Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 12: 639967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868173

RESUMO

Background: Everolimus, an immunosuppressant, is approved for the treatment of advanced renal cell carcinoma, metastatic hormone receptor-positive breast cancer, and pancreatic neuroendocrine tumors (P-NETs) but has been reported to be related to hepatitis B reactivation. Here, we present the first case of fatal fulminant hepatitis B reactivation in a man with P-NET accompanied by multiple liver metastases who received everolimus and octreotide long-acting repeatable (LAR). Case Presentation: A 45-year-old male had a history of chronic hepatitis B infection. He was found to have a complicated liver cyst incidentally, and then he underwent biopsy, which disclosed a grade 2 neuroendocrine tumor (NET). Subsequent MRI of the abdomen and PET revealed a solid mass at the pancreatic tail with numerous liver tumors favoring metastases and peripancreatic lymph node metastases. Transarterial chemoembolization (TACE) of the right lobe of the liver was performed, and he started to take 5 mg everolimus twice a day and 20 mg octreotide LAR every month 8 days after the 1st TACE. No hepatitis B virus (HBV) prophylaxis treatment was administered. He then underwent laparoscopic distal pancreatectomy and splenectomy three and half months after the initial treatment of everolimus. He continued everolimus 5 mg twice a day and octreotide 20 mg every month after the operation. Three months later, hepatic failure occurred due to acute hepatitis B flare-up-related fulminant hepatic failure since other possible causes of hepatic failure were excluded. Five days after hepatic failure presented, hepatic failure was apparent, and pulseless ventricular tachycardia occurred. The patient expired after failed resuscitation. Conclusion: A literature review of everolimus-related hepatitis B reactivation was conducted. In P-NET patients with chronic hepatitis B who will undergo everolimus treatment, HBV prophylaxis should be considered since fatal hepatitis B reactivation might occur under rare conditions.


Assuntos
Everolimo/farmacologia , Neoplasias Hepáticas/secundário , Necrose Hepática Massiva/tratamento farmacológico , Tumores Neuroendócrinos/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Biópsia , Hepatite B/complicações , Hepatite B/mortalidade , Humanos , Neoplasias Hepáticas/complicações , Masculino , Necrose Hepática Massiva/complicações , Necrose Hepática Massiva/mortalidade , Pessoa de Meia-Idade , Tumores Neuroendócrinos/complicações , Octreotida/administração & dosagem , Neoplasias Pancreáticas/complicações
2.
Int Immunopharmacol ; 85: 106627, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32473572

RESUMO

Fulminant hepatitis (FH), characterized by overwhelmed inflammation and massive hepatocyte apoptosis, is a life-threatening and high mortality rate. Gastrodin (GTD), a phenolic glucoside extracted from Gastrodiaelata Blume, exerts anti-apoptosis, and anti-inflammatory activities. In the present study, we aimed to evaluate whether GTD treatment could alleviate lipopolysaccharide and d-galactosamine (LPS/GalN)-induced FH in mice and its potential mechanisms. These data suggested that GTD treatment remarkably protected against LPS/GalN-induced FH by enhancing the survival rate of mice, reducing ALT and AST levels, attenuating histopathological changes, and suppressing interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α secretion. In addition, GTD treatment relieved hepatic apoptosis by the regulation of peroxisome proliferator-activated receptors (PPARs), P53 and caspase-3/9. Furthermore, GTD treatment could significantly inhibit inflammation-related signaling pathways activated by LPS/GalN, including the suppression of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) and nuclear factor-kappa B (NF-κB) activation. Importantly, GTD treatment effectively restored but not induced LPS/GalN-reduced the expression of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, as well as the level of pro-autophagy proteins. Taken together, our investigation indicated that GTD played an essential role in liver protection by relieving hepatocyte apoptosis and inflammation reaction, which may be closely involved in the inhibition of NLRP3 inflammasome and NF-κB activation, regulation of apoptosis-related proteins expression, and the recovery of AMPK/ACC/autophagy.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Álcoois Benzílicos/farmacologia , Glucosídeos/farmacologia , Necrose Hepática Massiva/tratamento farmacológico , Quinases Proteína-Quinases Ativadas por AMP , Acetil-CoA Carboxilase/metabolismo , Alanina Transaminase/sangue , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Autofagia/efeitos dos fármacos , Álcoois Benzílicos/química , Álcoois Benzílicos/uso terapêutico , Citocinas/metabolismo , Galactosamina/toxicidade , Glucosídeos/química , Glucosídeos/uso terapêutico , Células Hep G2 , Humanos , Inflamassomos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Necrose Hepática Massiva/induzido quimicamente , Camundongos Endogâmicos C57BL , Subunidade p50 de NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases/metabolismo , Taxa de Sobrevida
3.
Pharmacol Res ; 159: 104945, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32454225

RESUMO

Genipin is an aglycone derived from the geniposide, the most abundant iridoid glucoside constituent of Gardenia jasminoides Ellis. For decades, genipin is the focus of studies as a versatile compound in the treatment of various pathogenic conditions. In particularly, Gardenia jasminoides Ellis has long been used in traditional Chinese medicine for the prevention and treatment of liver disease. Mounting experimental data has proved genipin possesses therapeutic potential for cholestatic, septic, ischemia/reperfusion-triggered acute liver injury, fulminant hepatitis and NAFLD. This critical review is a reflection on the valuable lessons from decades of research regarding pharmacological activities of genipin. Of note, genipin represents choleretic effect by potentiating bilirubin disposal and enhancement of genes in charge of the efflux of a number of organic anions. The anti-inflammatory capability of genipin is mediated by suppression of the production and function of pro-inflammatory cytokines and inflammasome. Moreover, genipin modulates various transcription factor and signal transduction pathway. Genipin appears to trigger the upregulation of several key genes encoding antioxidant and xenobiotic-metabolizing enzymes. Furthermore, the medicinal impact of genipin extends to modulation of regulated cell death, including autophagic cell death, apoptosis, necroptosis and pyroptosis, and modulation of quality of cellular organelle. Another crucial effect of genipin appears to be linked to dual role in targeting uncoupling protein 2 (UCP2). As a typical UCP2-inhibiting compound, genipin could inhibit AMP-activated protein kinase or NF-κB in circumstance. On the contrary, reactive oxygen species production and cellular lipid deposits mediated by genipin through the upregulation of UCP2 is observed in liver steatosis, suggesting the precise role of genipin is disease-specific. Collectively, we comprehensively summarize the mechanisms and pathways associated with the hepatoprotective activity of genipin and discuss potential toxic impact. Notably, our focus is the direct medicinal effect of genipin itself, whereas its utility as a crosslinking agent in tissue engineering is out of scope for the current review. Further studies are therefore required to disentangle these complicated pharmacological properties to confer this natural agent a far greater potency.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Colagogos e Coleréticos/farmacologia , Iridoides/farmacologia , Fígado/efeitos dos fármacos , Necrose Hepática Massiva/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Anti-Inflamatórios/toxicidade , Antioxidantes/toxicidade , Morte Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colagogos e Coleréticos/toxicidade , Humanos , Iridoides/toxicidade , Fígado/metabolismo , Fígado/patologia , Necrose Hepática Massiva/metabolismo , Necrose Hepática Massiva/patologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Proteína Desacopladora 2/metabolismo
4.
Int J Biol Macromol ; 155: 1092-1104, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712142

RESUMO

Fulminant hepatitis (FH) is a severe liver disease characterized by extensive hepatic necrosis, oxidative stress, and inflammation. Myricetin (Myr), a botanical flavonoid glycoside, is recognized to exert antiapoptosis, anti-inflammatory, and antioxidant properties. In the current study, we focused on exploring the protective effects and underlying mechanisms of Myr against lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced FH. These data indicated that Myr effectively protected from LPS/D-GalN-induced FH by lowering the mortality of mice, decreasing ALT and AST levels, and alleviating histopathological changes, oxidative stress, inflammation, and hepatic apoptosis. Moreover, Myr could efficiently mediate multiple signaling pathways, displaying not only the regulation of caspase-3/9 and P53 protein, inhibition of toll-like receptor 4 (TLR4)-nuclear factor-kappa B (NF-κB) activation, and -mitogen-activated protein kinase (MAPK), but also the increase of heme oxygenase-1 (HO-1) and nuclear factor-erythroid 2-related factor 2 (Nrf2) expression, as well as induction of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation in mice with LPS/D-GalN-induced FH. Importantly, our further results in vitro suggested that Myr remarkably attenuated H2O2-triggered hepatotoxicity and ROS generation, activated Keap1-Nrf2/HO-1 and AMPK/ACC signaling pathway. However, Myr-enhanced the expression of HO-1 and Nrf2 protein was reversed by Keap1-overexpression, Nrf2-null and AMPK inhibitor. Meanwhile, Myr-relieved hepatotoxicity excited by H2O2 was blocked by Nrf2-null and AMPK inhibitor. Taken together, Myr exhibits a protective role against LPS/D-GalN-induced FH by suppressing hepatic apoptosis, inflammation, and oxidative stress, likely involving in the regulation of apoptosis-related protein, TLR4-NF-κB/-MAPK and NLRP3 inflammasome, and AMPK-Nrf2/HO-1 signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Galactosamina/toxicidade , Lipopolissacarídeos/toxicidade , Necrose Hepática Massiva/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Modelos Animais de Doenças , Masculino , Necrose Hepática Massiva/induzido quimicamente , Necrose Hepática Massiva/metabolismo , Necrose Hepática Massiva/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
5.
J Toxicol Sci ; 40(4): 509-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26165648

RESUMO

We previously reported that hepatic necrosis induced by thioacetamide (TA), a hepatotoxicant, was attenuated in mice fed a high-fat diet (HFD mice) in comparison with mice fed a normal rodent diet (ND mice). In this study, we focused on investigation of the mechanism of the attenuation. Hepatic content of thiobarbituric acid reactive substances (TBARS), an oxidative stress marker, significantly increased in ND mice at 24 and 48 hr after TA administration in comparison to that in vehicle-treated ND mice. At these time points, severe hepatic necrosis was observed in ND mice. Treatment with an established antioxidant, butylated hydroxyanisole, attenuated the TA-induced hepatic necrosis in ND mice. In contrast, in HFD mice, hepatic TBARS content did not increase, and hepatic necrosis was attenuated in comparison with ND mice at 24 and 48 hr after TA dosing. Metabolomics analysis regarding hepatic glutathione, a biological antioxidant, revealed decreased glutathione and changes in the amount of glutathione metabolism-related metabolites, such as increased ophtalmate and decreased cysteine, and this indicated activation of glutathione synthesis and usage in HFD mice. Finally, after treatment with L-buthionine-S,R-sulfoxinine, an inhibitor of glutathione synthesis, TA-induced hepatic necrosis was enhanced and hepatic TBARS contents increased after TA dosing in HFD mice. These results suggested that activated synthesis and usage of hepatic GSH, which suppresses hepatic oxidative stress, is one of the factors that attenuate TA-induced hepatic necrosis in HFD mice.


Assuntos
Antioxidantes/metabolismo , Dieta Hiperlipídica , Glutationa/metabolismo , Glutationa/fisiologia , Fígado/metabolismo , Necrose Hepática Massiva/induzido quimicamente , Obesidade/etiologia , Obesidade/metabolismo , Estresse Oxidativo , Tioacetamida/toxicidade , Animais , Antioxidantes/uso terapêutico , Butionina Sulfoximina/farmacologia , Hidroxianisol Butilado/uso terapêutico , Glutationa/biossíntese , Masculino , Necrose Hepática Massiva/tratamento farmacológico , Metabolômica , Camundongos Endogâmicos C57BL , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...