Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.460
Filtrar
1.
Sci Rep ; 14(1): 13712, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877177

RESUMO

The family Acuariidae is a speciose group of parasitic nematodes, infecting mostly birds as definitive hosts. This study focused on the characterization of two species of acuariids, collected in two different species of piscivorous birds, the European great cormorant Phalacrocorax carbo sinensis from Italy, and the pygmy cormorant Microcarbo pygmaeus from Israel. Parasites were analyzed using light and scanning electron microscopy and by amplification and sequencing of the 28S rDNA. The results of morphological and molecular analyses showed that Ph. carbo sinensis was infected by the acuariid Syncuaria squamata (12 females) and Cosmocephalus obvelatus (1 female), whereas M. pygmaeus was infected by C. obvelatus (2 males, 12 females). The present results provide new data on the distribution of acuariid parasites of piscivorous birds, the first report of Acuariidae in Israel, and the first molecular data on S. squamata and C. obvelatus, which will be useful in future epidemiological and phylogenetic studies of these widely distributed, but less molecularly studied parasites.


Assuntos
Aves , Filogenia , Animais , Aves/parasitologia , Feminino , Masculino , Doenças das Aves/parasitologia , Doenças das Aves/epidemiologia , Nematoides/genética , Nematoides/classificação , Israel , Itália , RNA Ribossômico 28S/genética
2.
BMC Genomics ; 25(1): 511, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783171

RESUMO

BACKGROUND: Transposable elements (TEs) are mobile DNA sequences that propagate within genomes, occupying a significant portion of eukaryotic genomes and serving as a source of genetic variation and innovation. TEs can impact genome dynamics through their repetitive nature and mobility. Nematodes are incredibly versatile organisms, capable of thriving in a wide range of environments. The plant-parasitic nematodes are able to infect nearly all vascular plants, leading to significant crop losses and management expenses worldwide. It is worth noting that plant parasitism has evolved independently at least three times within this nematode group. Furthermore, the genome size of plant-parasitic nematodes can vary substantially, spanning from 41.5 Mbp to 235 Mbp. To investigate genome size variation and evolution in plant-parasitic nematodes, TE composition, diversity, and evolution were analysed in 26 plant-parasitic nematodes from 9 distinct genera in Clade IV. RESULTS: Interestingly, despite certain species lacking specific types of DNA transposons or retrotransposon superfamilies, they still exhibit a diverse range of TE content. Identification of species-specific TE repertoire in nematode genomes provides a deeper understanding of genome evolution in plant-parasitic nematodes. An intriguing observation is that plant-parasitic nematodes possess extensive DNA transposons and retrotransposon insertions, including recent sightings of LTR/Gypsy and LTR/Pao superfamilies. Among them, the Gypsy superfamilies were found to encode Aspartic proteases in the plant-parasitic nematodes. CONCLUSIONS: The study of the transposable element (TE) composition in plant-parasitic nematodes has yielded insightful discoveries. The findings revealed that certain species exhibit lineage-specific variations in their TE makeup. Discovering the species-specific TE repertoire in nematode genomes is a crucial element in understanding the evolution of genomes in plant-parasitic nematodes. It allows us to gain a deeper insight into the intricate workings of these organisms and their genetic makeup. With this knowledge, we are gaining a fundamental piece in the puzzle of understanding the evolution of these parasites. Moreover, recent transpositions have led to the acquisition of new TE superfamilies, especially Gypsy and Pao retrotransposons, further expanding the diversity of TEs in these nematodes. Significantly, the widely distributed Gypsy superfamily possesses proteases that are exclusively associated with parasitism during nematode-host interactions. These discoveries provide a deeper understanding of the TE landscape within plant-parasitic nematodes.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Variação Genética , Nematoides , Filogenia , Plantas , Animais , Elementos de DNA Transponíveis/genética , Nematoides/genética , Plantas/parasitologia , Plantas/genética , Retroelementos/genética , Tamanho do Genoma
3.
IET Syst Biol ; 18(3): 92-102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760669

RESUMO

Trap formation is the key indicator of carnivorous lifestyle transition of nematode-trapping fungi (NTF). Here, the DNA methylation profile was explored during trap induction of Arthrobotrys oligospora, a typical NTF that captures nematodes by developing adhesive networks. Whole-genome bisulfite sequencing identified 871 methylation sites and 1979 differentially methylated regions (DMRs). This first-of-its-kind investigation unveiled the widespread presence of methylation systems in NTF, and suggested potential regulation of ribosomal RNAs through DNA methylation. Functional analysis indicated DNA methylation's involvement in complex gene regulations during trap induction, impacting multiple biological processes like response to stimulus, transporter activity, cell reproduction and molecular function regulator. These findings provide a glimpse into the important roles of DNA methylation in trap induction and offer new insights for understanding the molecular mechanisms driving carnivorous lifestyle transition of NTF.


