Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Comp Neurol ; 523(17): 2618-36, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25982840

RESUMO

The dorsal ventricular ridge (DVR) is one of the main components of the sauropsid pallium. In birds, the DVR is formed by an inner region, the nidopallium, and a more dorsal region, the mesopallium. The nidopallium contains discrete areas that receive auditory, visual, and multisensory collothalamic projections. These nidopallial nuclei are known to sustain reciprocal, short-range projections with their overlying mesopallial areas. Recent findings on the anatomical organization of the auditory DVR have shown that these short-range projections have a columnar organization that closely resembles that of the mammalian neocortex. However, it is unclear whether this columnar organization generalizes to other areas within the DVR. Here we examine in detail the organization of the visual DVR, performing small, circumscribed deposits of neuronal tracers as well as intracellular fillings in brain slices. We show that the visual DVR is organized in three main laminae, the thalamorecipient nucleus entopallium; a dorsally adjacent nidopallial lamina, the intermediate nidopallium; and a contiguous portion of the ventral mesopallium, the mesopallium ventrale. As in the case of the auditory DVR, we found a highly topographically organized system of reciprocal interconnections among these layers, which was formed by dorsoventrally oriented, discrete columnar bundles of axons. We conclude that the columnar organization previously demonstrated in the auditory DVR is not a unique feature but a general characteristic of the avian sensory pallium. We discuss these results in the context of a comparison between sauropsid and mammalian pallial organization.


Assuntos
Galinhas/anatomia & histologia , Neocórtex/anatomia & histologia , Telencéfalo/anatomia & histologia , Vias Visuais/anatomia & histologia , Animais , Galinhas/crescimento & desenvolvimento , Lisina/análogos & derivados , Lisina/metabolismo , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Vias Visuais/fisiologia
2.
Brain Res Bull ; 84(2): 125-36, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21146594

RESUMO

The six-layered neocortex is both a unique and a universal character of mammals. Historically, a major concern has been to determine its phylogenetic origins by establishing which structures, if any, correspond to it in the brains of other vertebrates. Two opposing hypotheses have been debated in the last years: (i) the neocortex arises entirely from the dorsal hemisphere of ancestral reptiles, and (ii) a large portion of it originates in the lateral hemisphere, from a structure termed the dorsal ventricular ridge (DVR), which expands significantly in reptiles and especially in birds. While developmental and genetic evidence strongly favors a dorsal origin of the neocortex, there are important similarities in the sensory connectivity to the neocortex and to the DVR, and more recently, in the phenotype of late-produced elements in both structures. It is proposed that, despite originating in different embryonic domains, the proliferative expansion of both the mammalian neocortex and the sauropsidian DVR is partly based on the amplification of similar developmental programs, possibly dependent on Pax6 activity or of related cascades that promote progenitor proliferation. While Pax6 activity is already present in the amphibian pallium, I propose that at some point(s) in amniote evolution it has been upregulated yielding brain expansion in both sauropsids and mammals. However, in the latter there has been an additional dorsalizing influence contributing to the development of the neocortex and restricting the expansion of the lateral hemisphere. Finally, a significant contribution to neocortical origins by anterior signaling centers secreting FGFs is suggested, by virtue of their association to olfactory development and their cortical patterning functions. This perspective fits a dynamical view of brain homology, where instead of searching for a one-to-one correspondence between components, emphasis is placed on changes in the modulation of conserved signaling centers and their corresponding morphogen gradients across species.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Mamíferos , Morfogênese , Neocórtex/anatomia & histologia , Neocórtex/fisiologia , Animais , Aves/anatomia & histologia , Aves/fisiologia , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/fisiologia , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Répteis/anatomia & histologia , Répteis/fisiologia
3.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; Braz. J. Psychiatry (São Paulo, 1999, Impr.);28(4): 326-338, dez. 2006. tab, ilus
Artigo em Português | LILACS | ID: lil-440228

RESUMO

Tendo como base dados de literatura, esta revisão trata dos aspectos genéricos da evolução filogenética do sistema nervoso central, ressaltando em particular o desenvolvimento evolutivo das estruturas encefálicas relacionadas com o comportamento e com as funções cognitivas que vieram caracterizar o ser humano. Sobre as estruturas límbicas, que por ocasião do advento dos mamíferos evolutivamente se desenvolveram sobre o topo do sistema nervoso mais primitivo dos seus ancestrais, o ulterior desenvolvimento cortical com neurônios dispostos em camadas constituiu a base estrutural que viabilizou a discriminação fina das funções sensitivas e sensoriais, a maior complexidade das funções motoras e o desenvolvimento das funções cognitivas e intelectuais que acabaram caracterizando o ser humano. O conhecimento da evolução filogenética do sistema nervoso central nos permite inferir possíveis correlações entre as estruturas encefálicas que se desenvolveram ao longo do processo evolutivo e o comportamento dos seus respectivos seres. Nesta direção, sem se deter em questões de ordem conceitual, a presente revisão termina discutindo possíveis paralelos entre a evolução do sistema nervoso central e a emergência da consciência, à luz das recentes contribuições sobre o assunto.


