioma, nanodrug delivery systems have emerged recently. It is gratifying that liposomes, as a multifunctional nanodrug delivery carrier, which can be compatible with hydrophilic and hydrophobic drugs, easily functionalized by various targeted ligands, biodegradable, and hypoimmunogenic in vivo, has become a quality choice to solve the intractable problem of glioma medication. Therefore, we focused on the liposome nanodrug delivery system, and summarized its current research progress in glioma. Hopefully, this review may provide new ideas for the research and development of liposome-based nanomaterials for the clinical treatment of glioma.


Assuntos
Antineoplásicos , Barreira Hematoencefálica , Neoplasias Encefálicas , Glioma , Lipossomos , Nanoestruturas , Glioma/tratamento farmacológico , Lipossomos/química , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Animais , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Portadores de Fármacos/química
5.
Int J Nanomedicine ; 19: 6857-6893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005956

RESUMO

Periodontitis is a disease of inflammation that affects the tissues supporting the periodontium. It is triggered by an immunological reaction of the gums to plaque, which leads to the destruction of periodontal attachment structures. Periodontitis is one of the most commonly recognized dental disorders in the world and a major factor in the loss of adult teeth. Scaling and root planing remain crucial for managing patients with persistent periodontitis. Nevertheless, exclusive reliance on mechanical interventions like periodontal surgery, extractions, and root planning is insufficient to halt the progression of periodontitis. In response to the problem of bacterial resistance, some researchers are committed to finding alternative therapies to antibiotics. In addition, some scholars focus on finding new materials to provide a powerful microenvironment for periodontal tissue regeneration and promote osteogenic repair. Nanoparticles possess distinct therapeutic qualities, including exceptional antibacterial, anti-inflammatory, and antioxidant properties, immunomodulatory capacities, and the promotion of bone regeneration ability, which made them can be used for the treatment of periodontitis. However, there are many problems that limit the clinical translation of nanoparticles, such as toxic accumulation in cells, poor correlation between in vitro and in vivo, and poor animal-to-human transmissibility. In this paper, we review the present researches on nanoparticles in periodontitis treatment from the perspective of three main categories: inorganic nanoparticles, organic nanoparticles, and nanocomposites (including nanofibers, hydrogels, and membranes). The aim of this review is to provide a comprehensive and recent update on nanoparticles-based therapies for periodontitis. The conclusion section summarizes the opportunities and challenges in the design and clinical translation of nanoparticles for the treatment of periodontitis.


Assuntos
Nanopartículas , Periodontite , Humanos , Periodontite/terapia , Periodontite/tratamento farmacológico , Nanopartículas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Nanocompostos/química , Nanocompostos/uso terapêutico , Nanomedicina/métodos
6.
J Transl Med ; 22(1): 648, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987805

RESUMO

Glioma is the most common malignant tumor in central nervous system, with significant health burdens to patients. Due to the intrinsic characteristics of glioma and the lack of breakthroughs in treatment modalities, the prognosis for most patients remains poor. This results in a heavy psychological and financial load worldwide. In recent years, cannabidiol (CBD) has garnered widespread attention and research due to its anti-tumoral, anti-inflammatory, and neuroprotective properties. This review comprehensively summarizes the preclinical and clinical research on the use of CBD in glioma therapy, as well as the current status of nanomedicine formulations of CBD, and discusses the potential and challenges of CBD in glioma therapy in the future.


Assuntos
Canabidiol , Glioma , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Humanos , Glioma/tratamento farmacológico , Glioma/patologia , Animais , Pesquisa Translacional Biomédica , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Nanomedicina/métodos
7.
Nanotheranostics ; 8(4): 473-496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961885

RESUMO

Cardiotoxicity, the often-overlooked second leading cause of death in cancer patients, has been associated with certain anticancer drugs. These drugs can induce cardiac damage through various pathways, and their adverse effects on the heart are not fully understood. Cardiotoxicity is a major issue in cancer treatment, particularly with chemotherapeutics, because it can cause cardiac dysfunction such as hypotension, heart failure, and even death. Doxorubicin, 5-fluorouracil, and trastuzumab, all of which are very potent anticancer drugs, are known to cause cardiotoxicity. When it comes to lowering cardiotoxicity and alleviating the harmful effects of chemotherapy medications, nanomedicine has the potential to transport therapeutic molecules. Nanotheranostics offers novel options for identifying and treating cardiotoxicity resulting from a wide range of substances, including anticancer medications. Additionally, theranostics platforms such as micellar systems, carbon-based nanomedicine, solid lipid nanoparticles, polymeric nanoparticles, and liposomes can transport chemotherapeutic medications while minimising their cardiotoxicity. The present level of understanding of the molecular and cellular processes that lead to cardiotoxicity in reaction to both traditional chemotherapy and targeted drug delivery systems is summarised in this article. This review delves into nanomedicine and nanotheranostics, with an emphasis on reducing anticancer medication-induced cardiac toxicity. Nanotheranostics provide potential solutions for early diagnosis and tailored therapy of heart injury by combining diagnostic and therapeutic capabilities into nanomedicine.


Assuntos
Antineoplásicos , Cardiotoxicidade , Nanomedicina , Nanomedicina Teranóstica , Humanos , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Cardiotoxicidade/etiologia , Nanomedicina/métodos , Nanomedicina Teranóstica/métodos , Animais , Cardiopatias/induzido quimicamente , Neoplasias/tratamento farmacológico , Nanopartículas/química
8.
Nat Commun ; 15(1): 6058, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025877

RESUMO

Heart failure causes considerable morbidity and mortality worldwide. Clinically applied drugs for the treatment of heart failure are still severely limited by poor delivery efficiency to the heart and off-target consumption. Inspired by the high heart delivery efficiency of inhaled drugs, we present an inhalable cardiac-targeting peptide (CTP)-modified calcium phosphate (CaP) nanoparticle for the delivery of TP-10, a selective inhibitor of PDE10A. The CTP modification significantly promotes cardiomyocyte and fibroblast targeting during the pathological state of heart failure in male mice. TP-10 is subsequently released from TP-10@CaP-CTP and effectively attenuates cardiac remodelling and improved cardiac function. In view of these results, a low dosage (2.5 mg/kg/2 days) of inhaled medication exerted good therapeutic effects without causing severe lung injury after long-term treatment. In addition, the mechanism underlying the amelioration of heart failure is investigated, and the results reveal that the therapeutic effects of this system on cardiomyocytes and cardiac fibroblasts are mainly mediated through the cAMP/AMPK and cGMP/PKG signalling pathways. By demonstrating the targeting capacity of CTP and verifying the biosafety of inhalable CaP nanoparticles in the lung, this work provides a perspective for exploring myocardium-targeted therapy and presents a promising clinical strategy for the long-term management of heart failure.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Nanomedicina , Nanopartículas , Animais , Masculino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/prevenção & controle , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Administração por Inalação , Nanopartículas/química , Nanomedicina/métodos , Peptídeos/farmacologia , Peptídeos/administração & dosagem , Miocárdio/metabolismo , Miocárdio/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , GMP Cíclico/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Modelos Animais de Doenças , Fosfatos de Cálcio
9.
J Nanobiotechnology ; 22(1): 424, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026255

RESUMO

Ischemic stroke is a complex, high-mortality disease with multifactorial etiology and pathogenesis. Currently, drug therapy is mainly used treat ischemic stroke in clinic, but there are still some limitations, such as limited blood-brain barrier (BBB) penetration efficiency, a narrow treatment time window and drug side effects. Recent studies have pointed out that drug delivery systems based on polymeric nanocarriers can effectively improve the insufficient treatment for ischemic stroke. They can provide neuronal protection by extending the plasma half-life of drugs, enhancing the drug's permeability to penetrate the BBB, and targeting specific structures and cells. In this review, we classified polymeric nanocarriers used for delivering ischemic stroke drugs and introduced their preparation methods. We also evaluated the feasibility and effectiveness and discussed the existing limitations and prospects of polymeric nanocarriers for ischemic stroke treatment. We hoped that this review could provide a theoretical basis for the future development of nanomedicine delivery systems for the treatment of ischemic stroke.


