Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Biomed Pharmacother ; 179: 117292, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151314

RESUMO

A type of colorectal cancer (CRC),Colitis-associated colorectal cancer (CAC), is closely associated with chronic inflammation and gut microbiota dysbiosis. Berberine (BBR) has a long history in the treatment of intestinal diseases, which has been reported to inhibit colitis and CRC. However, the mechanism of its action is still unclear. Here, this study aimed to explore the potential protective effects of BBR on azoxymethane (AOM)/dextransulfate sodium (DSS)-induced colitis and tumor mice, and to elucidate its potential molecular mechanisms by microbiota, genes and metabolic alterations. The results showed that BBR inhibited the gut inflammation and improved the function of mucosal barrier to ameliorate AOM/DSS-induced colitis. And BBR treatment significantly reduced intestinal tumor development and ki-67 expression of intestinal tissue along with promoted apoptosis. Through microbiota analysis based on the 16 S rRNA gene, we found that BBR treatment improved intestinal microbiota imbalance in AOM/DSS-induced colitis and tumor mice, which were characterized by an increase of beneficial bacteria, for instance Akkermanisa, Lactobacillus, Bacteroides uniformis and Bacteroides acidifaciens. In addition, transcriptome analysis showed that BBR regulated colonic epithelial signaling pathway in CAC mice particularly by tryptophan metabolism and Wnt signaling pathway. Notably, BBR treatment resulted in the enrichment of amino acids metabolism and microbiota-derived SCFA metabolites. In summary, our research findings suggest that the gut microbiota-amino acid metabolism-Wnt signaling pathway axis plays critical role in maintaining intestinal homeostasis, which may provide new insights into the inhibitory effects of BBR on colitis and colon cancer.


Assuntos
Azoximetano , Berberina , Neoplasias Associadas a Colite , Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , Metabolômica , Transcriptoma , Berberina/farmacologia , Berberina/uso terapêutico , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Camundongos , Azoximetano/toxicidade , Colite/microbiologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Neoplasias Associadas a Colite/microbiologia , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Associadas a Colite/patologia , Masculino , Camundongos Endogâmicos C57BL , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/tratamento farmacológico , Disbiose , Modelos Animais de Doenças
2.
Theranostics ; 14(11): 4393-4410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113810

RESUMO

Rationale: The treatment of ulcerative colitis (UC) presents an ongoing clinical challenge. Emerging research has implicated that the cGAS-STING pathway promotes the progression of UC, but conflicting results have hindered the development of STING as a therapeutic target. In the current study, we aim to comprehensively elucidate the origins, downstream signaling and pathogenic roles of myeloid STING in colitis and colitis-associated carcinoma (CAC). Methods: Tmem173 fl/fl Lyz2-Cre ert2 mice were constructed for inducible myeloid-specific deletion of STING. RNA-sequencing, flow cytometry, and multiplex immunohistochemistry were employed to investigate immune responses in DSS-induced colitis or AOM/DSS-induced carcinogenesis. Colonic organoids, primary bone marrow derived macrophages and dendritic cells, and splenic T cells were used for in vitro studies. Results: We observed that myeloid STING knockout in adult mice inhibited macrophage maturation, reduced DC cell activation, and suppressed pro-inflammatory Th1 and Th17 cells, thereby protecting against both acute and chronic colitis and CAC. However, myeloid STING deletion in neonatal or tumor-present mice exhibited impaired immune tolerance and anti-tumor immunity. Furthermore, we found that TFAM-associated mtDNA released from damaged colonic organoids, rather than bacterial products, activates STING in dendritic cells in an extracellular vesicle-independent yet endocytosis-dependent manner. Both IRF3 and NF-κB are required for STING-mediated expression of IL-12 family cytokines, promoting Th1 and Th17 differentiation and contributing to excessive inflammation in colitis. Conclusions: Detection of the TFAM-mtDNA complex from damaged intestinal epithelium by myeloid STING exacerbates colitis through IL-12 cytokines, providing new evidence to support the development of STING as a therapeutic target for UC and CAC.


Assuntos
DNA Mitocondrial , Células Dendríticas , Interleucina-12 , Mucosa Intestinal , Proteínas de Membrana , Camundongos Knockout , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Interleucina-12/metabolismo , Interleucina-12/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/imunologia , Camundongos Endogâmicos C57BL , Colite/patologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/genética , Transdução de Sinais , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/imunologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/metabolismo , Neoplasias Associadas a Colite/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Modelos Animais de Doenças , Sulfato de Dextrana
3.
Front Biosci (Landmark Ed) ; 29(8): 276, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39206897

RESUMO

Colitis-associated cancer (CAC) is the most serious complication of inflammatory bowel disease. In recent years, the incidence of CAC has increased worldwide. Oxidative stress (OS) is involved in the development of CAC through oxidative damage to biomolecules or activation of inflammatory signaling pathways. Exosomes are extracellular vesicles that act as messengers to deliver signals and macromolecules to target cells, making them important mediators of intercellular communication and exchange of biologically active molecules between cells. MicroRNAs (miRNAs) carried by exosomes regulate the pro- and anti-inflammatory pathways of OS and play a key role in communication between OS and cancer cells. This review describes the correlation between OS and exosomal miRNAs with the goal of identifying a novel therapeutic method for CAC.


Assuntos
Neoplasias Associadas a Colite , Exossomos , MicroRNAs , Estresse Oxidativo , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Exossomos/metabolismo , Exossomos/genética , Neoplasias Associadas a Colite/metabolismo , Neoplasias Associadas a Colite/etiologia , Neoplasias Associadas a Colite/genética , Animais , Transdução de Sinais
4.
Sci Rep ; 14(1): 18094, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103474

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon, and its pathogenesis remains unclear. Polyamine metabolic enzymes play a crucial role in UC. In this study, we aimed to identify pivotal polyamine-related genes (PRGs) and explore the underlying mechanism between PRGs and the disease status and therapeutic response of UC. We analyzed mRNA-sequencing data and clinical information of UC patients from the GEO database and identified NNMT, PTGS2, TRIM22, TGM2, and PPARG as key PRGs associated with active UC using differential expression analysis and weighted gene co-expression network analysis (WCGNA). Receiver operator characteristic curve (ROC) analysis confirmed the accuracy of these key genes in UC and colitis-associated colon cancer (CAC) diagnosis, and we validated their relationship with therapeutic response in external verification sets. Additionally, single-cell analysis revealed that the key PRGs were specific to certain immune cell types, emphasizing the vital role of intestinal tissue stem cells in active UC. The results were validated in vitro and in vivo experiments, including the colitis mice model and CAC mice model. In conclusion, these key PRGs effectively predict the progression of UC patients and could serve as new pharmacological biomarkers for the therapeutic response of UC.


Assuntos
Biomarcadores , Colite Ulcerativa , Poliaminas , Análise de Célula Única , Colite Ulcerativa/genética , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/terapia , Animais , Humanos , Camundongos , Biomarcadores/metabolismo , Análise de Célula Única/métodos , Poliaminas/metabolismo , Modelos Animais de Doenças , Proteína 2 Glutamina gama-Glutamiltransferase , Masculino , Feminino , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismo
5.
Discov Med ; 36(186): 1363-1369, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054707

RESUMO

BACKGROUND: Ulcerative colitis is a well-known inflammatory bowel disease. Patients have an increased risk of developing colitis associated carcinoma (CAC). It is important for patient management to be able to distinguish between ulcerative colitis associated carcinoma and sporadic carcinoma (sCRC). However, this distinction is frequently very challenging. It is not readily possible to differentiate this histologically. However, the diagnosis is crucial for the patient's further treatment and follow-up. An attempt was therefore made to develop a diagnostic regime that would enable a reliable distinction between sCRC and CAC. METHODS: We screened 96 patients analyzing more than 850,000 methylation hotspots, to detect distinct epigenetic patterns between both types of carcinomas. Patients with sporadic carcinoma and colitis-associated carcinoma as well as patients with normal colon and patients with confirmed ulcerative colitis without neoplasia were used for the analysis. By extensively filtering the results, methylation sites relevant to distinguish between CAC and sCRC were identified. RESULTS: After the results were filtered, three methylation sites relevant to distinguish between CAC and sCRC were identified. For this purpose, methylation limit values were defined, which favor the samples as CAC or sCRC up to a certain methylation value of the methylation sites. The combination of three methylation sites allows a correct assignment to CAC or sCRC in 94.5% of the cases. CONCLUSION: The results show that these three methylation sites are promising markers in the diagnosis of CAC vs sCRC. Nevertheless, the diagnosis should always be made in conjunction with histomorphological analyses.


Assuntos
Colite Ulcerativa , Neoplasias Associadas a Colite , Neoplasias Colorretais , Metilação de DNA , Humanos , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/genética , Colite Ulcerativa/complicações , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/diagnóstico , Masculino , Feminino , Epigênese Genética
6.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063041

RESUMO

One of the factors contributing to colorectal cancer (CRC) development is inflammation, which is mostly hypoxia-associated. This study aimed to characterize the morphological and molecular biological features of colon tumors in mice that were tolerant and susceptible to hypoxia based on colitis-associated CRC (CAC). Hypoxia tolerance was assessed through a gasping time evaluation in a decompression chamber. One month later, the animals were experimentally modeled for colitis-associated CRC by intraperitoneal azoxymethane administration and three dextran sulfate sodium consumption cycles. The incidence of tumor development in the distal colon in the susceptible to hypoxia mice was two times higher and all tumors (100%) were represented by adenocarcinomas, while in the tolerant mice, only 14% were adenocarcinomas and 86% were glandular intraepithelial neoplasia. The tumor area assessed on serially stepped sections was statistically significantly higher in the susceptible animals. The number of macrophages, CD3-CD19+, CD3+CD4+, and NK cells in tumors did not differ between animals; however, the number of CD3+CD8+ and vimentin+ cells was higher in the susceptible mice. Changes in the expression of genes regulating the response to hypoxia, inflammation, cell cycle, apoptosis, and epithelial barrier functioning in tumors and the peritumoral area depended on the initial mouse's hypoxia tolerance, which should be taken into account for new CAC diagnostics and treatment approaches development.


Assuntos
Apoptose , Ciclo Celular , Neoplasias Associadas a Colite , Inflamação , Animais , Camundongos , Apoptose/genética , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/metabolismo , Neoplasias Associadas a Colite/etiologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Ciclo Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/etiologia , Regulação Neoplásica da Expressão Gênica , Hipóxia/metabolismo , Hipóxia/genética , Hipóxia/complicações , Colite/genética , Colite/metabolismo , Colite/complicações , Colite/induzido quimicamente , Colite/patologia , Masculino
7.
Ecotoxicol Environ Saf ; 282: 116750, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053045

RESUMO

Microcystins (MCs) are secondary metabolites generated by cyanobacterial blooms, among which microcystin-LR (MC-LR) stands out as the most widely distributed variant in aquatic environments. However, the effects of MC-LR on the colorectum and its role in promoting colorectal tumor progression remain unclear. Therefore, this study aims to scrutinize the impact of MC-LR on a mice model of colitis-associated colorectal cancer and elucidate the potential underlying molecular mechanisms. In this study, we used AOM/DSS mice and orally administered MC-LR at doses of 40 µg/kg or 200 µg/kg. Exposure to MC-LR increased tumor burden, promoted tumor growth, shortened colon size, and decreased goblet cell numbers and tight junction protein levels in intestinal tissues. Additionally, exposure to MC-LR induced alterations in the structure of gut microbiota in the mouse colon, characterized by an increase in the relative abundance of Escherichia_coli and Shigella_sonnei, and a decline in the relative abundance of Akkermansia_muciniphila. Transcriptomic analysis revealed that MC-LR exposure activated the IL-17 signaling pathway in mouse colorectal tissues and participated in inflammation regulation and immune response. Immunofluorescence results demonstrated an increase in T-helper 17 (Th17) cell levels in mouse colorectal tumors following MC-LR exposure. The results from RT-qPCR revealed that MC-LR induced the upregulation of IL-6, IL-1ß, IL-10, IL-17A, TNF-α, CXCL1, CXCL2, CXCL5 and CCL20. The novelty of this study lies in its comprehensive approach to understanding the mechanisms by which MC-LR may contribute to CRC progression, offering new perspectives and valuable reference points for establishing guidance standards regarding MC-LR in drinking water. Our findings suggest that even at guideline value, MC-LR can have profound effects on susceptible mice, emphasizing the need for a reevaluation of guideline value and a deeper understanding of the role of environmental toxins in cancer progression.


Assuntos
Neoplasias Associadas a Colite , Disbiose , Microbioma Gastrointestinal , Toxinas Marinhas , Microcistinas , Animais , Microcistinas/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Disbiose/induzido quimicamente , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/induzido quimicamente , Neoplasias Associadas a Colite/microbiologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia , Masculino , Progressão da Doença , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/patologia , Colite/microbiologia
8.
Histopathology ; 85(4): 671-685, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39031700

RESUMO

AIMS: Ulcerative colitis-associated neoplasia (UCAN) is characterised by multifocal tumourigenesis. A wide range of metachronous lesions have been reported to occur after endoscopic treatment of UCAN, which suggests the development of sporadic tumours in lesions treated as UCAN. Therefore, we aimed to evaluate differences of immunohistochemistry (IHC) in features and clinicopathological characteristics of intramucosal lesions in patients with ulcerative colitis (UC). METHODS AND RESULTS: We examined 35 intramucosal lesions resected for carcinoma or dysplasia by total colectomy from patients with UC and 71 sporadic adenomas (SAs) endoscopically resected from patients without UC. UC lesions were divided into the conventional UCAN group, defined as p53 mutant pattern and normal expression of ß-catenin, and the non-conventional UCAN group, defined as the rest. Ki-67 distribution, α-methylacyl-CoA racemase (AMACR) expression and mucin phenotypes were compared using IHC, and clinicopathological characteristics were investigated. Conventional and non-conventional UCAN lesions were located in the left colon and rectum. Relative to the SA lesions, UCAN lesions occurred in much younger patients and exhibited more frequent basal distribution of Ki-67 in tumour crypts. Conventional UCAN lesions tended to be non-polyploid and exhibited a higher frequency of normal AMACR expression than SA lesions. UC lesions were heterogeneous-only two of the eight patients with multiple lesions had lesions (both non-conventional UCAN lesions) exhibiting concordant IHC staining features. CONCLUSIONS: The basal pattern of Ki-67 distribution, normal expression of AMACR and a non-intestinal mucin phenotype were determined as characteristic features suggestive of UCAN. Non-polypoid growth was another a key feature of UCAN.


Assuntos
Colite Ulcerativa , Antígeno Ki-67 , Mucinas , Racemases e Epimerases , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Colite Ulcerativa/patologia , Colite Ulcerativa/complicações , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/etiologia , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Mucinas/metabolismo , Fenótipo , Racemases e Epimerases/metabolismo
9.
J Ethnopharmacol ; 334: 118541, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992403

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Based on the core pathogenesis of hepatosplenic disorder and qi transformation disorder in ulcerative colitis, Tong-Xie-Yao-Fang (TXYF) is a classical traditional Chinese medicine commonly used to treat ulcerative colitis. Our study revealed that it has the potential to prevent colitis-associated colorectal cancer, which embodies the academic concept in traditional Chinese medicine of treating the disease before it develops. AIM OF THE STUDY: This study was aimed at evaluating the therapeutic role of TXYF in treating colitis-associated colorectal cancer and exploring its possible underlying mechanisms. MATERIALS AND METHODS: A colitis-associated colorectal cancer model was established in mice using azoxymethane and dextran sulfate sodium salt to examine the therapeutic effect of TXYF. The mouse body weights were observed. Hematoxylin-eosin staining was used to evaluate mouse colon histopathology. Colon cancer cells and colon epithelial cells were used to explore the potential molecular mechanisms. The proliferation and apoptosis of cells were detected by CCK8 and cell colony assays, flow cytometry and western blotting. The epithelial-mesenchymal transition (EMT) and mitophagy markers were examined by immunohistochemistry, western blotting, quantitative real-time PCR and immunofluorescence staining. RESULTS: TXYF inhibited the tumorigenesis of mice with colitis-associated colorectal cancer and the growth of inflammatory colon cells. TXYF induced mitophagy in colon cancer cells through the PTEN-induced putative kinase 1 (PINK1)/Parkin pathway to reverse EMT, which was consistent with the results in mice with colitis-associated colorectal cancer. CONCLUSIONS: The results of the present study demonstrated that TXYF effectively inhibited the progression of colitis-associated colorectal cancer through the PINK1/Parkin pathway, which provides new evidence for prevention strategies for this disease.


Assuntos
Neoplasias Associadas a Colite , Medicamentos de Ervas Chinesas , Células Epiteliais , Mitofagia , Animais , Mitofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/prevenção & controle , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Azoximetano/toxicidade , Masculino , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sulfato de Dextrana , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Camundongos Endogâmicos C57BL , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Colite/tratamento farmacológico , Colite/complicações , Colite/induzido quimicamente , Proteínas Quinases
10.
J Ethnopharmacol ; 334: 118597, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39034016

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqin Tang (HQT), a traditional Chinese medicine formula, is commonly used in clinical practice for the treatment of inflammatory bowel diseases. It has been reported that HQT exerts antitumor effects on colitis-associated colorectal cancer (CAC). However, the mechanism by which HQT interferes with the inflammation-to-cancer transformation remains unclear. AIMS OF THE STUDY: The purpose of this study was to dynamically evaluate the efficacy of HQT in alleviating or delaying CAC and to reveal the underlying mechanism. METHODS: We established a mouse model of CAC using azoxymethane combined with 1.5% dextran sodium sulphate. The efficacy of HQT was evaluated based on pathological sections and serum biochemical indices. Subsequently, amino acids (AAs) metabolism analyses were performed using ultra-performance liquid chromatography-tandem mass spectrometry, and the phosphatidylinositol 3 kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) pathway was detected by western blotting. RESULTS: The data demonstrated that HQT could alleviate the development of CAC in the animal model. HQT effectively reduced the inflammatory response, particularly interleukin-6 (IL-6), in the inflammation induction stage, as well as in the stages of proliferation initiation and tumorigenesis. During the proliferation initiation and tumorigenesis stages, immunohistochemistry staining showed that the expression of the proliferation marker Ki67 was reduced, while apoptosis was increased in the HQT group. Accordingly, HQT substantially decreased the levels of specific AAs in the colon with CAC, including glutamic acid, glutamine, arginine, and isoleucine. Furthermore, HQT significantly inhibited the activated PI3K/AKT/mTOR pathway, which may contribute to suppression of cell proliferation and enhancement of apoptosis. CONCLUSION: HQT is effective in alleviating and delaying the colon "inflammation-to-cancer". The mechanism of action may involve HQT maintained AAs metabolism homeostasis and regulated PI3K/AKT/mTOR pathway, so as to maintain the balance between proliferation and apoptosis, and then interfere in the occurrence and development of CAC.


Assuntos
Aminoácidos , Neoplasias Associadas a Colite , Sulfato de Dextrana , Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Masculino , Neoplasias Associadas a Colite/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Azoximetano/toxicidade , Modelos Animais de Doenças , Homeostase/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Camundongos Endogâmicos C57BL , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/complicações , Colite/metabolismo , Apoptose/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proliferação de Células/efeitos dos fármacos
11.
Gut ; 73(10): 1749-1762, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38851294

RESUMO

Mounting evidence underscores the pivotal role of the intestinal barrier and its convoluted network with diet and intestinal microbiome in the pathogenesis of inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CRC). Moreover, the bidirectional association of the intestinal barrier with the liver and brain, known as the gut-brain axis, plays a crucial role in developing complications, including extraintestinal manifestations of IBD and CRC metastasis. Consequently, barrier healing represents a crucial therapeutic target in these inflammatory-dependent disorders, with barrier assessment predicting disease outcomes, response to therapy and extraintestinal manifestations.New advanced technologies are revolutionising our understanding of the barrier paradigm, enabling the accurate assessment of the intestinal barrier and aiding in unravelling the complexity of the gut-brain axis. Cutting-edge endoscopic imaging techniques, such as ultra-high magnification endocytoscopy and probe-based confocal laser endomicroscopy, are new technologies allowing real-time exploration of the 'cellular' intestinal barrier. Additionally, novel advanced spatial imaging technology platforms, including multispectral imaging, upconversion nanoparticles, digital spatial profiling, optical spectroscopy and mass cytometry, enable a deep and comprehensive assessment of the 'molecular' and 'ultrastructural' barrier. In this promising landscape, artificial intelligence plays a pivotal role in standardising and integrating these novel tools, thereby contributing to barrier assessment and prediction of outcomes.Looking ahead, this integrated and comprehensive approach holds the promise of uncovering new therapeutic targets, breaking the therapeutic ceiling in IBD. Novel molecules, dietary interventions and microbiome modulation strategies aim to restore, reinforce, or modulate the gut-brain axis. These advancements have the potential for transformative and personalised approaches to managing IBD.


Assuntos
Neoplasias Associadas a Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Medicina de Precisão , Humanos , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/patologia , Medicina de Precisão/métodos , Microbioma Gastrointestinal/fisiologia , Neoplasias Associadas a Colite/etiologia , Neoplasias Associadas a Colite/patologia , Mucosa Intestinal/patologia , Eixo Encéfalo-Intestino/fisiologia
12.
Toxicol Appl Pharmacol ; 489: 117018, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945373

RESUMO

Colitis-associated cancer (CAC) is an aggressive subtype of colorectal cancer that can develop in ulcerative colitis patients and is driven by chronic inflammation and oxidative stress. Current chemotherapy for CAC, based on 5-fluorouracil and oxalipltin, is not fully effective and displays severe side effects, prompting the search for alternative therapies. Dimethylfumarate (DMF), an activator of the nuclear factor erythroid 2-related factor 2 (NRF2), is a potent antioxidant and immunomodelatrory drug used in the treatment of multiple sclerosis and showed a strong anti-inflammatory effect on experimental colitis. Here, we investigated the chemotherapeutic effect of DMF on an experimental model of CAC. Male NMRI mice were given two subcutaneous injections of 1,2 Dimethylhydrazine (DMH), followed by three cycles of dextran sulfate sodium (DSS). Low-dose (DMF30) and high-dose of DMF (DMF100) or oxaliplatin (OXA) were administered from the 8th to 12th week of the experiment, and then the colon tissues were analysed histologically and biochemically. DMH/DSS induced dysplastic aberrant crypt foci (ACF), oxidative stress, and severe colonic inflammation, with a predominance of pro-inflammatory M1 macrophages. As OXA, DMF30 reduced ACF multiplicity and crypt dysplasia, but further restored redox status, and reduced colitis severity by shifting macrophages towards the anti-inflammatory M2 phenotype. Surprisingly, DMF100 exacerbated ACF multiplicity, oxidative stress, and colon inflammation, likely through NRF2 and p53 overexpression in colonic inflammatory cells. DMF had a dual effect on CAC. At low dose, DMF is chemotherapeutic and acts as an antioxidant and immunomodulator, whereas at high dose, DMF is pro-oxidant and exacerbates colitis-associated cancer.


Assuntos
Neoplasias Associadas a Colite , Sulfato de Dextrana , Fumarato de Dimetilo , Macrófagos , Estresse Oxidativo , Animais , Fumarato de Dimetilo/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Associadas a Colite/prevenção & controle , Sulfato de Dextrana/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia , Focos de Criptas Aberrantes/patologia , Relação Dose-Resposta a Droga , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade
13.
Theranostics ; 14(7): 2719-2735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773969

RESUMO

Aim: To elucidate dynamics and functions in colonic macrophage subsets, and their regulation by Bifidobacterium breve (B. breve) and its associated metabolites in the initiation of colitis-associated colorectal cancer (CAC). Methods: Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to create a CAC model. The tumor-suppressive effect of B. breve and variations of macrophage subsets were evaluated. Intestinal macrophages were ablated to determine their role in the protective effects of B. breve. Efficacious molecules produced by B. breve were identified by non-targeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The molecular mechanism was further verified in murine bone marrow-derived macrophages (BMDMs), macrophages derived from human peripheral blood mononuclear cells (hPBMCs), and demonstrated in CAC mice. Results: B. breve alleviated colitis symptoms, delayed colonic tumorigenesis, and promoted phenotypic differentiation of immature inflammatory macrophages into mature homeostatic macrophages. On the contrary, the ablation of intestinal macrophages largely annulled the protective effects of B. breve. Microbial analysis of colonic contents revealed the enrichment of probiotics and the depletion of potential pathogens following B. breve supplementation. Moreover, indole-3-lactic acid (ILA) was positively correlated with B. breve in CAC mice and highly enriched in the culture supernatant of B. breve. Also, the addition of ILA directly promoted AKT phosphorylation and restricted the pro-inflammatory response of murine BMDMs and macrophages derived from hPBMCs in vitro. The effects of ILA in murine BMDMs and macrophages derived from hPBMCs were abolished by the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the AKT inhibitor MK-2206. Furthermore, ILA could protect against tumorigenesis by regulating macrophage differentiation in CAC mice; the AhR antagonist largely abrogated the effects of B. breve and ILA in relieving colitis and tumorigenesis. Conclusion: B. breve-mediated tryptophan metabolism ameliorates the precancerous inflammatory intestinal milieu to inhibit tumorigenesis by directing the differentiation of immature colonic macrophages.


Assuntos
Bifidobacterium breve , Diferenciação Celular , Colite , Indóis , Macrófagos , Probióticos , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Bifidobacterium breve/metabolismo , Indóis/farmacologia , Indóis/metabolismo , Humanos , Colite/induzido quimicamente , Colite/microbiologia , Colite/complicações , Diferenciação Celular/efeitos dos fármacos , Probióticos/farmacologia , Probióticos/administração & dosagem , Modelos Animais de Doenças , Carcinogênese/efeitos dos fármacos , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/microbiologia , Neoplasias Associadas a Colite/metabolismo , Camundongos Endogâmicos C57BL , Colo/microbiologia , Colo/patologia , Colo/metabolismo , Sulfato de Dextrana , Masculino , Microbioma Gastrointestinal , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Azoximetano
14.
Int Immunopharmacol ; 135: 112262, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38805906

RESUMO

BACKGROUND AND AIM: Huangqin decoction (HQD) is a Chinese medicine used to treat colitis and colorectal cancer (CRC). However, the specific compounds and mechanisms of HQD remain unclear despite its good curative clinical results. Through bioinformatics, network pharmacology, and experiments, this study aims to explore the progressive mechanisms of colitis-associated colorectal cancer (CAC) from ulcerative colitis (UC) while examining the protective effects of HQD and its compounds against this. METHODS: Bioinformatics was utilized to identify the hub genes between UC and CRC, and their clinical predictive significance, function, and expression were validated. Employing network pharmacology in combination with hub genes, key targets of HQD for preventing the development of UC into CAC were identified. Molecular docking and molecular dynamics (MD) were utilized to procure compounds that effectively bind to these targets and their transcription factors (TFs). Finally, the expression and mechanism of key targets were demonstrated in mice with UC or CAC. RESULTS: (1) Joint analysis of UC and CRC gene sets resulted in 14 hub genes, mainly related to extracellular matrix receptor binding, biological processes in the extracellular matrix, focal adhesion and neutrophil migration; (2) Network pharmacology results show HQD has 133 core targets for treating UC and CRC, acting on extracellular matrix, inflammatory bowel disease, chemical carcinogen receptor activation and other pathways; (3) The intersection of hub genes and core targets yielded two key targets, MMP1 and MMP3; (4) STAT3 is a shared TF of MMP1 and MMP3. (5) Molecular docking and MD verified that the dockings between Glabridin and STAT3/MMP1/MMP3 are stable and reliable; (6) In murine vivo experiments verified that Glabridin reduces inflammation, extracellular matrix degradation, and the occurrence of epithelial-mesenchymal transition to prevent UC transforming into CAC by inhibiting the phosphorylation of STAT3 and regulating the activity of MMP1/3.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Isoflavonas , Metaloproteinase 1 da Matriz , Metaloproteinase 3 da Matriz , Simulação de Acoplamento Molecular , Fenóis , Fator de Transcrição STAT3 , Animais , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Fenóis/uso terapêutico , Fenóis/farmacologia , Camundongos , Masculino , Fator de Transcrição STAT3/metabolismo , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Associadas a Colite/prevenção & controle , Camundongos Endogâmicos C57BL , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle , Modelos Animais de Doenças , Sulfato de Dextrana
15.
Biomed Pharmacother ; 175: 116580, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723513

RESUMO

Colitis-associated cancer (CAC) in inflammatory bowel diseases exhibits more aggressive behavior than sporadic colorectal cancer; however, the molecular mechanisms remain unclear. No definitive preventative agent against CAC is currently established in the clinical setting. We investigated the molecular mechanisms of CAC in the azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model and assessed the antitumor efficacy of erlotinib, a small molecule inhibitor of the epidermal growth factor receptor (EGFR). Erlotinib premixed with AIN-93 G diet at 70 or 140 parts per million (ppm) inhibited tumor multiplicity significantly by 96%, with ∼60% of the treated mice exhibiting zero polyps at 12 weeks. Bulk RNA-sequencing revealed more than a thousand significant gene alterations in the colons of AOM/DSS-treated mice, with KEGG enrichment analysis highlighting 46 signaling pathways in CAC development. Erlotinib altered several signaling pathways and rescued 40 key genes dysregulated in CAC, including those involved in the Hippo and Wnt signaling. These findings suggest that the clinically-used antitumor agent erlotinib might be repurposed for suppression of CAC, and that further studies are warranted on the crosstalk between dysregulated Wnt and EGFR signaling in the corresponding patient population.


Assuntos
Azoximetano , Neoplasias Associadas a Colite , Sulfato de Dextrana , Modelos Animais de Doenças , Cloridrato de Erlotinib , Animais , Cloridrato de Erlotinib/farmacologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/tratamento farmacológico , Camundongos , Azoximetano/toxicidade , Receptores ErbB/metabolismo , Receptores ErbB/genética , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Camundongos Endogâmicos C57BL , Masculino , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/complicações , Colite/patologia
16.
Cancer Lett ; 593: 216940, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729554

RESUMO

Decreased levels of ß-hydroxybutyrate (BHB), a lipid metabolic intermediate known to slow the progression of colorectal cancer (CRC), have been observed in the colon mucosa of patients with inflammatory bowel diseases (IBD). In particular, patients with recurrent IBD present an increased risk of developing colitis-associated colorectal cancer (CAC). The role and molecular mechanism of BHB in the inflammatory and carcinogenic process of CAC remains unclear. Here, the anti-tumor effect of BHB was investigated in the Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS)-induced CAC model and tumor organoids derivatives. The underlying mechanisms were studied using transcriptome and non-target metabolomic assay and further validated in colon tumor cell lineage CT26 in vitro. The tumor tissues and the nearby non-malignant tissues from colon cancer patients were collected to measure the expression levels of ketogenic enzymes. The exogenous BHB supplement lightened tumor burden and angiogenesis in the CAC model. Notably, transcriptome analysis revealed that BHB effectively decreased the expression of VEGFA in the CAC tumor mucosa. In vitro, BHB directly reduced VEGFA expression in hypoxic-treated CT26 cells by targeting transcriptional factor HIF-1α. Conversely, the deletion of HIF-1α largely reversed the inhibitory effect of BHB on CAC tumorigenesis. Additionally, decreased expression of ketogenesis-related enzymes in tumor tissues were associated with poor survival outcomes in patients with colon cancer. In summary, BHB carries out anti-angiogenic activity in CAC by regulating HIF-1α/VEGFA signaling. These findings emphasize the role of BHB in CAC and may provide novel perspectives for the prevention and treatment of colonic tumors.


Assuntos
Ácido 3-Hidroxibutírico , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neovascularização Patológica , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Animais , Camundongos , Humanos , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Linhagem Celular Tumoral , Carcinogênese/efeitos dos fármacos , Masculino , Azoximetano/toxicidade , Colite/complicações , Colite/metabolismo , Colite/patologia , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Angiogênese
17.
J Cancer Res Clin Oncol ; 150(5): 243, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717677

RESUMO

Colitis-associated colorectal cancer has been a hot topic in public health issues worldwide. Numerous studies have demonstrated the significance of myeloid-derived suppressor cells (MDSCs) in the progression of this ailment, but the specific mechanism of their role in the transformation of inflammation to cancer is unclear, and potential therapies targeting MDSC are also unclear. This paper outlines the possible involvement of MDSC to the development of colitis-associated colorectal cancer. It also explores the immune and other relevant roles played by MDSC, and collates relevant targeted therapies against MDSC. In addition, current targeted therapies for colorectal cancer are analyzed and summarized.


Assuntos
Neoplasias Associadas a Colite , Neoplasias Colorretais , Células Supressoras Mieloides , Humanos , Células Supressoras Mieloides/imunologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/etiologia , Neoplasias Associadas a Colite/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Animais , Colite/complicações , Colite/imunologia
18.
Discov Med ; 36(183): 778-787, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665026

RESUMO

BACKGROUND: Tropomyosin 2 (TPM2) has been linked to the advancement of various tumor types, exhibiting distinct impacts on tumor progression. In our investigation, the primary objective was to identify the potential involvement of TPM2 in the development of colitis-associated cancer (CAC) using a mice model. METHODS: This study used lentiviral vector complex for TPM2 knockdown (sh-TPM2) and the corresponding negative control lentiviral vector complex (sh-NC) for genetic interference in mice. CAC was induced in mice using azoxymethane (AOM) and dextran sulfate sodium salt (DSS). This study included 6 groups of mice models: Control, Control+sh-NC, Control+sh-TPM2, CAC, CAC+sh-NC, and CAC+sh-TPM2. Subsequently, colon tissues were collected and assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for TPM2 mRNA levels and flow cytometry for infiltrating immune cells. Tumor number, size, and weight within colon tissues from CAC mice were measured and recorded. The hematoxylin-eosin staining was used for observing tissue pathology changes. The intestinal epithelial cells (IECs) were isolated and analyzed for cell proliferation. This analysis included examining the levels of 5-bromo-2-deoxyuridine (BrdU) and Ki-67 using immunohistochemistry. Additionally, the mRNA levels of proliferating cell nuclear antigen (PCNA) and Ki-67 were detected by qRT-PCR. This study also investigated the activation of the c-Jun N-terminal kinase (JNK) pathway using western blot analysis. Immunogenicity analyses were conducted using immunohistochemistry for F4/80 and flow cytometry. RESULTS: In 8-week-old mice, AOM injections and three cycles of DSS treatment induced TPM2 upregulation in tumor tissues compared to normal tissues (p < 0.05). Fluorescence-activated cell sorting (FACS)-isolated lamina CAC adenomas revealed macrophages and dendritic cells as primary TPM2 contributors (p < 0.001). Lentiviral TPM2 gene knockdown significantly reduced tumor numbers and sizes in CAC mice (p < 0.01, and p < 0.001), without invasive cancer cells. TPM2 suppression resulted in decreased IEC proliferation (p < 0.001) and reduced PCNA and Ki-67 expression (p < 0.05). Western blot analysis indicated reduced JNK pathway activation in TPM2-knockdown CAC mice (p < 0.05, p < 0.001). TPM2 knockdown decreased tumor-associated macrophage infiltration (p < 0.01) and increased CD3+ and CD8+ T cells (p < 0.01, and p < 0.001), with increased levels of regulator of inflammatory cytokines (CD44+, CD107a+) (p < 0.01, and p < 0.001), decreased levels of PD-1+ and anti-inflammatory factor (IL10+) (p < 0.01, and p < 0.001). CONCLUSIONS: Our results demonstrated that TPM2 knockdown suppressed the proliferation of CAC IECs, enhanced immune suppression on CAC IECs, and inhibited the JNK signaling pathway within the framework of CAC. These findings suggest TPM2 can serve as a potential therapeutic target for CAC treatment.


Assuntos
Proliferação de Células , Neoplasias Associadas a Colite , Sistema de Sinalização das MAP Quinases , Tropomiosina , Animais , Humanos , Masculino , Camundongos , Azoximetano/toxicidade , Colite/induzido quimicamente , Colite/patologia , Colite/complicações , Colite/imunologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/imunologia , Neoplasias Associadas a Colite/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos Endogâmicos C57BL , Tropomiosina/metabolismo , Tropomiosina/imunologia , Tropomiosina/genética
19.
Chin J Integr Med ; 30(6): 565-576, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565799

RESUMO

Intestinal macrophages play crucial roles in both intestinal inflammation and immune homeostasis. They can adopt two distinct phenotypes, primarily determined by environmental cues. These phenotypes encompass the classically activated pro-inflammatory M1 phenotype, as well as the alternatively activated anti-inflammatory M2 phenotype. In regular conditions, intestinal macrophages serve to shield the gut from inflammatory harm. However, when a combination of genetic and environmental elements influences the polarization of these macrophages, it can result in an M1/M2 macrophage activation imbalance, subsequently leading to a loss of control over intestinal inflammation. This shift transforms normal inflammatory responses into pathological damage within the intestines. In patients with ulcerative colitis-associated colorectal cancer (UC-CRC), disorders related to intestinal inflammation are closely correlated with an imbalance in the polarization of intestinal M1/M2 macrophages. Therefore, reinstating the equilibrium in M1/M2 macrophage polarization could potentially serve as an effective approach to the prevention and treatment of UC-CRC. This paper aims to scrutinize the clinical evidence regarding Chinese medicine (CM) in the treatment of UC-CRC, the pivotal role of macrophage polarization in UC-CRC pathogenesis, and the potential mechanisms through which CM regulates macrophage polarization to address UC-CRC. Our objective is to offer fresh perspectives for clinical application, fundamental research, and pharmaceutical advancement in UC-CRC.


Assuntos
Neoplasias Associadas a Colite , Progressão da Doença , Macrófagos , Humanos , Macrófagos/patologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Colorretais/patologia , Animais , Colite Ulcerativa/patologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/complicações
20.
Cell Mol Gastroenterol Hepatol ; 18(1): 105-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38614455

RESUMO

BACKGROUND & AIMS: Inflammatory bowel disease is associated with carcinogenesis, which limits the prognosis of the patients. The local expression of proteinases and proteinase-activated receptor 1 (PAR1) increases in inflammatory bowel disease. The present study investigated the therapeutic effects of PAR1 antagonism on colitis-associated carcinogenesis. METHODS: A colitis-associated carcinogenesis model was prepared in mice by treatment with azoxymethane (AOM) and dextran sulfate sodium (DSS). PAR1 antagonist E5555 was administered in long- and short-term protocol, starting on the day of AOM injection and 1 week after completing AOM/DSS treatment, respectively. The fecal samples were collected for metagenome analysis of gut microbiota. The intestinal myofibroblasts of the Crohn's disease patients were used to elucidate underlying cellular mechanisms. Caco-2 cells were used to investigate a possible source of PAR1 agonist proteinases. RESULTS: AOM/DSS model showed weight loss, diarrhea, tumor development, inflammation, fibrosis, and increased production of inflammatory cytokines. The ß-diversity, but not α-diversity, of microbiota significantly differed between AOM/DSS and control mice. E5555 alleviated these pathological changes and altered the microbiota ß-diversity in AOM/DSS mice. The thrombin expression was up-regulated in tumor and non-tumor areas, whereas PAR1 mRNA expression was higher in tumor areas compared with non-tumor areas. E5555 inhibited thrombin-triggered elevation of cytosolic Ca2+ concentration and ERK1/2 phosphorylation, as well as IL6-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in intestinal myofibroblasts. Caco-2 cell-conditioned medium contained immunoreactive thrombin, which cleaved the recombinant protein containing the extracellular domain of PAR1 at the thrombin cleavage site. CONCLUSIONS: PAR1 antagonism is proposed to be a novel therapeutic strategy for treatment of inflammatory bowel disease and its associated carcinogenesis.


Assuntos
Azoximetano , Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal , Receptor PAR-1 , Animais , Receptor PAR-1/metabolismo , Receptor PAR-1/antagonistas & inibidores , Humanos , Camundongos , Células CACO-2 , Sulfato de Dextrana/toxicidade , Azoximetano/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Colite/complicações , Colite/induzido quimicamente , Colite/patologia , Colite/tratamento farmacológico , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Fator de Transcrição STAT3/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Miofibroblastos/efeitos dos fármacos , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/microbiologia , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Associadas a Colite/imunologia , Trombina/metabolismo , Camundongos Endogâmicos C57BL , Doença de Crohn/patologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/microbiologia , Doença de Crohn/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA