Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.455
Filtrar
1.
Cancer Med ; 13(11): e7377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38850123

RESUMO

OBJECTIVE: The study aimed to identify if clinical features and survival outcomes of insular glioma patients are associated with our classification based on the tumor spread. METHODS: Our study included 283 consecutive patients diagnosed with histological grade 2 and 3 insular gliomas. A new classification was proposed, and tumors restricted to the paralimbic system were defined as type 1. When tumors invaded the limbic system (referred to as the hippocampus and its surrounding structures in this study) simultaneously, they were defined as type 2. Tumors with additional internal capsule involvement were defined as type 3. RESULTS: Tumors defined as type 3 had a higher age at diagnosis (p = 0.002) and a higher preoperative volume (p < 0.001). Furthermore, type 3 was more likely to be diagnosed as IDH wild type (p < 0.001), with a higher rate of Ki-67 index (p = 0.015) and a lower rate of gross total resection (p < 0.001). Type 1 had a slower tumor growth rate than type 2 (mean 3.3%/month vs. 19.8%/month; p < 0.001). Multivariate Cox regression analysis revealed the extent of resection (HR 0.259, p = 0.004), IDH status (HR 3.694, p = 0.012), and tumor spread type (HR = 1.874, p = 0.012) as independent predictors of overall survival (OS). Tumor grade (HR 2.609, p = 0.008), the extent of resection (HR 0.488, p = 0.038), IDH status (HR 2.225, p = 0.025), and tumor spread type (HR 1.531, p = 0.038) were significant in predicting progression-free survival (PFS). CONCLUSION: The current study proposes a classification of the insular glioma according to the tumor spread. It indicates that the tumors defined as type 1 have a relatively better nature and biological characteristics, and those defined as type 3 can be more aggressive and refractory. Besides its predictive value for prognosis, the classification has potential value in formulating surgical strategies for patients with insular gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Gradação de Tumores , Humanos , Glioma/patologia , Glioma/mortalidade , Glioma/classificação , Glioma/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/classificação , Adulto , Idoso , Prognóstico , Isocitrato Desidrogenase/genética , Estudos Retrospectivos , Adulto Jovem , Organização Mundial da Saúde
2.
Sci Rep ; 14(1): 13244, 2024 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853158

RESUMO

Aiming at the problem of image classification with insignificant morphological structural features, strong target correlation, and low signal-to-noise ratio, combined with prior feature knowledge embedding, a deep learning method based on ResNet and Radial Basis Probabilistic Neural Network (RBPNN) is proposed model. Taking ResNet50 as a visual modeling network, it uses feature pyramid and self-attention mechanism to extract appearance and semantic features of images at multiple scales, and associate and enhance local and global features. Taking into account the diversity of category features, channel cosine similarity attention and dynamic C-means clustering algorithms are used to select representative sample features in different category of sample subsets to implicitly express prior category feature knowledge, and use them as the kernel centers of radial basis probability neurons (RBPN) to realize the embedding of diverse prior feature knowledge. In the RBPNN pattern aggregation layer, the outputs of RBPN are selectively summed according to the category of the kernel center, that is, the subcategory features are combined into category features, and finally the image classification is implemented based on Softmax. The functional module of the proposed method is designed specifically for image characteristics, which can highlight the significance of local and structural features of the image, form a non-convex decision-making area, and reduce the requirements for the completeness of the sample set. Applying the proposed method to medical image classification, experiments were conducted based on the brain tumor MRI image classification public dataset and the actual cardiac ultrasound image dataset, and the accuracy rate reached 85.82% and 83.92% respectively. Compared with the three mainstream image classification models, the performance indicators of this method have been significantly improved.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Humanos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
3.
BMC Med Imaging ; 24(1): 118, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773391

RESUMO

Brain tumor diagnosis using MRI scans poses significant challenges due to the complex nature of tumor appearances and variations. Traditional methods often require extensive manual intervention and are prone to human error, leading to misdiagnosis and delayed treatment. Current approaches primarily include manual examination by radiologists and conventional machine learning techniques. These methods rely heavily on feature extraction and classification algorithms, which may not capture the intricate patterns present in brain MRI images. Conventional techniques often suffer from limited accuracy and generalizability, mainly due to the high variability in tumor appearance and the subjective nature of manual interpretation. Additionally, traditional machine learning models may struggle with the high-dimensional data inherent in MRI images. To address these limitations, our research introduces a deep learning-based model utilizing convolutional neural networks (CNNs).Our model employs a sequential CNN architecture with multiple convolutional, max-pooling, and dropout layers, followed by dense layers for classification. The proposed model demonstrates a significant improvement in diagnostic accuracy, achieving an overall accuracy of 98% on the test dataset. The proposed model demonstrates a significant improvement in diagnostic accuracy, achieving an overall accuracy of 98% on the test dataset. The precision, recall, and F1-scores ranging from 97 to 98% with a roc-auc ranging from 99 to 100% for each tumor category further substantiate the model's effectiveness. Additionally, the utilization of Grad-CAM visualizations provides insights into the model's decision-making process, enhancing interpretability. This research addresses the pressing need for enhanced diagnostic accuracy in identifying brain tumors through MRI imaging, tackling challenges such as variability in tumor appearance and the need for rapid, reliable diagnostic tools.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/classificação , Imageamento por Ressonância Magnética/métodos , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Feminino
4.
Sci Rep ; 14(1): 11977, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796531

RESUMO

The preoperative diagnosis of brain tumors is important for therapeutic planning as it contributes to the tumors' prognosis. In the last few years, the development in the field of artificial intelligence and machine learning has contributed greatly to the medical area, especially the diagnosis of the grades of brain tumors through radiological images and magnetic resonance images. Due to the complexity of tumor descriptors in medical images, assessing the accurate grade of glioma is a major challenge for physicians. We have proposed a new classification system for glioma grading by integrating novel MRI features with an ensemble learning method, called Ensemble Learning based on Adaptive Power Mean Combiner (EL-APMC). We evaluate and compare the performance of the EL-APMC algorithm with twenty-one classifier models that represent state-of-the-art machine learning algorithms. Results show that the EL-APMC algorithm achieved the best performance in terms of classification accuracy (88.73%) and F1-score (93.12%) over the MRI Brain Tumor dataset called BRATS2015. In addition, we showed that the differences in classification results among twenty-two classifier models have statistical significance. We believe that the EL-APMC algorithm is an effective method for the classification in case of small-size datasets, which are common cases in medical fields. The proposed method provides an effective system for the classification of glioma with high reliability and accurate clinical findings.


Assuntos
Algoritmos , Neoplasias Encefálicas , Glioma , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Gradação de Tumores , Humanos , Glioma/diagnóstico por imagem , Glioma/classificação , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia
5.
J Neurol Sci ; 461: 123058, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38781807

RESUMO

The World Health Organization (WHO) published the 5th edition classification of tumors of central nervous system in 2021, commonly abbreviated as WHO CNS5, which became the new standard for brain tumor diagnosis and therapy. This edition dramatically impacted tumor diagnostics. In short it introduced new tumors, changed the names of previously recognized tumors, and modified the working definition of previously known tumors. The new system appears complex due to the integration of morphological and multiple molecular criteria. The most radical changes occurred in the field of glial and glioneuronal tumors, which constitutes the lengthy first chapter of this new edition. Herein we present an illustrative outline of the evolving concepts of glial and glioneuronal tumors. We also attempt to explain the rationales behind this substantial change in tumor classification and the challenges to update and integrate it into clinical practice. We aim to present a concise and precise roadmap to aid navigation through the intricate conceptual framework of glial and glioneuronal tumors in the context of WHO CNS5.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/classificação , Glioma/patologia , Glioma/diagnóstico por imagem , Glioma/diagnóstico , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Organização Mundial da Saúde
6.
Cancer Biol Med ; 21(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38712813

RESUMO

Among central nervous system-associated malignancies, glioblastoma (GBM) is the most common and has the highest mortality rate. The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide. In precision medicine, research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity, as well as the refractory nature of GBM toward therapy. Deep understanding of the different molecular expression patterns of GBM subtypes is critical. Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes. The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors. These subtypes also exhibit high plasticity in their regulatory pathways, oncogene expression, tumor microenvironment alterations, and differential responses to standard therapy. Herein, we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype. Furthermore, we review the mesenchymal transition mechanisms of GBM under various regulators.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fenótipo , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/classificação , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/classificação , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Transição Epitelial-Mesenquimal/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
7.
BMC Med Imaging ; 24(1): 110, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750436

RESUMO

Brain tumor classification using MRI images is a crucial yet challenging task in medical imaging. Accurate diagnosis is vital for effective treatment planning but is often hindered by the complex nature of tumor morphology and variations in imaging. Traditional methodologies primarily rely on manual interpretation of MRI images, supplemented by conventional machine learning techniques. These approaches often lack the robustness and scalability needed for precise and automated tumor classification. The major limitations include a high degree of manual intervention, potential for human error, limited ability to handle large datasets, and lack of generalizability to diverse tumor types and imaging conditions.To address these challenges, we propose a federated learning-based deep learning model that leverages the power of Convolutional Neural Networks (CNN) for automated and accurate brain tumor classification. This innovative approach not only emphasizes the use of a modified VGG16 architecture optimized for brain MRI images but also highlights the significance of federated learning and transfer learning in the medical imaging domain. Federated learning enables decentralized model training across multiple clients without compromising data privacy, addressing the critical need for confidentiality in medical data handling. This model architecture benefits from the transfer learning technique by utilizing a pre-trained CNN, which significantly enhances its ability to classify brain tumors accurately by leveraging knowledge gained from vast and diverse datasets.Our model is trained on a diverse dataset combining figshare, SARTAJ, and Br35H datasets, employing a federated learning approach for decentralized, privacy-preserving model training. The adoption of transfer learning further bolsters the model's performance, making it adept at handling the intricate variations in MRI images associated with different types of brain tumors. The model demonstrates high precision (0.99 for glioma, 0.95 for meningioma, 1.00 for no tumor, and 0.98 for pituitary), recall, and F1-scores in classification, outperforming existing methods. The overall accuracy stands at 98%, showcasing the model's efficacy in classifying various tumor types accurately, thus highlighting the transformative potential of federated learning and transfer learning in enhancing brain tumor classification using MRI images.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/classificação , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Aprendizado de Máquina , Interpretação de Imagem Assistida por Computador/métodos
8.
J Cancer Res Clin Oncol ; 150(4): 220, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684578

RESUMO

PURPOSE: The purpose of this study is to develop accurate and automated detection and segmentation methods for brain tumors, given their significant fatality rates, with aggressive malignant tumors like Glioblastoma Multiforme (GBM) having a five-year survival rate as low as 5 to 10%. This underscores the urgent need to improve diagnosis and treatment outcomes through innovative approaches in medical imaging and deep learning techniques. METHODS: In this work, we propose a novel approach utilizing the two-headed UNetEfficientNets model for simultaneous segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) images. The model combines the strengths of EfficientNets and a modified two-headed Unet model. We utilized a publicly available dataset consisting of 3064 brain MR images classified into three tumor classes: Meningioma, Glioma, and Pituitary. To enhance the training process, we performed 12 types of data augmentation on the training dataset. We evaluated the methodology using six deep learning models, ranging from UNetEfficientNet-B0 to UNetEfficientNet-B5, optimizing the segmentation and classification heads using binary cross entropy (BCE) loss with Dice and BCE with focal loss, respectively. Post-processing techniques such as connected component labeling (CCL) and ensemble models were applied to improve segmentation outcomes. RESULTS: The proposed UNetEfficientNet-B4 model achieved outstanding results, with an accuracy of 99.4% after postprocessing. Additionally, it obtained high scores for DICE (94.03%), precision (98.67%), and recall (99.00%) after post-processing. The ensemble technique further improved segmentation performance, with a global DICE score of 95.70% and Jaccard index of 91.20%. CONCLUSION: Our study demonstrates the high efficiency and accuracy of the proposed UNetEfficientNet-B4 model in the automatic and parallel detection and segmentation of brain tumors from MRI images. This approach holds promise for improving diagnosis and treatment planning for patients with brain tumors, potentially leading to better outcomes and prognosis.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Glioblastoma/diagnóstico por imagem , Glioblastoma/classificação , Glioblastoma/patologia , Glioma/diagnóstico por imagem , Glioma/classificação , Glioma/patologia
9.
World Neurosurg ; 186: 204-218.e2, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580093

RESUMO

BACKGROUND: Classifying brain tumors accurately is crucial for treatment and prognosis. Machine learning (ML) shows great promise in improving tumor classification accuracy. This study evaluates ML algorithms for differentiating various brain tumor types. METHODS: A systematic review and meta-analysis were conducted, searching PubMed, Embase, and Web of Science up to March 14, 2023. Studies that only investigated image segmentation accuracy or brain tumor detection instead of classification were excluded. We extracted binary diagnostic accuracy data, constructing contingency tables to derive sensitivity and specificity. RESULTS: Fifty-one studies were included. The pooled area under the curve for glioblastoma versus lymphoma and low-grade versus high-grade gliomas were 0.99 (95% confidence interval [CI]: 0.98-1.00) and 0.89, respectively. The pooled sensitivity and specificity for benign versus malignant tumors were 0.90 (95% CI: 0.85-0.93) and 0.93 (95% CI: 0.90-0.95), respectively. The pooled sensitivity and specificity for low-grade versus high-grade gliomas were 0.99 (95% CI: 0.97-1.00) and 0.94, (95% CI: 0.79-0.99), respectively. Primary versus metastatic tumor identification yields sensitivity and specificity of 0.89, (95% CI: 0.83-0.93) and 0.87 (95% CI: 0.82-0.91), correspondingly. The differentiation of gliomas from pituitary tumors yielded the highest results among primary brain tumor classifications: sensitivity of 0.99 (95% CI: 0.99-1.00) and specificity of 0.99 (95% CI: 0.98-1.00). CONCLUSIONS: ML demonstrated excellent performance in classifying brain tumor images, with near-maximum area under the curves, sensitivity, and specificity.


Assuntos
Neoplasias Encefálicas , Aprendizado de Máquina , Humanos , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/classificação , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Glioma/classificação , Glioma/diagnóstico por imagem , Glioma/patologia , Sensibilidade e Especificidade
10.
Comput Biol Med ; 174: 108404, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582000

RESUMO

BACKGROUND: Glioma is a common and aggressive primary malignant cancer known for its high morbidity, mortality, and recurrence rates. Despite this, treatment options for glioma are currently restricted. The dysregulation of RBPs has been linked to the advancement of several types of cancer, but their precise role in glioma evolution is still not fully understood. This study sought to investigate how RBPs may impact the development and prognosis of glioma, with potential implications for prognosis and therapy. METHODS: RNA-seq profiles of glioma and corresponding clinical data from the CGGA database were initially collected for analysis. Unsupervised clustering was utilized to identify crucial tumor subtypes in glioma development. Subsequent time-series analysis and MS model were employed to track the progression of these identified subtypes. RBPs playing a significant role in glioma progression were then pinpointed using WGCNA and Lasso Cox regression models. Functional analysis of these key RBP-related genes was conducted through GSEA. Additionally, the CIBERSORT algorithm was utilized to estimate immune infiltrating cells, while the STRING database was consulted to uncover potential mechanisms of the identified biomarkers. RESULTS: Six tumor subgroups were identified and found to be highly homogeneous within each subgroup. The progression stages of these tumor subgroups were determined using time-series analysis and a MS model. Through WGCNA, Lasso Cox, and multivariate Cox regression analysis, it was confirmed that BCLAF1 is correlated with survival in glioma patients and is closely linked to glioma progression. Functional annotation suggests that BCLAF1 may impact glioma progression by influencing RNA splicing, which in turn affects the cell cycle, Wnt signaling pathway, and other cancer development pathways. CONCLUSIONS: The study initially identified six subtypes of glioma progression and assessed their malignancy ranking. Furthermore, it was determined that BCLAF1 could serve as an RBP-related prognostic marker, offering significant implications for the clinical diagnosis and personalized treatment of glioma.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Glioma , Proteínas de Ligação a RNA , Glioma/genética , Glioma/classificação , Glioma/metabolismo , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica
11.
Electromagn Biol Med ; 43(1-2): 81-94, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38461438

RESUMO

This research focuses on improving the detection and classification of brain tumors using a method called Brain Tumor Classification using Dual-Discriminator Conditional Generative Adversarial Network (DDCGAN) for MRI images. The proposed system is implemented in the MATLAB programming language. In this study, images of the brain are taken from a dataset and processed to remove noise and enhance image quality. The brain pictures are taken from Brats MRI image dataset. The images are preprocessed using Structural interval gradient filtering to remove noises and improve the quality of the image. The preprocessing outcomes are given to feature extraction. The features are extracted by Empirical wavelet transform (EWT) and the extracted features are given to the Dual-discriminator conditional generative adversarial network (DDCGAN) for recognizing the brain tumor, which classifies the brain images into glioma, meningioma, pituitary gland, and normal. Then, the weight parameter of DDCGAN is optimized by utilizing Border Collie Optimization (BCO), which is a met a heuristic approach to handle the real world optimization issues. It maximizes the detection accurateness and reduced computational time. Implemented in MATLAB, the experimental results demonstrate that the proposed system achieves a high sensitivity of 99.58%. The BCO-DDCGAN-MRI-BTC method outperforms existing techniques in terms of precision and sensitivity when compared to methods like Kernel Basis SVM (KSVM-HHO-BTC), Joint Training of Two-Channel Deep Neural Network (JT-TCDNN-BTC), and YOLOv2 including Convolutional Neural Network (YOLOv2-CNN-BTC). The research findings indicate that the proposed method enhances the accuracy of brain tumor classification while reducing computational time and errors.


This research focuses on improving the detection and classification of brain tumors using a method called Brain Tumor Classification using Dual-Discriminator Conditional Generative Adversarial Network (DDCGAN) for MRI images. Brain tumors can significantly impact normal brain function and lead to loss of lives, making timely diagnosis crucial. However, the process of locating affected brain cells is often time-consuming. In this study, images of the brain are taken from a dataset and processed to remove noise and enhance image quality. The proposed method employs the Empirical Wavelet Transform (EWT) for feature extraction and utilizes the DDCGAN to classify brain images into different types of tumors (glioma, meningioma, pituitary gland) and normal brain images. The weight parameter of DDCGAN is optimized using Border Collie Optimization (BCO), a method to handle real-world optimization issues. This optimization aims to maximize detection accuracy and minimize computational time. Implemented in MATLAB, the experimental results demonstrate that the proposed system achieves a high sensitivity of 99.58%. The BCO-DDCGAN-MRI-BTC method outperforms existing techniques in terms of precision and sensitivity when compared to methods like Kernel Basis SVM (KSVM-HHO-BTC), Joint Training of Two-Channel Deep Neural Network (JT-TCDNN-BTC), and YOLOv2 including Convolutional Neural Network (YOLOv2-CNN-BTC). The research findings indicate that the proposed method enhances the accuracy of brain tumor classification while reducing computational time and errors.


Assuntos
Neoplasias Encefálicas , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Análise de Ondaletas
12.
Artif Intell Med ; 148: 102776, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38325925

RESUMO

This study proposes a deep convolutional neural network for the automatic segmentation of glioblastoma brain tumors, aiming sat replacing the manual segmentation method that is both time-consuming and labor-intensive. There are many challenges for automatic segmentation to finely segment sub-regions from multi-sequence magnetic resonance images because of the complexity and variability of glioblastomas, such as the loss of boundary information, misclassified regions, and subregion size. To overcome these challenges, this study introduces a spatial pyramid module and attention mechanism to the automatic segmentation algorithm, which focuses on multi-scale spatial details and context information. The proposed method has been tested in the public benchmarks BraTS 2018, BraTS 2019, BraTS 2020 and BraTS 2021 datasets. The Dice score on the enhanced tumor, whole tumor, and tumor core were respectively 79.90 %, 89.63 %, and 85.89 % on the BraTS 2018 dataset, respectively 77.14 %, 89.58 %, and 83.33 % on the BraTS 2019 dataset, and respectively 77.80 %, 90.04 %, and 83.18 % on the BraTS 2020 dataset, and respectively 83.48 %, 90.70 %, and 88.94 % on the BraTS 2021 dataset offering performance on par with that of state-of-the-art methods with only 1.90 M parameters. In addition, our approach significantly reduced the requirements for experimental equipment, and the average time taken to segment one case was only 1.48 s; these two benefits rendered the proposed network intensely competitive for clinical practice.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Humanos , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/classificação , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
13.
Electromagn Biol Med ; 43(1-2): 31-45, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38369844

RESUMO

This paper proposes a novel approach, BTC-SAGAN-CHA-MRI, for the classification of brain tumors using a SAGAN optimized with a Color Harmony Algorithm. Brain cancer, with its high fatality rate worldwide, especially in the case of brain tumors, necessitates more accurate and efficient classification methods. While existing deep learning approaches for brain tumor classification have been suggested, they often lack precision and require substantial computational time.The proposed method begins by gathering input brain MR images from the BRATS dataset, followed by a pre-processing step using a Mean Curvature Flow-based approach to eliminate noise. The pre-processed images then undergo the Improved Non-Sub sampled Shearlet Transform (INSST) for extracting radiomic features. These features are fed into the SAGAN, which is optimized with a Color Harmony Algorithm to categorize the brain images into different tumor types, including Gliomas, Meningioma, and Pituitary tumors. This innovative approach shows promise in enhancing the precision and efficiency of brain tumor classification, holding potential for improved diagnostic outcomes in the field of medical imaging. The accuracy acquired for the brain tumor identification from the proposed method is 99.29%. The proposed BTC-SAGAN-CHA-MRI technique achieves 18.29%, 14.09% and 7.34% higher accuracy and 67.92%,54.04%, and 59.08% less Computation Time when analyzed to the existing models, like Brain tumor diagnosis utilizing deep learning convolutional neural network with transfer learning approach (BTC-KNN-SVM-MRI); M3BTCNet: multi model brain tumor categorization under metaheuristic deep neural network features optimization (BTC-CNN-DEMFOA-MRI), and efficient method depending upon hierarchical deep learning neural network classifier for brain tumour categorization (BTC-Hie DNN-MRI) respectively.


This paper proposes a novel approach, BTC-SAGAN-CHA-MRI, for the classification of brain tumors using a Self-Attention based Generative Adversarial Network (SAGAN) optimized with a Color Harmony Algorithm. Brain cancer, with its high fatality rate worldwide, especially in the case of brain tumors, necessitates more accurate and efficient classification methods. While existing deep learning approaches for brain tumor classification have been suggested, they often lack precision and require substantial computational time. The proposed method begins by gathering input brain MR images from the BRATS dataset, followed by a pre-processing step using a Mean Curvature Flow-based approach to eliminate noise. The pre-processed images then undergo the Improved Non-Sub sampled Shearlet Transform (INSST) for extracting radiomic features. These features are fed into the SAGAN, which is optimized with a Color Harmony Algorithm to categorize the brain images into different tumor types, including Gliomas, Meningioma, and Pituitary tumors. This innovative approach shows promise in enhancing the precision and efficiency of brain tumor classification, holding potential for improved diagnostic outcomes in the field of medical imaging.


Assuntos
Algoritmos , Neoplasias Encefálicas , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Cor , Redes Neurais de Computação , Aprendizado Profundo
14.
Sci Rep ; 13(1): 13582, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604860

RESUMO

We demonstrate that isomorphically mapping gray-level medical image matrices onto energy spaces underlying the framework of fast data density functional transform (fDDFT) can achieve the unsupervised recognition of lesion morphology. By introducing the architecture of geometric deep learning and metrics of graph neural networks, gridized density functionals of the fDDFT establish an unsupervised feature-aware mechanism with global convolutional kernels to extract the most likely lesion boundaries and produce lesion segmentation. An AutoEncoder-assisted module reduces the computational complexity from [Formula: see text] to [Formula: see text], thus efficiently speeding up global convolutional operations. We validate their performance utilizing various open-access datasets and discuss limitations. The inference time of each object in large three-dimensional datasets is 1.76 s on average. The proposed gridized density functionals have activation capability synergized with gradient ascent operations, hence can be modularized and embedded in pipelines of modern deep neural networks. Algorithms of geometric stability and similarity convergence also raise the accuracy of unsupervised recognition and segmentation of lesion images. Their performance achieves the standard requirement for conventional deep neural networks; the median dice score is higher than 0.75. The experiment shows that the synergy of fDDFT and a naïve neural network improves the training and inference time by 58% and 51%, respectively, and the dice score raises to 0.9415. This advantage facilitates fast computational modeling in interdisciplinary applications and clinical investigation.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Humanos , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão , Diagnóstico por Imagem , Conjuntos de Dados como Assunto
15.
Clin Neuropathol ; 42(2): 74-80, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36633374

RESUMO

The Brain Tumor Epidemiology Consortium (BTEC) is an international organization that fosters collaboration among scientists focused on understanding the epidemiology of brain tumors with interests ranging from the etiology of brain tumor development and outcomes to the control of morbidity and mortality. The 2022 annual BTEC meeting with the theme "Pediatric Brain Tumors: Origins, Epidemiology, and Classification" was held in Lyon, France on June 20 - 22, 2022. Scientists from North America and Europe presented recent research and progress in the field. The meeting content is summarized in this report.


Assuntos
Neoplasias Encefálicas , Criança , Humanos , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/etiologia
16.
Radiographics ; 42(5): 1474-1493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802502

RESUMO

The World Health Organization (WHO) published the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5) in 2021, as an update of the WHO central nervous system (CNS) classification system published in 2016. WHO CNS5 was drafted on the basis of recommendations from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) and expounds the classification scheme of the previous edition, which emphasized the importance of genetic and molecular changes in the characteristics of CNS tumors. Multiple newly recognized tumor types, including those for which there is limited knowledge regarding neuroimaging features, are detailed in WHO CNS5. The authors describe the major changes introduced in WHO CNS5, including revisions to tumor nomenclature. For example, WHO grade IV tumors in the fourth edition are equivalent to CNS WHO grade 4 tumors in the fifth edition, and diffuse midline glioma, H3 K27M-mutant, is equivalent to midline glioma, H3 K27-altered. With regard to tumor typing, isocitrate dehydrogenase (IDH)-mutant glioblastoma has been modified to IDH-mutant astrocytoma. In tumor grading, IDH-mutant astrocytomas are now graded according to the presence or absence of homozygous CDKN2A/B deletion. Moreover, the molecular mechanisms of tumorigenesis, as well as the clinical characteristics and imaging features of the tumor types newly recognized in WHO CNS5, are summarized. Given that WHO CNS5 has become the foundation for daily practice, radiologists need to be familiar with this new edition of the WHO CNS tumor classification system. Online supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article. ©RSNA, 2022.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Astrocitoma/classificação , Astrocitoma/patologia , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Neoplasias do Sistema Nervoso Central/classificação , Neoplasias do Sistema Nervoso Central/patologia , Glioma/classificação , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Organização Mundial da Saúde
17.
Turk Neurosurg ; 32(3): 500-507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615769

RESUMO

AIM: To evaluate isocitrate dehydrogenase (IDH) mutation status and Ki67 percentages of tumors that were treated in our institution to determine whether these markers affected the initial diagnosis and survival rates. MATERIAL AND METHODS: High-grade glioma patients, who were operated in our department between 2013 and 2018, were enrolled in the study and retrospectively reviewed. New immunohistochemistry staining studies were conducted and survival analyses were performed. RESULTS: Of 135 patients and 136 tumors, 117 were glioblastoma multiforme (GBM), 8 were grade III-IV glioma, 4 were anaplastic astrocytoma and 7 were anaplastic oligodendroglioma. One patient had two different lesions, which were GBM and anaplastic astrocytoma respectively. Mean age was 55 (7-85) years, and 88 (65%) were male and 47 (35%) were female. The most common complaint was motor deficit (56%). Fourteen patients underwent reoperation due to recurrent disease. Tumors were most commonly found in the frontal lobe (53, 39%). Magnetic resonance imaging (MRI) features showed that existence of necrosis is strongly related to GBM (p < 0.01). Approximately 126 patients were found to be IDH-wildtype, which changed 6 patients? diagnosis to GBM, IDH wildtype from grade III-IV glioma. Five patients, who were diagnosed with anaplastic astrocytoma and anaplastic oligodendroglioma initially were found to be IDH wildtype. IDH mutation status, extend of resection, and age were found to affect survival. CONCLUSION: IDH mutation status is important in classifying high-grade gliomas, as well as its effects on prognosis. This mutation is related to several radiological features of tumors. Extent of resection and patient age are also profoundly affect survival. Detailing the diagnosis with molecular features will help physicians to shape targeted adjuvant therapies, which would better outcomes.


Assuntos
Astrocitoma , Biomarcadores Tumorais , Glioblastoma , Glioma , Astrocitoma/genética , Astrocitoma/cirurgia , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Glioblastoma/classificação , Glioblastoma/patologia , Glioblastoma/cirurgia , Glioma/classificação , Glioma/patologia , Glioma/cirurgia , Humanos , Imuno-Histoquímica , Isocitrato Desidrogenase/genética , Antígeno Ki-67 , Masculino , Pessoa de Meia-Idade , Oligodendroglioma/classificação , Oligodendroglioma/patologia , Oligodendroglioma/cirurgia , Prognóstico , Estudos Retrospectivos , Organização Mundial da Saúde
18.
Comput Math Methods Med ; 2022: 9448144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242216

RESUMO

Based on alterations in gene expression associated with the production of glycolysis and cholesterol, this research classified glioma into prognostic metabolic subgroups. In this study, data from the CGGA325 and The Cancer Genome Atlas (TCGA) datasets were utilized to extract single nucleotide variants (SNVs), RNA-seq expression data, copy number variation data, short insertions and deletions (InDel) mutation data, and clinical follow-up information from glioma patients. Glioma metabolic subtypes were classified using the ConsensusClusterPlus algorithm. This study determined four metabolic subgroups (glycolytic, cholesterogenic, quiescent, and mixed). Cholesterogenic patients had a higher survival chance. Genome-wide investigation revealed that inappropriate amplification of MYC and TERT was associated with improper cholesterol anabolic metabolism. In glioma metabolic subtypes, the mRNA levels of mitochondrial pyruvate carriers 1 and 2 (MPC1/2) presented deletion and amplification, respectively. Differentially upregulated genes in the glycolysis group were related to pathways, including IL-17, HIF-1, and TNF signaling pathways and carbon metabolism. Downregulated genes in the glycolysis group were enriched in terpenoid backbone biosynthesis, nitrogen metabolism, butanoate metabolism, and fatty acid metabolism pathway. Cox analysis of univariate and multivariate survival showed that risks of glycolysis subtypes were significantly higher than other subtypes. Those results were validated in the CGGA325 dataset. The current findings greatly contribute to a comprehensive understanding of glioma and personalized treatment.


Assuntos
Neoplasias Encefálicas/classificação , Glioma/classificação , Algoritmos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Colesterol/biossíntese , Colesterol/genética , Biologia Computacional , Bases de Dados Genéticas/estatística & dados numéricos , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glicólise/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
19.
Comput Math Methods Med ; 2022: 7137524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178119

RESUMO

Image fusion can be performed on images either in spatial domain or frequency domain methods. Frequency domain methods will be most preferred because these methods can improve the quality of edges in an image. In image fusion, the resultant fused images will be more informative than individual input images, thus more suitable for classification problems. Artificial intelligence (AI) algorithms play a significant role in improving patient's treatment in the health care industry and thus improving personalized medicine. This research work analyses the role of image fusion in an improved brain tumour classification model, and this novel fusion-based cancer classification model can be used for personalized medicine more effectively. Image fusion can improve the quality of resultant images and thus improve the result of classifiers. Instead of using individual input images, the high-quality fused images will provide better classification results. Initially, the contrast limited adaptive histogram equalization technique preprocess input images such as MRI and SPECT images. Benign and malignant class brain tumor images are applied with discrete cosine transform-based fusion method to obtain fused images. AI algorithms such as support vector machine classifier, KNN classifier, and decision tree classifiers are tested with features obtained from fused images and compared with the result obtained from individual input images. Performances of classifiers are measured using the parameters accuracy, precision, recall, specificity, and F1 score. SVM classifier provided the maximum accuracy of 96.8%, precision of 95%, recall of 94%, specificity of 93%, F1 score of 91%, and performed better than KNN and decision tree classifiers when extracted features from fused images are used. The proposed method results are compared with existing methods and provide satisfactory results.


Assuntos
Algoritmos , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/diagnóstico por imagem , Aumento da Imagem/métodos , Aprendizado de Máquina , Biologia Computacional , Bases de Dados Factuais/estatística & dados numéricos , Árvores de Decisões , Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/estatística & dados numéricos , Humanos , Imagem Multimodal/métodos , Imagem Multimodal/estatística & dados numéricos , Redes Neurais de Computação , Neuroimagem/métodos , Neuroimagem/estatística & dados numéricos , Medicina de Precisão/métodos , Medicina de Precisão/estatística & dados numéricos , Máquina de Vetores de Suporte
20.
Clin Neuropathol ; 41(2): 53-65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034690

RESUMO

The corresponding member of the Academy of Medical Sciences of the USSR Professor Leonid Iosifovich Smirnov (1889 - 1955) authored several dozen publications on neuropathology of infections, schizophrenia, cerebral injuries, and brain tumors. Based on his study of pathology of gunshot head injuries during World War II he suggested a doctrine of traumatic on traumatic brain disease. He was the author of the first Russian classification of cerebral tumors and had an impact on the development of neurooncology in the former USSR. The aim of this paper is to show the early development of modern neuropathology at the example of a leading Soviet neuropathologist in the first half of the 20th century and his relevance for modern classification of CNS tumors.


Assuntos
Neoplasias Encefálicas , Neuropatologia , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/história , História do Século XIX , História do Século XX , Humanos , Neuropatologia/história , U.R.S.S.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...