Assuntos
Barreira Hematoencefálica , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , AVC Isquêmico , Nanopartículas , Polímeros , Humanos , Polímeros/química , Animais , AVC Isquêmico/tratamento farmacológico , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Isquemia Encefálica/tratamento farmacológico , Nanomedicina/métodos
10.
Theranostics ; 14(9): 3486-3508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948064

RESUMO

Rationale: Device implantation frequently triggers cardiac remodeling and fibrosis, with monocyte-driven inflammatory responses precipitating arrhythmias. This study investigates the role of m6A modification enzymes METTL3 and METTL14 in these responses and explores a novel therapeutic strategy targeting these modifications to mitigate cardiac remodeling and fibrosis. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from patients with ventricular septal defects (VSD) who developed conduction blocks post-occluder implantation. The expression of METTL3 and METTL14 in PBMCs was measured. METTL3 and METTL14 deficiencies were induced to evaluate their effect on angiotensin II (Ang II)-induced myocardial inflammation and fibrosis. m6A modifications were analyzed using methylated RNA immunoprecipitation followed by quantitative PCR. NF-κB pathway activity and levels of monocyte migration and fibrogenesis markers (CXCR2 and TGF-ß1) were assessed. An erythrocyte microvesicle-based nanomedicine delivery system was developed to target activated monocytes, utilizing the METTL3 inhibitor STM2457. Cardiac function was evaluated via echocardiography. Results: Significant upregulation of METTL3 and METTL14 was observed in PBMCs from patients with VSD occluder implantation-associated persistent conduction block. Deficiencies in METTL3 and METTL14 significantly reduced Ang II-induced myocardial inflammation and fibrosis by decreasing m6A modification on MyD88 and TGF-ß1 mRNAs. This disruption reduced NF-κB pathway activation, lowered CXCR2 and TGF-ß1 levels, attenuated monocyte migration and fibrogenesis, and alleviated cardiac remodeling. The erythrocyte microvesicle-based nanomedicine delivery system effectively targeted inflamed cardiac tissue, reducing inflammation and fibrosis and improving cardiac function. Conclusion: Inhibiting METTL3 and METTL14 in monocytes disrupts the NF-κB feedback loop, decreases monocyte migration and fibrogenesis, and improves cardiac function. Targeting m6A modifications of monocytes with STM2457, delivered via erythrocyte microvesicles, reduces inflammation and fibrosis, offering a promising therapeutic strategy for cardiac remodeling associated with device implantation.


Assuntos
Fibrose , Metiltransferases , Monócitos , NF-kappa B , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Monócitos/metabolismo , Masculino , Animais , NF-kappa B/metabolismo , Eritrócitos/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Feminino , Metilação , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Micropartículas Derivadas de Células/metabolismo , Leucócitos Mononucleares/metabolismo , Angiotensina II/metabolismo , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Remodelação Ventricular , Miocárdio/metabolismo , Miocárdio/patologia , Nanomedicina/métodos
11.
AAPS J ; 26(4): 74, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955936

RESUMO

The paper highlights the necessity for a robust regulatory framework for assessing nanomedicines and their off-patent counterparts, termed as nanosimilar, which could be considered as 'similar' to the prototype nanomedicine,based on essential criteria describing the 'similarity'. The term 'similarity' should be focused on criteria that describe nanocarriers, encompassing their physicochemical, thermodynamic, morphological, and biological properties, including surface interactions and pharmacokinetics. Nanocarriers can be regarded as advanced self-assembled excipients (ASAEs) due to their complexity and chaotic behavior and should be evaluated by using essential criteria in order for off-patent nanomedicines be termed as nanosimilars, from a regulatory perspective. Collaboration between the pharmaceutical industry, regulatory bodies, and artificial intelligence (AI) startups is pivotal for the precise characterization and approval processes for nanomedicines and nanosimilars and embracing innovative tools and terminology facilitates the development of a sustainable regulatory framework, ensuring safety and efficacy. This crucial shift toward precision R&D practices addresses the complexity inherent in nanocarriers, paving the way for therapeutic advancements with economic benefits.


Assuntos
Nanomedicina , Nanomedicina/legislação & jurisprudência , Nanomedicina/métodos , Humanos , Medicamentos Biossimilares/administração & dosagem , Medicamentos Biossimilares/farmacocinética , Inteligência Artificial , Nanopartículas , Indústria Farmacêutica/legislação & jurisprudência , Aprovação de Drogas/legislação & jurisprudência , Portadores de Fármacos/química
12.
Nano Lett ; 24(27): 8217-8231, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38848540

RESUMO

Theranostic medicine combines diagnostics and therapeutics, focusing on solid tumors at minimal doses. Optically activated photosensitizers are significant examples owing to their photophysical and chemical properties. Several optotheranostics have been tested that convert light to imaging signals, therapeutic radicals, and heat. Upon light exposure, conjugated photosensitizers kill tumor cells by producing reactive oxygen species and heat or by releasing cancer antigens. Despite clinical trials, these molecularly conjugated photosensitizers require protection from their surroundings and a localized direction for site-specific delivery during blood circulation. Therefore, cell membrane biomimetic ghosts have been proposed for precise and safe delivery of these optically active large molecules, which are clinically relevant because of their biocompatibility, long circulation time, bypass of immune cell recognition, and targeting ability. This review focuses on the role of biomimetic nanoparticles in the treatment and diagnosis of tumors through light-mediated diagnostics and therapy, providing insights into their preclinical and clinical status.


Assuntos
Materiais Biomiméticos , Neoplasias , Fármacos Fotossensibilizantes , Nanomedicina Teranóstica , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Animais , Biomimética , Nanomedicina/métodos
13.
AAPS PharmSciTech ; 25(6): 140, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890191

RESUMO

Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers. The review investigated the design and composition of various nanocarriers, such as liposomes, micelles, and inorganic nanoparticles, highlighting the importance of surface modifications and functionalization. The complex interaction between the immune system, opsonization, phagocytosis, and the protein corona was examined to understand the stealth effect. The review carefully evaluated strategies to enhance the stealth effect, including surface coating with polymers, biomimetic camouflage, and targeting ligands. The in vivo behavior of stealth nanocarriers and their impact on pharmacokinetics, biodistribution, and toxicity were also systematically examined. Additionally, the review presented clinical applications, case studies of approved nanocarrier-based cancer therapies, and emerging formulations in clinical trials. Future directions and obstacles in the field, such as advancements in nanocarrier engineering, personalized nanomedicine, regulatory considerations, and ethical implications, were discussed in detail. The review concluded by summarizing key findings and emphasizing the transformative potential of stealth nanocarriers in revolutionizing cancer therapy. This review enhanced the comprehension of nanocarrier-based cancer therapies and their potential impact by providing insights into advanced studies, clinical applications, and regulatory considerations.


Assuntos
Antineoplásicos , Portadores de Fármacos , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química , Nanopartículas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Lipossomos , Micelas , Distribuição Tecidual
14.
Int J Nanomedicine ; 19: 6099-6126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911500

RESUMO

The relentless pursuit of effective cancer diagnosis and treatment strategies has led to the rapidly expanding field of nanotechnology, with a specific focus on nanocomposites. Nanocomposites, a combination of nanomaterials with diverse properties, have emerged as versatile tools in oncology, offering multifunctional platforms for targeted delivery, imaging, and therapeutic interventions. Nanocomposites exhibit great potential for early detection and accurate imaging in cancer diagnosis. Integrating various imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and fluorescence imaging, into nanocomposites enables the development of contrast agents with enhanced sensitivity and specificity. Moreover, functionalizing nanocomposites with targeting ligands ensures selective accumulation in tumor tissues, facilitating precise imaging and diagnostic accuracy. On the therapeutic front, nanocomposites have revolutionized cancer treatment by overcoming traditional challenges associated with drug delivery. The controlled release of therapeutic agents from nanocomposite carriers enhances drug bioavailability, reduces systemic toxicity, and improves overall treatment efficacy. Additionally, the integration of stimuli-responsive components within nanocomposites enables site-specific drug release triggered by the unique microenvironment of the tumor. Despite the remarkable progress in the field, challenges such as biocompatibility, scalability, and long-term safety profiles remain. This article provides a comprehensive overview of recent developments, challenges, and prospects, emphasizing the transformative potential of nanocomposites in revolutionizing the landscape of cancer diagnostics and therapeutics. In Conclusion, integrating nanocomposites in cancer diagnosis and treatment heralds a new era for precision medicine.


Assuntos
Nanocompostos , Neoplasias , Humanos , Nanocompostos/química , Neoplasias/diagnóstico por imagem , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Animais , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Nanomedicina/métodos , Tomografia Computadorizada por Raios X , Portadores de Fármacos/química
15.
J Nanobiotechnology ; 22(1): 354, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902775

RESUMO

Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.


Assuntos
Sistemas de Liberação de Medicamentos , Humanos , Animais , Sistemas de Liberação de Medicamentos/métodos , Neovascularização Patológica/tratamento farmacológico , Fundo de Olho , Pontos Quânticos/química , Nanopartículas Multifuncionais/química , Neovascularização Retiniana/tratamento farmacológico , Nanomedicina/métodos , Nanopartículas/química
16.
Biomed Pharmacother ; 176: 116904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878686

RESUMO

Globally, cancer is a serious health problem. It is unfortunate that current anti-cancer strategies are insufficiently specific and damage the normal tissues. There's urgent need for development of new anti-cancer strategies. More recently, increasing attention has been paid to the new application of ferroptosis and nano materials in cancer research. Ferroptosis, a condition characterized by excessive reactive oxygen species-induced lipid peroxidation, as a new programmed cell death mode, exists in the process of a number of diseases, including cancers, neurodegenerative disease, cerebral hemorrhage, liver disease, and renal failure. There is growing evidence that inducing ferroptosis has proven to be an effective strategy against a variety of chemo-resistant cancer cells. Nano-drug delivery system based on nanotechnology provides a highly promising platform with the benefits of precise control of drug release and reduced toxicity and side effects. This paper reviews the latest advances of combination therapy strategies based on biomedical nanotechnology induced ferroptosis for cancer therapeutics. Given the new chances and challenges in this emerging area, we need more attention to the combination of nanotechnology and ferroptosis in the treatment of cancer in the future.


Assuntos
Ferroptose , Neoplasias , Ferroptose/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Nanopartículas , Nanotecnologia/métodos , Sistemas de Liberação de Fármacos por Nanopartículas , Sistemas de Liberação de Medicamentos/métodos , Terapia Combinada , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina/métodos
17.
Int J Nanomedicine ; 19: 5739-5761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882545

RESUMO

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that have the capability to induce specific protein degradation. While playing a revolutionary role in effectively degrading the protein of interest (POI), PROTACs encounter certain limitations that impede their clinical translation. These limitations encompass off-target effects, inadequate cell membrane permeability, and the hook effect. The advent of nanotechnology presents a promising avenue to surmount the challenges associated with conventional PROTACs. The utilization of nano-proteolysis targeting chimeras (nano-PROTACs) holds the potential to enhance specific tissue accumulation, augment membrane permeability, and enable controlled release. Consequently, this approach has the capacity to significantly enhance the controllable degradation of target proteins. Additionally, they enable a synergistic effect by combining with other therapeutic strategies. This review comprehensively summarizes the structural basis, advantages, and limitations of PROTACs. Furthermore, it highlights the latest advancements in nanosystems engineered for delivering PROTACs, as well as the development of nano-sized PROTACs employing nanocarriers as linkers. Moreover, it delves into the underlying principles of nanotechnology tailored specifically for PROTACs, alongside the current prospects of clinical research. In conclusion, the integration of nanotechnology into PROTACs harbors vast potential in enhancing the anti-tumor treatment response and expediting clinical translation.


Assuntos
Neoplasias , Proteólise , Humanos , Neoplasias/tratamento farmacológico , Proteólise/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Nanopartículas/química , Nanomedicina/métodos , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química
18.
J Nanobiotechnology ; 22(1): 318, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849914

RESUMO

Mitochondria occupy a central role in the biology of most eukaryotic cells, functioning as the hub of oxidative metabolism where sugars, fats, and amino acids are ultimately oxidized to release energy. This crucial function fuels a variety of cellular activities. Disruption in mitochondrial metabolism is a common feature in many diseases, including cancer, neurodegenerative conditions and cardiovascular diseases. Targeting tumor cell mitochondrial metabolism with multifunctional nanosystems emerges as a promising strategy for enhancing therapeutic efficacy against cancer. This review comprehensively outlines the pathways of mitochondrial metabolism, emphasizing their critical roles in cellular energy production and metabolic regulation. The associations between aberrant mitochondrial metabolism and the initiation and progression of cancer are highlighted, illustrating how these metabolic disruptions contribute to oncogenesis and tumor sustainability. More importantly, innovative strategies employing nanomedicines to precisely target mitochondrial metabolic pathways in cancer therapy are fully explored. Furthermore, key challenges and future directions in this field are identified and discussed. Collectively, this review provides a comprehensive understanding of the current state and future potential of nanomedicine in targeting mitochondrial metabolism, offering insights for developing more effective cancer therapies.


Assuntos
Mitocôndrias , Nanomedicina , Neoplasias , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nanomedicina/métodos , Animais , Metabolismo Energético/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos
19.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893373

RESUMO

Developing clinically meaningful nanomedicines for cancer therapy requires the drugs to be effective, safe, simple, cheap, and easy to store. In the present work, we report that a simple cationic Fe(III)-rich salt of [FeIIICl(TMPPH2)][FeIIICl4]2 (Fe-TMPP) exhibits a superior anticancer performance on a broad spectrum of cancer cell lines, including breast, colorectal cancer, liver, pancreatic, prostate, and gastric cancers, with half maximal inhibitory concentration (IC50) values in the range of 0.098-3.97 µM (0.066-2.68 µg mL-1), comparable to the best-reported medicines. Fe-TMPP can form stand-alone nanoparticles in water without the need for extra surface modification or organic-solvent-assisted antisolvent precipitation. Critically, Fe-TMPP is TME-responsive (TME = tumor microenvironment), and can only elicit its function in the TME with overexpressed H2O2, converting H2O2 to the cytotoxic •OH to oxidize the phospholipid of the cancer cell membrane, causing ferroptosis, a programmed cell death process of cancer cells.


Assuntos
Antineoplásicos , Ferroptose , Nanomedicina , Humanos , Ferroptose/efeitos dos fármacos , Linhagem Celular Tumoral , Nanomedicina/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas/química , Compostos Férricos/química , Microambiente Tumoral/efeitos dos fármacos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
20.
Molecules ; 29(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893460

RESUMO

There is a myriad of diseases that plague the world ranging from infectious, cancer and other chronic diseases with varying interventions. However, the dynamism of causative agents of infectious diseases and incessant mutations accompanying other forms of chronic diseases like cancer, have worsened the treatment outcomes. These factors often lead to treatment failure via different drug resistance mechanisms. More so, the cost of developing newer drugs is huge. This underscores the need for a paradigm shift in the drug delivery approach in order to achieve desired treatment outcomes. There is intensified research in nanomedicine, which has shown promises in improving the therapeutic outcome of drugs at preclinical stages with increased efficacy and reduced toxicity. Regardless of the huge benefits of nanotechnology in drug delivery, challenges such as regulatory approval, scalability, cost implication and potential toxicity must be addressed via streamlining of regulatory hurdles and increased research funding. In conclusion, the idea of nanotechnology in drug delivery holds immense promise for optimizing therapeutic outcomes. This work presents opportunities to revolutionize treatment strategies, providing expert opinions on translating the huge amount of research in nanomedicine into clinical benefits for patients with resistant infections and cancer.


Assuntos
Sistemas de Liberação de Medicamentos , Nanomedicina , Nanoestruturas , Humanos , Nanoestruturas/química , Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Animais , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...