Assuntos
Metilação de DNA , Animais , Ascomicetos/genética , Nematoides/genética
4.
Mol Ecol Resour ; 24(5): e13965, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733216

RESUMO

The ITS-2-rRNA has been particularly useful for nematode metabarcoding but does not resolve all phylogenetic relationships, and reference sequences are not available for many nematode species. This is a particular issue when metabarcoding complex communities such as wildlife parasites or terrestrial and aquatic free-living nematode communities. We have used markerDB to produce four databases of distinct regions of the rRNA cistron: the 18S rRNA gene, the 28S rRNA gene, the ITS-1 intergenic spacer and the region spanning ITS-1_5.8S_ITS-2. These databases comprise 2645, 254, 13,461 and 10,107 unique full-length sequences representing 1391, 204, 1837 and 1322 nematode species, respectively. The comparative analysis illustrates the complementary value but also reveals a better representation of Clade III, IV and V than Clade I and Clade II nematodes in each case. Although the ITS-1 database includes the largest number of unique full-length sequences, the 18S rRNA database provides the widest taxonomic coverage. We also developed PrimerTC, a tool to assess primer sequence conservation across any reference sequence database, and have applied it to evaluate a large number of previously published rRNA cistron primers. We identified sets of primers that currently provide the broadest taxonomic coverage for each rRNA marker across the nematode phylum. These new resources will facilitate more comprehensive metabarcoding of nematode communities using either short-read or long-read sequencing platforms. Further, PrimerTC is available as a simple WebApp to guide or assess PCR primer design for any genetic marker and/or taxonomic group beyond the nematode phylum.


Assuntos
Código de Barras de DNA Taxonômico , Nematoides , Animais , Nematoides/genética , Nematoides/classificação , Código de Barras de DNA Taxonômico/métodos , RNA Ribossômico 18S/genética , DNA Espaçador Ribossômico/genética , RNA Ribossômico 28S/genética , Primers do DNA/genética , DNA de Helmintos/genética , Filogenia , Metagenômica/métodos
5.
Cell Genom ; 4(6): 100580, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38815588

RESUMO

Pathogens are engaged in a fierce evolutionary arms race with their host. The genes at the forefront of the engagement between kingdoms are often part of diverse and highly mutable gene families. Even in this context, we discovered unprecedented variation in the hyper-variable (HYP) effectors of plant-parasitic nematodes. HYP effectors are single-gene loci that potentially harbor thousands of alleles. Alleles vary in the organization, as well as the number, of motifs within a central hyper-variable domain (HVD). We dramatically expand the HYP repertoire of two plant-parasitic nematodes and define distinct species-specific "rules" underlying the apparently flawless genetic rearrangements. Finally, by analyzing the HYPs in 68 individual nematodes, we unexpectedly found that despite the huge number of alleles, most individuals are germline homozygous. These data support a mechanism of programmed genetic variation, termed HVD editing, where alterations are locus specific, strictly governed by rules, and theoretically produce thousands of variants without errors.


Assuntos
Alelos , Animais , Plantas/parasitologia , Plantas/genética , Nematoides/genética , Variação Genética/genética , Doenças das Plantas/parasitologia
6.
Methods Mol Biol ; 2802: 455-472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38819568

RESUMO

The nematode phylum has evolved a remarkable diversity of reproductive modes, including the repeated emergence of asexuality and hermaphroditism across divergent clades. The species-richness and small genome size of nematodes make them ideal systems for investigating the genome-wide causes and consequences of such major transitions. The availability of functional annotations for most Caenorhabditis elegans genes further allows the linking of patterns of gene content evolution with biological processes. Such gene-centric studies were recently complemented by investigations of chromosome evolution that made use of the first chromosome-scale genome assemblies outside the Caenorhabditis genus. This review highlights recent comparative genomic studies of reproductive mode evolution addressing the hybrid origin of asexuality and the parallel gene loss following the emergence of hermaphroditism. It further summarizes ongoing efforts to characterize ancient linkage blocks called Nigon elements, which form central units of chromosome evolution. Fusions between Nigon elements have been demonstrated to impact recombination and speciation. Finally, multiple recent fusions between autosomal and the sex-linked Nigon element reveal insights into the dynamic evolution of sex chromosomes across various timescales.