This text reviews the generic aspects of the central nervous system evolutionary development, emphasizing the developmental features of the brain structures related with behavior and with the cognitive functions that finally characterized the human being. Over the limbic structures that with the advent of mammals were developed on the top of the primitive nervous system of their ancestrals, the ultimate cortical development with neurons arranged in layers constituted the structural base for an enhanced sensory discrimination, for more complex motor activities, and for the development of cognitive and intellectual functions that finally characterized the human being. The knowledge of the central nervous system phylogeny allow us particularly to infer possible correlations between the brain structures that were developed along phylogeny and the behavior of their related beings. In this direction, without discussing its conceptual aspects, this review ends with a discussion about the central nervous system evolutionary development and the emergence of consciousness, in the light of its most recent contributions.


Assuntos
Humanos , Animais , Sistema Nervoso Central/fisiologia , Estado de Consciência/fisiologia , Filogenia , Comportamento Social , Comportamento Animal/fisiologia , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/embriologia , Desenvolvimento Humano/fisiologia , Sistema Límbico/anatomia & histologia , Sistema Límbico/fisiologia , Neocórtex/anatomia & histologia , Neocórtex/fisiologia
4.
Int J Dev Neurosci ; 24(1): 15-21, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16426795

RESUMO

In the present study, we tested the hypothesis that the ontogenetic development of the corpus callosum is relevant for the establishment of a normal neocortical structure. To that effect, neocortical morphology (thickness and neuronal density) was analyzed in adult Swiss mice rendered acallosal by midline transection at the first postnatal day (Acallosal group) and in non-manipulated mice. The neocortical thicknesses and neuronal densities of layers II+III through VI were measured in area 6 and at the 17/18a border, both of which present abundant callosal inputs, and in the relatively acallosal area 17. For the thickness measure, significant differences between Non-manipulated and Acallosal groups were only found in the areas that receive massive callosal connections. In area 6, Acallosal mice presented a reduced thickness of layer V, while at the 17/18a border, these mice presented a reduced thickness of layers II+III when compared to non-manipulated ones. No statistical difference between acallosal and non-manipulated mice was found regarding the neuronal density measure. The reduced cortical thickness associated with a comparatively normal neuronal density in neocortical regions which normally have abundant callosal connections suggest a reduction in the number of cortical neurons in acallosal mice. Altogether, the present data indicate that the input provided by callosal axons is necessary for the normal development of the neocortex.


Assuntos
Corpo Caloso , Neocórtex , Agenesia do Corpo Caloso , Animais , Animais Recém-Nascidos , Corpo Caloso/anatomia & histologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/cirurgia , Feminino , Humanos , Masculino , Camundongos , Neocórtex/anormalidades , Neocórtex/anatomia & histologia , Neocórtex/crescimento & desenvolvimento , Fatores Sexuais
5.
Braz J Psychiatry ; 28(4): 326-38, 2006 12.
Artigo em Português | MEDLINE | ID: mdl-17242815

RESUMO

This text reviews the generic aspects of the central nervous system evolutionary development, emphasizing the developmental features of the brain structures related with behavior and with the cognitive functions that finally characterized the human being. Over the limbic structures that with the advent of mammals were developed on the top of the primitive nervous system of their ancestrals, the ultimate cortical development with neurons arranged in layers constituted the structural base for an enhanced sensory discrimination, for more complex motor activities, and for the development of cognitive and intellectual functions that finally characterized the human being. The knowledge of the central nervous system phylogeny allow us particularly to infer possible correlations between the brain structures that were developed along phylogeny and the behavior of their related beings. In this direction, without discussing its conceptual aspects, this review ends with a discussion about the central nervous system evolutionary development and the emergence of consciousness, in the light of its most recent contributions.


Assuntos
Sistema Nervoso Central/fisiologia , Estado de Consciência/fisiologia , Filogenia , Comportamento Social , Animais , Comportamento Animal/fisiologia , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/embriologia , Desenvolvimento Humano/fisiologia , Humanos , Sistema Límbico/anatomia & histologia , Sistema Límbico/fisiologia , Neocórtex/anatomia & histologia , Neocórtex/fisiologia
6.
Behav Brain Sci ; 26(5): 535-52; discussion 552-85, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15179935