Assuntos
Caenorhabditis elegans , Evolução Molecular , Genômica , Cromossomos Sexuais , Animais , Caenorhabditis elegans/genética , Cromossomos Sexuais/genética , Genômica/métodos , Nematoides/genética , Cromossomos/genética
7.
J Hazard Mater ; 472: 134474, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696961

RESUMO

Body size is a key life-history trait of organisms, which has important ecological functions. However, the relationship between soil antibiotic resistance gene (ARG) distribution and organisms' body size has not been systematically reported so far. Herein, the impact of organic fertilizer on the soil ARGs and organisms (bacteria, fungi, and nematode) at the aggregate level was analyzed. The results showed that the smaller the soil aggregate size, the greater the abundance of ARGs, and the larger the body size of bacteria and nematodes. Further analysis revealed significant positive correlations of ARG abundance with the body sizes of bacteria, fungi, and nematodes, respectively. Additionally, the structural equation model demonstrated that changes in soil fertility mainly regulate the ARG abundance by affecting bacterial body size. The random forest model revealed that total phosphorus was the primary soil fertility factor influencing the body size of organisms. Therefore, these findings proposed that excessive application of phosphate fertilizers could increase the risk of soil ARG transmission by increasing the body size of soil organisms. This study highlights the significance of organisms' body size in determining the distribution of soil ARGs and proposes a new disadvantage of excessive fertilization from the perspective of ARGs.


Assuntos
Bactérias , Tamanho Corporal , Resistência Microbiana a Medicamentos , Fertilizantes , Fungos , Nematoides , Microbiologia do Solo , Solo , Tamanho Corporal/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos dos fármacos , Animais , Solo/química , Fungos/genética , Fungos/efeitos dos fármacos , Nematoides/efeitos dos fármacos , Nematoides/genética , Resistência Microbiana a Medicamentos/genética
8.
J Helminthol ; 98: e42, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798016

RESUMO

Four species of the genus Longidorus were recovered from southern (Bushehr province) and southeastern (Southern Khorasan province) Iran. The first species, L. paratabrizicus n. sp. represents a new member to the genus and is characterised by 4.8-5.6 mm long females with anteriorly flattened lip region separated from the rest of the body by depression, amphidial fovea pocket-shaped without lobes, tail conical, dorsally convex, ventrally almost straight with bluntly rounded tip and males in population. By having similar lip region and tail shape, the new species most closely resembles five species viz. L. artemisiae, L. globulicauda, L. patuxentensis, L. sturhani, and L. tabrizicus. It represents the cryptic form of the last species. The second species belongs to L. mirus, recovered in both southern and southeastern Iran, representing the first record of the species after its original description. As an update to the characteristics of this species, it's all juvenile developmental stages were recovered and described. The criteria to separate L. mirus from two closely related species, L. auratus and L. africanus, are discussed. The third species belongs to L. persicus, a new record in southern Iran. The fourth species, L. orientalis was recovered in high population density in association with date palm trees in Bushehr province. The phylogenetic relationships of the new species and recovered populations of L. mirus and L. persicus were reconstructed using two ribosomal markers and the resulted topologies were discussed.


Assuntos
Filogenia , Irã (Geográfico) , Animais , Masculino , Feminino , Nematoides/classificação , Nematoides/anatomia & histologia , Nematoides/genética , Microscopia
9.
J Helminthol ; 98: e39, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726571

RESUMO

During nematode surveys of natural vegetation in forests of La Cima de Copey de Dota, San José, San José province, Costa Rica, a Xenocriconemella species closely resembling X. macrodora and related species was found. Integrative taxonomical approaches demonstrated that it is a new species described herein as X. costaricense sp. nov. The new species is parthenogenetic (only females have been detected) and characterised by a short body (276-404 µm); lip region with two annuli, not offset, not separated from body contour; first lip annulus partially covering the second lip annulus. Stylet thin, very long (113-133 µm) and flexible, occupying 30.5-47.8% of body length. Excretory pore located from one or two annuli anterior to one or two annuli posterior to level of stylet knobs, at 42 (37-45) µm from anterior end. Female genital tract monodelphic, prodelphic, outstretched, and occupying 35-45% of body length, with vagina slightly ventrally curved (14-18 µm long). Anus located 6-11 annuli from the tail terminus. Tail conoid and bluntly rounded terminus, the last 2-3 annuli oriented dorsally. Results of molecular characterisation and phylogenetic analyses of D2-D3 expansion segments of 28S rRNA, ITS, and partial 18S rRNA, as well as cytochrome oxidase c subunit 1 gene sequences further characterised the new species and clearly separated it from X. macrodora and other related species (X. iberica, X. paraiberica, and X. pradense).


Assuntos
Filogenia , Animais , Costa Rica , Feminino , Masculino , Nematoides/classificação , Nematoides/anatomia & histologia , Nematoides/genética , DNA Ribossômico/genética , RNA Ribossômico 28S/genética , DNA de Helmintos/genética , Florestas , Análise de Sequência de DNA
10.
Curr Protoc ; 4(5): e1035, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727641

RESUMO

Nematodes are naturally infected by the fungal-related pathogen microsporidia. These ubiquitous eukaryotic parasites are poorly understood, despite infecting most types of animals. Identifying novel species of microsporidia and studying them in an animal model can expedite our understanding of their infection biology and evolution. Nematodes present an excellent avenue for pursuing such work, as they are abundant in the environment and many species are easily culturable in the laboratory. The protocols presented here describe how to isolate bacterivorous nematodes from rotting substrates, screen them for microsporidia infection, and molecularly identify the nematode and microsporidia species. Additionally, we detail how to remove environmental contaminants and generate a spore preparation of microsporidia from infected samples. We also discuss potential pitfalls and provide suggestions on how to mitigate them. These protocols allow for the identification of novel microsporidia species, which can serve as an excellent starting point for genomic analysis, determination of host specificity, and infection characterization. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Gathering samples Support Protocol 1: Generating 10× and 40× Escherichia coli OP50 and seeding NGM plates Basic Protocol 2: Microsporidia screening, testing for Caenorhabditis elegans susceptibility, and sample freezing Basic Protocol 3: DNA extraction, PCR amplification, and sequencing to identify nematode and microsporidia species Basic Protocol 4: Removal of contaminating microbes and preparation of microsporidia spores Support Protocol 2: Bleach-synchronizing nematodes.


Assuntos
Microsporídios , Nematoides , Animais , Microsporídios/isolamento & purificação , Microsporídios/genética , Microsporídios/classificação , Microsporídios/patogenicidade , Nematoides/microbiologia , Nematoides/genética , Caenorhabditis elegans/microbiologia , DNA Fúngico/genética , Reação em Cadeia da Polimerase , Microsporidiose/microbiologia , Esporos Fúngicos/isolamento & purificação
11.
Curr Biol ; 34(10): 2147-2161.e5, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38688284

RESUMO

An increasing number of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and increased numbers of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the nematode Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among other nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these nematodes, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes. These karyotype changes may lead to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms are dynamic and may play a role during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.


Assuntos
Cariótipo , Animais , Masculino , Cromossomos/genética , Nematoides/genética , Feminino , DNA de Helmintos/genética
12.
Parasitology ; 151(5): 529-538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659195

RESUMO

A comprehensive investigation, incorporating both morphological and molecular analyses, has unveiled the existence of a hitherto unknown nematode species, Paracapillaria (Ophidiocapillaria) siamensis sp. nov., residing in the intestine of the monocled cobra, Naja kaouthia, in the central region of Thailand. This study integrates morphological characteristics, morphometric examination, scanning electron microscopy and molecular phylogenetic analysis (COI, 18S rRNA and ITS1 genes). The findings place the newly described species within the subgenus Ophidiocapillaria, elucidating its distinctive characteristics, including a frame-like proximal spicule shape, approximate lengths of 19 000 and 22 500 µm with approximate widths of 90 and 130 µm for males and females, 39‒45 stichocytes, elevated lips without protrusion, a dorsal bacillary band stripe with an irregular pattern of bacillary cells and evidence of intestinal infection. These features serve to differentiate it from other species within the same subgenus, notably Paracapillaria (Ophidiocapillaria) najae De, , a species coexisting P. siamensis sp. nov. in the monocled cobra from the same locality. This study addresses the co-infection of the novel species and P. najae within the same snake host, marking the second documented instance of a paracapillariid species in the monocled cobra within the family Elapidae. The genetic characterization supports the formal recognition of P. siamensis sp. nov. as a distinct species, thereby underscoring its taxonomic differentiation within the Capillariidae family. This research identifies and characterizes the new nematode species, contributing valuable insights into the taxonomy of this nematode.


Assuntos
Filogenia , Animais , Tailândia , Masculino , Feminino , Microscopia Eletrônica de Varredura/veterinária , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/análise , Naja , Nematoides/classificação , Nematoides/ultraestrutura , Nematoides/genética , Nematoides/anatomia & histologia , Intestinos/parasitologia , DNA de Helmintos
13.
Sci Adv ; 10(15): eadk6062, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598624

RESUMO

Experimental genetics in a nematode reveals a key role for developmental plasticity in the evolution of nutritional diversity.


Assuntos
Duplicação Gênica , Nematoides , Animais , Genes de Troca , Evolução Molecular , Nematoides/genética , Genoma , Filogenia
14.
J Helminthol ; 98: e32, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618914

RESUMO

Two new species of the genus Sectonema found in northern Iran are characterized, including morphological descriptions and molecular (18S-, 28S-rDNA) analyses. Sectonema tehranense sp. nov. is distinguished by its 7.22 - 8.53 mm long body, lip region offset by constriction and 24 - 31 µm wide with perioral lobes and abundant setae- or cilia-like projections covering the oral field, mural tooth 15.5 - 17 µm long at its ventral side, neck 1091 - 1478 µm long, pharyngeal expansion occupying 61 - 71% of the total neck length, female genital system diovarian, uterus simple and 3.9 - 4.2 times the corresponding body diameter long, transverse vulva (V = 49 - 59), tail short and rounded (44 - 65 µm, c = 99 - 162, c' = 0.6 - 0.8), spicules 111 - 127 µm long, and 7 - 10 spaced ventromedian supplements with hiatus. Sectonema noshahrense sp. nov. displays a 4.07 - 4.73 mm long body, lip region offset by constriction and 23 - 25 µm wide with perioral lobes and abundant setae- or cilia-like projections covering the oral field, odontostyle 14 - 14.5 µm long, neck 722 - 822 µm long, pharyngeal expansion occupying 66 - 68% of the total neck length, female genital system diovarian, uterus simple and 2.4 - 2.7 times the corresponding body diameter long, transverse vulva (V = 54 - 55), tail convex conoid (39 - 47 µm, c = 91 - 111, c' = 0.8 - 0.9), spicules 82 µm long, and seven spaced ventromedian supplements with hiatus. Molecular analyses confirm a maximally supported (Epacrolaimus + Metaporcelaimus + Sectonema) clade and a tentative biogeographical pattern, with sequences of Indolamayan taxa forming a clade separated from those of Palearctic ones. Parallel or convergent evolution processes might be involved in the phylogeny of the species currently classified under Sectonema. This genus is certainly more heterogeneous than previously assumed.


Assuntos
Helmintos , Nematoides , Feminino , Animais , Irã (Geográfico) , Citoesqueleto , DNA Ribossômico/genética , Nematoides/genética
15.
PLoS One ; 19(4): e0298905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578734

RESUMO

Nematodes are keystone actors of soil, freshwater and marine ecosystems, but the complexity of morphological identification has limited broad-scale monitoring of nematode biodiversity. DNA metabarcoding is increasingly used to assess nematode diversity but requires universal primers with high taxonomic coverage and high taxonomic resolution. Several primers have been proposed for the metabarcoding of nematode diversity, many of which target the 18S rRNA gene. In silico analyses have a great potential to assess key parameters of primers, including taxonomic coverage, resolution and specificity. Based on a recently-available reference database, we tested in silico the performance of fourteen commonly used and one newly optimized primer for nematode metabarcoding. Most primers showed very good coverage, amplifying most of the sequences in the reference database, while four markers showed limited coverage. All primers showed good taxonomic resolution. Resolution was particularly good if the aim was the identification of higher-level taxa, such as genera or families. Overall, species-level resolution was higher for primers amplifying long fragments. None of the primers was highly specific for nematodes as, despite some variation, they all amplified a large number of other eukaryotes. Differences in performance across primers highlight the complexity of the choice of markers appropriate for the metabarcoding of nematodes, which depends on a trade-off between taxonomic resolution and the length of amplified fragments. Our in silico analyses provide new insights for the identification of the most appropriate primers, depending on the study goals and the origin of DNA samples. This represents an essential step to design and optimize metabarcoding studies assessing nematode diversity.


Assuntos
Ecossistema , Nematoides , Humanos , Animais , DNA Ribossômico/genética , Código de Barras de DNA Taxonômico , Nematoides/genética , RNA Ribossômico 18S/genética , Biodiversidade
16.
BMC Genomics ; 25(1): 341, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575858

RESUMO

BACKGROUND: Parasitic nematodes, significant pathogens for humans, animals, and plants, depend on diverse organ systems for intra-host survival. Understanding the cellular diversity and molecular variations underlying these functions holds promise for developing novel therapeutics, with specific emphasis on the neuromuscular system's functional diversity. The nematode intestine, crucial for anthelmintic therapies, exhibits diverse cellular phenotypes, and unraveling this diversity at the single-cell level is essential for advancing knowledge in anthelmintic research across various organ systems. RESULTS: Here, using novel single-cell transcriptomics datasets, we delineate cellular diversity within the intestine of adult female Ascaris suum, a parasitic nematode species that infects animals and people. Gene transcripts expressed in individual nuclei of untreated intestinal cells resolved three phenotypic clusters, while lower stringency resolved additional subclusters and more potential diversity. Clusters 1 and 3 phenotypes displayed variable congruence with scRNA phenotypes of C. elegans intestinal cells, whereas the A. suum cluster 2 phenotype was markedly unique. Distinct functional pathway enrichment characterized each A. suum intestinal cell cluster. Cluster 2 was distinctly enriched for Clade III-associated genes, suggesting it evolved within clade III nematodes. Clusters also demonstrated differential transcriptional responsiveness to nematode intestinal toxic treatments, with Cluster 2 displaying the least responses to short-term intra-pseudocoelomic nematode intestinal toxin treatments. CONCLUSIONS: This investigation presents advances in knowledge related to biological differences among major cell populations of adult A. suum intestinal cells. For the first time, diverse nematode intestinal cell populations were characterized, and associated biological markers of these cells were identified to support tracking of constituent cells under experimental conditions. These advances will promote better understanding of this and other parasitic nematodes of global importance, and will help to guide future anthelmintic treatments.


Assuntos
Anti-Helmínticos , Nematoides , Humanos , Animais , Caenorhabditis elegans , Intestinos , Nematoides/genética , Perfilação da Expressão Gênica , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
17.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673861

RESUMO

Plant-parasitic nematodes (PPNs) are among the most serious phytopathogens and cause widespread and serious damage in major crops. In this study, using a genome mining method, we identified nonribosomal peptide synthetase (NRPS)-like enzymes in genomes of plant-parasitic nematodes, which are conserved with two consecutive reducing domains at the N-terminus (A-T-R1-R2) and homologous to fungal NRPS-like ATRR. We experimentally investigated the roles of the NRPS-like enzyme (MiATRR) in nematode (Meloidogyne incognita) parasitism. Heterologous expression of Miatrr in Saccharomyces cerevisiae can overcome the growth inhibition caused by high concentrations of glycine betaine. RT-qPCR detection shows that Miatrr is significantly upregulated at the early parasitic life stage (J2s in plants) of M. incognita. Host-derived Miatrr RNA interference (RNAi) in Arabidopsis thaliana can significantly decrease the number of galls and egg masses of M. incognita, as well as retard development and reduce the body size of the nematode. Although exogenous glycine betaine and choline have no obvious impact on the survival of free-living M. incognita J2s (pre-parasitic J2s), they impact the performance of the nematode in planta, especially in Miatrr-RNAi plants. Following application of exogenous glycine betaine and choline in the rhizosphere soil of A. thaliana, the numbers of galls and egg masses were obviously reduced by glycine betaine but increased by choline. Based on the knowledge about the function of fungal NRPS-like ATRR and the roles of glycine betaine in host plants and nematodes, we suggest that MiATRR is involved in nematode-plant interaction by acting as a glycine betaine reductase, converting glycine betaine to choline. This may be a universal strategy in plant-parasitic nematodes utilizing NRPS-like ATRR to promote their parasitism on host plants.


Assuntos
Arabidopsis , Betaína , Peptídeo Sintases , Tylenchoidea , Betaína/metabolismo , Animais , Tylenchoidea/metabolismo , Tylenchoidea/genética , Arabidopsis/parasitologia , Arabidopsis/metabolismo , Arabidopsis/genética , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Nematoides/metabolismo , Nematoides/genética
18.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542075

RESUMO

This research investigated the factors associated with the quantitative detection of Paratrichodorus allius in soil using droplet digital PCR (ddPCR). Small-sized nematodes exhibited significantly lower DNA quantities compared to their medium and large counterparts. Soil pre-treatments (room temperature drying and 37 °C oven-drying) demonstrated no substantial impact on ddPCR detection, and soil storage (0-3 months at 4 °C) exhibited negligible alterations in DNA quantities. A commercial DNA purification kit improved the resulting quality of ddPCR, albeit at the cost of a notable reduction in DNA quantity. Upon assessing the impact of inhibitors from soil extracts, a higher inhibitor concentration (5%) influenced ddPCR amplification efficiency. Incorporating bovine serum albumin (BSA) (0.2 µg/µL or 0.4 µg/µL) into the ddPCR setup mitigated the issue. In brief, while ddPCR exhibits minimal sensitivity to soil pre-treatments and storage, higher concentrations of PCR inhibitors and the DNA purification process can influence the results. Despite ddPCR's capability to detect nematodes of all sizes, quantification may not precisely reflect soil population. Incorporating BSA into the ddPCR setup enhances both detection and quantification capacities. This study represents the first comprehensive investigation of its kind for plant-parasitic nematodes, providing crucial insights for application of ddPCR in nematode diagnosis directly from the soil DNA.


Assuntos
Nematoides , Solo , Animais , Reação em Cadeia da Polimerase/métodos , Nematoides/genética , DNA/genética
19.
Mol Ecol ; 33(9): e17331, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38533629

RESUMO

Marine sediments cover 70% of the Earth's surface, and harbour diverse bacterial communities critical for marine biogeochemical processes, which affect climate change, biodiversity and ecosystem functioning. Nematodes, the most abundant and species-rich metazoan organisms in marine sediments, in turn, affect benthic bacterial communities and bacterial-mediated ecological processes, but the underlying mechanisms by which they affect biogeochemical cycles remain poorly understood. Here, we demonstrate using a metatranscriptomic approach that nematodes alter the taxonomic and functional profiles of benthic bacterial communities. We found particularly strong stimulation of nitrogen-fixing and methane-oxidizing bacteria in the presence of nematodes, as well as increased functional activity associated with methane metabolism and degradation of various carbon compounds. This study provides empirical evidence that the presence of nematodes results in taxonomic and functional shifts in active bacterial communities, indicating that nematodes may play an important role in benthic ecosystem processes.


Assuntos
Bactérias , Ecossistema , Sedimentos Geológicos , Nematoides , Animais , Nematoides/microbiologia , Nematoides/genética , Bactérias/genética , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Biodiversidade , Transcriptoma , Microbiota/genética , Metano/metabolismo
20.
J Helminthol ; 98: e26, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509862

RESUMO

Grapevine fanleaf virus (GFLV) is one of the most severe virus diseases of grapevines, causing fanleaf degeneration that is transmitted by Xiphinema index. This paper aims to isolate Xiphinema species from Tunisian vineyard soil samples and assess their ability to acquire and transmit GFLV under natural and controlled conditions. Based on morphological and morphometric analyses, Tunisian dagger nematodes were identified as X. index and Xiphinema italiae. These results were confirmed with molecular identification tools using species-specific polymerase chain reaction primers. The total RNA of GFLV was extracted from specimens of Xiphinema and amplified based on real-time polymerase chain reaction using virus-specific primers. Our results showed that X. index could acquire and transmit the viral particles of GFLV. This nepovirus was not detected in X. italiae, under natural conditions; however, under controlled conditions, this nematode was able to successfully acquire and transmit the viral particles of GFLV.


Assuntos
Nematoides , Nepovirus , Animais , RNA Viral/genética , Nematoides/genética , Nepovirus/genética , Vetores de Doenças , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...