RESUMO

The isocortex is a distinctive feature of mammalian brains, which has no clear counterpart in the cerebral hemispheres of other amniotes. This paper speculates on the evolutionary processes giving rise to the isocortex. As a first step, we intend to identify what structure may be ancestral to the isocortex in the reptilian brain. Then, it is necessary to account for the transformations (developmental, connectional, and functional) of this ancestral structure, which resulted in the origin of the isocortex. One long-held perspective argues that part of the isocortex derives from the ventral pallium of reptiles, whereas another view proposes that the isocortex originated mostly from the dorsal pallium. We consider that, at this point, evidence tends to favor correspondence of the isocortex with the dorsal cortex of reptiles. In any case, the isocortex may have originated partly as a consequence of an overall "dorsalizing" effect (that is, an expansion of the territories expressing dorsal-specific genes) during pallial development. Furthermore, expansion of the dorsal pallium may have been driven by selective pressures favoring the development of associative networks between the dorsal cortex, the olfactory cortex, and the hippocampus, which participated in spatial or episodic memory in the early mammals. In this context, sensory projections that in reptiles end in the ventral pallium, are observed to terminate in the isocortex (dorsal pallium) of mammals, perhaps owing to their participation in these associative networks.


Assuntos
Evolução Biológica , Neocórtex/anatomia & histologia , Neocórtex/fisiologia , Percepção/fisiologia , Anatomia Comparada , Animais , Gânglios da Base/anatomia & histologia , Gânglios da Base/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Humanos , Mamíferos , Modelos Neurológicos , Morfogênese , Répteis , Olfato/fisiologia
7.
Brain Res Bull ; 58(4): 411-6, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12183019

RESUMO

We used acallosal and normal adult BALB/cCF mice to test the hypothesis that the development of the corpus callosum is relevant for the establishment of a normal structure of the neocortex. Neuronal density and thickness of individual layers were analyzed in neocortical regions with abundant callosal connections (area 6 and the 17/18a border) and in the relatively acallosal area 17. In area 6, acallosal mice exhibited a total neocortical thickness smaller than that of normal mice, as well as thinner layers II+III and IV. Similar data were obtained at the 17/18a border, where the total thickness of the cortex and of layers II+III was smaller in the acallosal mice than in normal ones. In contrast, no significant thickness differences were documented in area 17 of acallosal versus normal mice. The quantitative data obtained in the analyzed neocortical regions did not show differences in neuronal density between acallosal and normal mice. The reduced cortical thickness, associated with the comparatively normal neuronal density in neocortical regions which normally have abundant callosal connections, provides indirect indication of a reduction in the number of cortical neurons in acallosal mice. This assumption was also supported by the lack of evidence of neocortical alterations in the acallosal area 17. The present findings suggest that during development neocortical neurons destined to receive a massive callosal input may die as a result of lack of afferents. Altogether the present data indicate that the input provided by callosal axons is necessary for a normal development of the neocortex.


Assuntos
Agenesia do Corpo Caloso , Neocórtex/anatomia & histologia , Neocórtex/crescimento & desenvolvimento , Neurônios/citologia , Vias Aferentes/patologia , Vias Aferentes/fisiologia , Animais , Contagem de Células/estatística & dados numéricos , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neocórtex/patologia , Neurônios/patologia , Neurônios/fisiologia
8.
Rev. chil. anat ; 18(1): 35-46, 2000. ilus
Artigo em Espanhol | LILACS | ID: lil-270866

RESUMO

En los estudios de neurología experimental se ha evitado, en general, utilizar al perro, a pesar que esta especie es una de las favoritas para la fisiología experimental. Esta situación se debe en parte a la variabilidad en la morfometría de su cráneo, pero la causa fundamental es que la investigación se ha realizado en otras especies en las que la anatomía del encéfalo es mejor conocida. Los trabajos de Lim, Liu y Moffit demostraron que la variabilidad de las cabezas de los perros no era necesariamente un obstáculo, y aplicaron en los caninos la técnica estereotáxica de Horsley y Clarke. A partir de tales estudios, se multiplicaron las posibilidades en la investigación de la neuroanatomía del perro. No obstante, la cantidad y calidad de información respecto al encéfalo de los caninos que ha generado este impulso en la neurofisiología y la neurología experimental, no ha encontrado su contraparte en la neuroanatomía, situación que genera una disociación del conocimiento, al punto de trabajar con distintas nomenclaturas y denominaciones. En este trabajo se ha intentado, con un criterio fundamentalmente anatómico, conjugar las descripciones macroscópicas del cerebro de los caninos con las descripciones citoarquitectónicas, así como también, con los hallazgos funcionales, para que la neuroanatomía sea la base de la pirámide del conocimiento en el que se sustenta la neurofisiología y la neurología aplicada


Assuntos
Animais , Gatos , Cães , Cérebro/anatomia & histologia , Cães/anatomia & histologia , Carnívoros/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Neocórtex/anatomia & histologia , Primatas/anatomia & histologia , Telencéfalo/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA