Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.577
Filtrar
1.
J Pharm Biomed Anal ; 248: 116320, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959758

RESUMO

Diethylnitrosamine (DEN) was applied to create the primary liver cancer (PLC) animal model. In the study, the normal group, model group, cyclophosphamide (CTX) group, Cortex Juglandis Mandshuricae (CJM) extract group, myricetin group and myricitrin group were divided. LC-MS/MS technology was applied to determine the metabolites of liver tissue samples from different locations (nodular and non-nodular parts of liver tissue) in each group of rats. Through metabolomics research, the connection and difference of anti-PLC induced by the CJM extract, myricetin and myricitrin was analyzed. The surface of the liver tissues of rats in the model group was rough, dimly colored, inelastic, on which there were scattered gray white cancer nodules and blood stasis points. The number of cancer nodules was significantly reduced, and the degree of cell malignancy was low, but there were some inflammatory cell infiltrations, necrosis area and karyokinesis in the CJM extract group, myricetin group, myricitrin group and CTX group. The result of metabolic research indicated that 45 potential biomarkers of the PLC were found, as gamma-aminoisobutyrate, taurochenodeoxycholate, xanthurenic acid, etc. There were 22 differential metabolites in the CTX group, 16 differential metabolites in the CJM extract group, 14 differential metabolites in the myricetin group, 14 differential metabolites in the myricitrin group.


Assuntos
Flavonoides , Metabolômica , Espectrometria de Massas em Tandem , Animais , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Ratos , Masculino , Flavonoides/análise , Flavonoides/farmacologia , Cromatografia Líquida/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Ratos Sprague-Dawley , Extratos Vegetais/farmacologia , Dietilnitrosamina/toxicidade , Espectrometria de Massa com Cromatografia Líquida
2.
Int J Biol Sci ; 20(9): 3269-3284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993552

RESUMO

Background: Lenvatinib is the most common multitarget receptor tyrosine kinase inhibitor for the treatment of advanced hepatocellular carcinoma (HCC). Acquired resistance to lenvatinib is one of the major factors leading to the failure of HCC treatment, but the underlying mechanism has not been fully characterized. Methods: We established lenvatinib-resistant cell lines, cell-derived xenografts (CDXs) and patient-derived xenografts (PDXs) and obtained lenvatinib-resistant HCC tumor tissues for further study. Results: We found that ubiquitin-specific protease 14 (USP14) was significantly increased in lenvatinib-resistant HCC cells and tumors. Silencing USP14 significantly attenuated lenvatinib resistance in vitro and in vivo. Mechanistically, USP14 directly interacts with and stabilizes calcium- and integrin-binding protein 1 (CIB1) by reversing K48-linked proteolytic ubiquitination at K24, thus facilitating the P21-activated kinase 1 (PAK1)-ERK1/2 signaling axis. Moreover, in vivo adeno-associated virus 9 mediated transduction of CIB1 promoted lenvatinib resistance in PDXs, whereas CIB1 knockdown resensitized the response of PDXs to lenvatinib. Conclusions: These findings provide new insights into the role of CIB1/PAK1-ERK1/2 signaling in lenvatinib resistance in HCC. Targeting CIB1 and its pathways may be a novel pharmaceutical intervention for the treatment of lenvatinib-resistant HCC.


Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Ubiquitina Tiolesterase , Quinases Ativadas por p21 , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Animais , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Camundongos , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Ubiquitinação
3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000273

RESUMO

To address the increased energy demand, tumor cells undergo metabolic reprogramming, including oxidative phosphorylation (OXPHOS) and aerobic glycolysis. This study investigates the role of Kruppel-like factor 4 (KLF4), a transcription factor, as a tumor suppressor in hepatocellular carcinoma (HCC) by regulating ATP synthesis. Immunohistochemistry was performed to assess KLF4 expression in HCC tissues. Functional assays, such as CCK-8, EdU, and colony formation, as well as in vivo assays, including subcutaneous tumor formation and liver orthotopic xenograft mouse models, were conducted to determine the impact of KLF4 on HCC proliferation. Luciferase reporter assay and chromatin immunoprecipitation assay were utilized to evaluate the interaction between KLF4, miR-206, and RICTOR. The findings reveal low KLF4 expression in HCC, which is associated with poor prognosis. Both in vitro and in vivo functional assays demonstrate that KLF4 inhibits HCC cell proliferation. Mechanistically, it was demonstrated that KLF4 reduces ATP synthesis in HCC by suppressing the expression of RICTOR, a core component of mTORC2. This suppression promotes glutaminolysis to replenish the TCA cycle and increase ATP levels, facilitated by the promotion of miR-206 transcription. In conclusion, this study enhances the understanding of KLF4's role in HCC ATP synthesis and suggests that targeting the KLF4/miR-206/RICTOR axis could be a promising therapeutic approach for anti-HCC therapeutics.


Assuntos
Trifosfato de Adenosina , Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas , MicroRNAs , Animais , Humanos , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Progressão da Doença , Fator 4 Semelhante a Kruppel/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo
4.
Elife ; 132024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008536

RESUMO

Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of ß-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Evasão Tumoral , beta Catenina , Proteínas rab27 de Ligação ao GTP , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Exossomos/metabolismo , Exossomos/genética , beta Catenina/metabolismo , beta Catenina/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Evasão Tumoral/genética , Proteínas rab27 de Ligação ao GTP/metabolismo , Proteínas rab27 de Ligação ao GTP/genética , Microambiente Tumoral/imunologia , Mutação , Regulação Neoplásica da Expressão Gênica
5.
J Cancer Res Ther ; 20(3): 755-762, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023579

RESUMO

BACKGROUND AND OBJECTIVES: Hepatocellular carcinoma (HCC) is a primary cancer that poorly responds to treatment. Molecular cancer studies led to the development of kinase inhibitors, among which sorafenib stands out as a multi-kinase inhibitor approved by FDA for first line use in HCC patients. However, the efficiency of sorafenib was shown to be counteracted by numerous subcellular pathways involving the effector kinase AKT, causing resistance and limiting its survival benefit. On the way of breaking such resistance mechanisms and increase the efficiency of sorafenib, deeper understanding of hepatocellular physiology is essential. Thyroid hormones were shown to be metabolized in liver and inevitably affect the molecular behaviour of hepatocytes. Interestingly, thyroid hormone T3 was also demonstrated to be potentially influential in liver regeneration and treatment with this hormone reportedly led to a decrease in HCC tumor growths. In this study, we aimed to uncover the impact of T3 hormone on the cytotoxic response to sorafenib in HCC in vitro. MATERIALS AND METHODS: We pre-treated the HCC cell line Huh-7 with T3 prior to sorafenib exposure both in 2D and 3D culture. We checked cell viability with MTT assay in 2D culture and measured the sizes of 3D spheroids with bright-field microscopy followed by a surface analysis with ImageJ. We also performed scratch assay to measure cell migration as well as western blot and qPCR to uncover affected pathways. RESULTS: We observed an additive effect to sorafenib's cytotoxicity both in 2D and 3D culture. Cell migration assay also confirmed our finding and pointed out a benefit of T3 hormone in HCC cell migration. Western blot experiments showed that T3 exerts its additive effect by suppressing AKT expression upon sorafenib treatment both at protein and gene expression levels. CONCLUSION: Our results open a promising new avenue in increasing sorafenib's cytotoxicity where thyroid hormone T3 is utilized to modulate AKT expression to combat resistance, and warrant further studies in the field.


Assuntos
Carcinoma Hepatocelular , Sobrevivência Celular , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Sorafenibe , Tri-Iodotironina , Sorafenibe/farmacologia , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tri-Iodotironina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sinergismo Farmacológico , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
6.
World J Gastroenterol ; 30(22): 2843-2848, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38947286

RESUMO

Hepatocellular carcinoma (HCC) is the most common and deadliest subtype of liver cancer worldwide and, therefore, poses an enormous threat to global health. Understanding the molecular mechanisms underlying the development and progression of HCC is central to improving our clinical approaches. PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that bind to PIWI family proteins to regulate gene expression at transcriptional and post-transcriptional levels. A growing body of work shows that the dysregulation of piRNAs plays a crucial role in the progression of various human cancers. In this editorial, we report on the current knowledge of HCC-associated piRNAs and their potential clinical utility. Based on the editorial by Papadopoulos and Trifylli, on the role and clinical evaluation of exosomal circular RNAs in HCC, we highlight this other emerging class of non-coding RNAs.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , RNA Interferente Pequeno , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , RNA Interferente Pequeno/metabolismo , Exossomos/metabolismo , Exossomos/genética , RNA Circular/metabolismo , RNA Circular/genética , Progressão da Doença , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
7.
Theranostics ; 14(9): 3470-3485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948063

RESUMO

Background: Sorafenib is the standard treatment for advanced hepatocellular carcinoma (HCC), but acquired resistance during the treatment greatly limits its clinical efficiency. Lipid metabolic disorder plays an important role in hepatocarcinogenesis. However, whether and how lipid metabolic reprogramming regulates sorafenib resistance of HCC cells remains vague. Methods: Sorafenib resistant HCC cells were established by continuous induction. UHPLC-MS/MS, proteomics, and flow cytometry were used to assess the lipid metabolism. ChIP and western blot were used to reflect the interaction of signal transducer and activator of transcription 3 (STAT3) with glycerol-3-phosphate acyltransferase 3 (GPAT3). Gain- and loss-of function studies were applied to explore the mechanism driving sorafenib resistance of HCC. Flow cytometry and CCK8 in vitro, and tumor size in vivo were used to evaluate the sorafenib sensitivity of HCC cells. Results: Our metabolome data revealed a significant enrichment of triglycerides in sorafenib-resistant HCC cells. Further analysis using proteomics and genomics techniques demonstrated a significant increase in the expression of GPAT3 in the sorafenib-resistant groups, which was found to be dependent on the activation of STAT3. The restoration of GPAT3 resensitized HCC cells to sorafenib, while overexpression of GPAT3 led to insensitivity to sorafenib. Mechanistically, GPAT3 upregulation increased triglyceride synthesis, which in turn stimulated the NF-κB/Bcl2 signaling pathway, resulting in apoptosis tolerance upon sorafenib treatment. Furthermore, our in vitro and in vivo studies revealed that pan-GPAT inhibitors effectively reversed sorafenib resistance in HCC cells. Conclusions: Our data demonstrate that GPAT3 elevation in HCC cells reprograms triglyceride metabolism which contributes to acquired resistance to sorafenib, which suggests GPAT3 as a potential target for enhancing the sensitivity of HCC to sorafenib.


Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Fator de Transcrição STAT3 , Sorafenibe , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Fator de Transcrição STAT3/metabolismo , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Metabolismo dos Lipídeos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Pancreas ; 53(7): e603-e610, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986080

RESUMO

OBJECTIVES: Pancreatic cancer (PC) is one of the most aggressive malignancies due to the high rate of metastasis. The mechanisms underlying metastasis need to be elucidated. Small extracellular vesicles (sEVs) mediate cell-to-cell communication, and cancer-derived sEVs contribute to the formation of premetastatic niches. The present study examined changes in adhesiveness by the internalization of PC-derived sEVs into vascular endothelial cells, and investigated the molecular mechanisms underlying metastasis. MATERIALS AND METHODS: Pancreatic cancer-derived sEVs were internalized into vascular endothelial cells, and changes in adhesiveness were evaluated. We evaluated the effects of sEVs on the formation of liver metastasis in vivo. We also assessed molecular changes in vascular endothelial cells by the internalization of PC-derived sEVs. RESULTS: The internalization of PC-derived sEVs into vascular endothelial cells promoted the adhesiveness of vascular endothelial cells and PC cells. Pancreatic cancer-derived sEVs contained high levels of transforming growth factor ß1 mRNA and acted as its transporter. Once PC-derived sEVs were internalized into vascular endothelial cells, the expression of fibronectin 1 increased on the cell surface, and the adhesiveness of vascular endothelial cells was enhanced. CONCLUSIONS: We investigated association between PC-derived sEVs and adhesiveness. Regulation of PC-derived sEVs has potential as a therapeutic modality to suppress the metastasis of PC.


Assuntos
Adesão Celular , Células Endoteliais , Vesículas Extracelulares , Fibronectinas , Neoplasias Pancreáticas , Fator de Crescimento Transformador beta1 , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Vesículas Extracelulares/metabolismo , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Animais , Fibronectinas/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Camundongos Nus , Comunicação Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Masculino
9.
Funct Integr Genomics ; 24(4): 123, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992207

RESUMO

Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis. It has been proven that long non-coding RNAs (lncRNAs) play an essential role in regulating HCC progression. However, the involvement of LINC01094 in regulating epithelial-mesenchymal transition (EMT) in HCC remains unclear. LINC01094 expression in HCC patients was retrieved from the Cancer Genome Atlas database. Overexpressing and downregulating LINC01094 were conducted to investigate its biological functions using Hep3B, SNU-387, and HuH-7 cells. Western blotting and morphological observation were performed to study the EMT in HCC cells. Transwell assay was adopted to determine the migration and invasion of HCC cells. The underlying mechanism of competitive endogenous RNAs (ceRNAs) was investigated using bioinformatics analysis, quantitative reverse-transcription polymerase chain reaction, and rescue experiments. Elevated LINC01094 expression was observed in HCC and associated with a poor prognosis. Knockdown of LINC01094 expression in SNU-387 and HuH-7 cells could inhibit migration, invasion, and EMT markers. Overexpression of LINC01094 indicated that LINC01094 promoted EMT via the TGF-ß/SMAD signaling pathway. The bioinformatics analysis revealed that miR-122-5p was a target of LINC01094. The miRWalk database analysis showed that TGFBR2, SMAD2, and SMAD3 were downstream targets of miR-122-5p. Mechanically, LINC01094 acted as a ceRNA that facilitated HCC metastasis by sponging miR-122-5p to regulate the expression of TGFBR2, SMAD2, and SMAD3. Further, TGF-ß1 could enhance the expression of LINC01094, forming a positive feedback loop. TGF-ß1-induced LINC01094 expression promotes HCC cell migration and invasion by targeting the miR-122-5p/TGFBR2-SMAD2-SMAD3 axis. LINC01094 may be a potential prognostic biomarker and therapeutic target for HCC metastasis.


Assuntos
Carcinoma Hepatocelular , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Receptor do Fator de Crescimento Transformador beta Tipo II , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Humanos , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais
10.
Sci Rep ; 14(1): 15870, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982153

RESUMO

Recent studies indicate that Glypican 1 (GPC-1) is aberrantly expressed and plays a key role in certain cancers, but little is known in the hepatocellular carcinoma. Raw data from TCGA, GTEx and TIMER databases were utilized to comprehensively analyze GPC-1 expression landscape in pan-cancer, and the biological function of GPC-1 was investigated in liver cancer cells. The results revealed that GPC-1 is highly expressed in HCC, negatively correlated with survival, and also positively correlated with immune infiltration and clinical stage. Furthermore, GPC-1 promoted cell proliferation and inhibited apoptosis in the HCC cell lines. WGCNA analysis and HCCDB database revealed that Akt acted as a key molecule related to GPC-1, influencing biological functions and regulating cell malignant behaviors via the AKT signaling pathway. In conclusion, our findings provide a relatively comprehensive understanding of the oncogenic role of GPC-1 in HCC, implying that GPC-1 could serve as an innovative therapeutic target.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glipicanas , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Glipicanas/metabolismo , Glipicanas/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral , Apoptose/genética , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
J Cell Mol Med ; 28(13): e18496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984939

RESUMO

Hepatocellular carcinoma (HCC), a prevalent malignancy worldwide, poses significant challenges in terms of prognosis, necessitating innovative therapeutic approaches. Ferroptosis offers notable advantages over apoptosis, holding promise as a novel therapeutic approach for HCC complexities. Moreover, while the interaction between long non-coding RNAs (lncRNAs) and mRNAs is pivotal in various physiological and pathological processes, their involvement in ferroptosis remains relatively unexplored. In this study, we constructed a ferroptosis-related lncRNA-mRNA correlation network in HCC using Pearson correlation analysis. Notably, the SLC7A11-AS1/SLC7A11 pair, exhibiting high correlation, was identified. Bioinformatics analysis revealed a significant correlation between the expression levels of this pair and key clinical characteristics of HCC patients, including gender, pathology, Ishak scores and tumour size. And poor prognosis was associated with high expression of this pair. Functional experiments demonstrated that SLC7A11-AS1, by binding to the 3'UTR region of SLC7A11 mRNA, enhanced its stability, thereby promoting HCC cell growth and resistance to erastin- induced ferroptosis. Additionally, in vivo studies confirmed that SLC7A11-AS1 knockdown potentiated the inhibitory effects of erastin on tumour growth. Overall, our findings suggest that targeting the SLC7A11-AS1/SLC7A11 pair holds promise as a potential therapeutic strategy for HCC patients.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Carcinoma Hepatocelular , Ferroptose , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , RNA Longo não Codificante , Ferroptose/genética , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular Tumoral , Masculino , Feminino , Camundongos , Prognóstico , Proliferação de Células/genética , Camundongos Nus , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Piperazinas/farmacologia
12.
Oncoimmunology ; 13(1): 2376264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988824

RESUMO

Functional roles of SIGLEC15 in hepatocellular carcinoma (HCC) were not clear, which was recently found to be an immune inhibitor with similar structure of inhibitory B7 family members. SIGLEC15 expression in HCC was explored in public databases and further examined by PCR analysis. SIGLEC15 and PD-L1 expression patterns were examined in HCC samples through immunohistochemistry. SIGLEC15 expression was knocked-down or over-expressed in HCC cell lines, and CCK8 tests were used to examine cell proliferative ability in vitro. Influences of SIGLEC15 expression on tumor growth were examined in immune deficient and immunocompetent mice respectively. Co-culture system of HCC cell lines and Jurkat cells, flow cytometry analysis of tumor infiltrated immune cells and further sequencing analyses were performed to investigate how SIGLEC15 could affect T cells in vitro and in vivo. We found SIGLEC15 was increased in HCC tumor tissues and was negatively correlated with PD-L1 in HCC samples. In vitro and in vivo models demonstrated inhibition of SIGLEC15 did not directly influence tumor proliferation. However, SIGLEC15 could promoted HCC immune evasion in immune competent mouse models. Knock-out of Siglec15 could inhibit tumor growth and reinvigorate CD8+ T cell cytotoxicity. Anti-SIGLEC15 treatment could effectively inhibit tumor growth in mouse models with or without mononuclear phagocyte deletion. Bulk and single-cell RNA sequencing data of treated mouse tumors demonstrated SIGLEC15 could interfere CD8+ T cell viability and induce cell apoptosis. In all, SIGLEC15 was negatively correlated with PD-L1 in HCC and mainly promote HCC immune evasion through inhibition of CD8+ T cell viability and cytotoxicity.


Assuntos
Apoptose , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Evasão Tumoral/genética , Linhagem Celular Tumoral , Proliferação de Células , Masculino , Feminino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Evasão da Resposta Imune , Imunoglobulinas
13.
Sci Rep ; 14(1): 16051, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992083

RESUMO

RNA-binding proteins (RBPs) are a class of proteins that primarily function by interacting with different types of RNAs and play a critical role in regulating the transcription and translation of cancer-related genes. However, their role in the progression of hepatocellular carcinoma (HCC) remains unclear. In this study, we analyzed RNA sequencing data and the corresponding clinical information of patients with HCC to screen for prognostic RBPs. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) was identified as an independent prognostic factor for liver cancer. It is upregulated in HCC and is associated with a poor prognosis. Elevated IGF2BP3 expression was validated via immunohistochemical analysis using a tissue microarray of patients with HCC. IGF2BP3 knockdown inhibited the proliferation of Hep3B and HepG2 cells, whereas IGF2BP3 overexpression promoted the expansion of HuH-7 and MHCC97H cells. Mechanistically, IGF2BP3 modulates cell proliferation by regulating E2F1 expression. DNA hypomethylation of the IGF2BP3 gene may increase the expression of IGF2BP3, thereby enhancing cell proliferation in HCC. Therefore, IGF2BP3 may act as a novel prognostic biomarker and a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Metilação de DNA , Fator de Transcrição E2F1 , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Regulação para Cima , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proliferação de Células/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Masculino , Regulação para Cima/genética , Feminino , Prognóstico , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Células Hep G2 , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
14.
BMC Cancer ; 24(1): 827, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992592

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, influenced by aberrant circRNA expression. Investigating circRNA-miRNA-mRNA interactions can unveil underlying mechanisms of HCC and identify potential therapeutic targets. METHODS: In this study, we conducted differential analyses of mRNAs, miRNAs, and circRNAs, and established their relationships using various databases such as miRanda, miRDB, and miTarBase. Additionally, functional enrichment and immune infiltration analyses were performed to evaluate the roles of key genes. We also conducted qPCR assays and western blotting (WB) to examine the expression levels of circRNA, CCL25, and MAP2K1 in both HCC cells and clinical samples. Furthermore, we utilized overexpression and knockdown techniques for circ_0000069 and conducted wound healing, transwell invasion assays, and a tumorigenesis experiment to assess the migratory and invasive abilities of HCC cells. RESULTS: Our findings revealed significant differential expression of 612 upregulated genes and 1173 downregulated genes in HCC samples compared to normal liver tissue. Additionally, 429 upregulated circRNAs and 453 downregulated circRNAs were identified. Significantly, circ_0000069 exhibited upregulation in HCC tissues and cell lines. The overexpression of circ_0000069 notably increased the invasion and migration capacity of Huh7 cells, whereas the downregulation of circ_0000069 reduced this capability in HepG2 cells. Furthermore, this effect was counteracted by CCL25 silencing or overexpression, separately. Animal studies further confirmed that the overexpression of hsa_circ_0000069 facilitated tumor growth in xenografted nude mice, while the inhibition of CCL25 attenuated this effect. CONCLUSION: Circ_0000069 appears to promote HCC progression by regulating CCL25, suggesting that both circ_0000069 and CCL25 can serve as potential therapeutic targets.


Assuntos
Carcinoma Hepatocelular , Quimiocinas CC , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , RNA Circular , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , RNA Circular/genética , Animais , Camundongos , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Camundongos Nus , MicroRNAs/genética , Proliferação de Células/genética , Masculino
15.
Exp Biol Med (Maywood) ; 249: 10106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993199

RESUMO

Cyclin-dependent kinase-like 3 (CDKL3) has been identified as an oncogene in certain types of tumors. Nonetheless, its function in hepatocellular carcinoma (HCC) is poorly understood. In this study, we conducted a comprehensive analysis of CDKL3 based on data from the HCC cohort of The Cancer Genome Atlas (TCGA). Our analysis included gene expression, diagnosis, prognosis, functional enrichment, tumor microenvironment and metabolic characteristics, tumor burden, mRNA expression-based stemness, alternative splicing, and prediction of therapy response. Additionally, we performed a cell counting kit-8 assay, TdT-mediated dUTP nick-end Labeling staining, migration assay, wound healing assay, colony formation assay, and nude mouse experiments to confirm the functional relevance of CDKL3 in HCC. Our findings showed that CDKL3 was significantly upregulated in HCC patients compared to controls. Various bioinformatic analyses suggested that CDKL3 could serve as a potential marker for HCC diagnosis and prognosis. Furthermore, CDKL3 was found to be involved in various mechanisms linked to the development of HCC, including copy number variation, tumor burden, genomic heterogeneity, cancer stemness, and alternative splicing of CDKL3. Notably, CDKL3 was also closely correlated with tumor immune cell infiltration and the expression of immune checkpoint markers. Additionally, CDKL3 was shown to independently function as a risk predictor for overall survival in HCC patients by multivariate Cox regression analysis. Furthermore, the knockdown of CDKL3 significantly inhibited cell proliferation in vitro and in vivo, indicating its role as an oncogene in HCC. Taken together, our findings suggest that CDKL3 shows promise as a biomarker for the detection and treatment outcome prediction of HCC patients.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Animais , Camundongos , Camundongos Nus , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Masculino , Feminino , Proliferação de Células/genética
16.
Int J Biol Sci ; 20(9): 3442-3460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993554

RESUMO

In this study, we explored the oncogenic mechanism of cleavage and polyadenylation-specific factor 6 (CPSF6) in hepatocellular carcinoma (HCC). CPSF6 was overexpressed in HCC tissues with poor survival rates compared to normal tissues. Hence, CPSF6 depletion suppressed cell viability and colony formation, induced apoptosis via PARP cleavage, and increased the sub-G1 population of Hep3B and Huh7 cells. In addition, CPSF6 enhanced the stability of c-Myc via their binding through nuclear co-localization by binding to c-Myc at the site of 258-360. Furthermore, c-Myc degradation by CPSF6 depletion was disturbed by FBW7 depletion or treatment with the proteasomal inhibitor MG132. Additionally, CPSF6 depletion suppressed the Warburg effect by inhibiting glucose, HK2, PKM2, LDH, and lactate; showed a synergistic effect with Sorafenib in Hep3B cells; and inhibited angiogenesis by tube formation and CAM assays, along with decreased expression and production of vascular endothelial growth factor (VEGF). Notably, CPSF6 depletion attenuated PD-L1 expression and increased Granzyme B levels, along with an increase in the percentage of CD4/CD8 cells in the splenocytes of BALB/c nude mice bearing Hep3B cells. Consistently, immunohistochemistry showed that CPSF6 depletion reduced the growth of Hep3B cells in BALB/c mice in orthotopic and xenograft tumor models by inhibiting tumor microenvironment-associated proteins. Overall, these findings suggest that CPSF6 enhances the Warburg effect for immune escape and angiogenesis, leading to cancer progression via c-Myc, mediated by the HK, PD-L1, and VEGF networks, with synergistic potential with sorafenib as a molecular target for liver cancer therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-myc , Transdução de Sinais , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Neovascularização Patológica/metabolismo , Camundongos , Sorafenibe/uso terapêutico , Sorafenibe/farmacologia , Efeito Warburg em Oncologia , Camundongos Nus , Camundongos Endogâmicos BALB C , Apoptose , Angiogênese
17.
Int J Biol Sci ; 20(9): 3675-3690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993567

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly tumors; however, its pathogenic mechanism remains largely elusive. In-depth researches are needed to reveal the expression regulatory mechanisms and functions of the RNA-binding protein RALY in HCC. Here, we identify RALY as a highly expressed oncogenic factor that affects HCC cells proliferation both in vitro and in vivo. O-GlcNAcylation of RALY at Ser176 enhances its stability by protecting RALY from TRIM27-mediated ubiquitination, thus maintaining hyper-expression of the RALY protein. Mechanistically, RALY interacts with USP22 messenger RNA, as revealed by RNA immunoprecipitation, to increase their cytoplasmic localization and protein expression, thereby promoting the proliferation of HCC cells. Furthermore, we develop a novel RALY protein degrader based on peptide proteolysis-targeting chimeras, named RALY-PROTAC, which we chemically synthesize by linking a RALY-targeting peptide with the E3 ubiquitin ligase recruitment ligand pomalidomide. In conclusion, our findings demonstrate a novel mechanism by which O-GlcNAcylation/RALY/USP22 mRNA axis aggravates HCC cells proliferation. RALY-PROTACs as degraders of the RALY protein exhibit potential as therapeutic drugs for RALY-overexpressing HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , Ubiquitina Tiolesterase , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Linhagem Celular Tumoral , Animais , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Camundongos , Camundongos Nus , Ubiquitinação , Transporte Ativo do Núcleo Celular
18.
Int J Biol Sci ; 20(9): 3621-3637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993573

RESUMO

Ferroptosis, an emerging type of programmed cell death, is initiated by iron-dependent and excessive ROS-mediated lipid peroxidation, which eventually leads to plasma membrane rupture and cell death. Many canonical signalling pathways and biological processes are involved in ferroptosis. Furthermore, cancer cells are more susceptible to ferroptosis due to the high load of ROS and unique metabolic characteristics, including iron requirements. Recent investigations have revealed that ferroptosis plays a crucial role in the progression of tumours, especially HCC. Specifically, the induction of ferroptosis can not only inhibit the growth of hepatoma cells, thereby reversing tumorigenesis, but also improves the efficacy of immunotherapy and enhances the antitumour immune response. Therefore, triggering ferroptosis has become a new therapeutic strategy for cancer therapy. In this review, we summarize the characteristics of ferroptosis based on its underlying mechanism and role in HCC and provide possible therapeutic applications.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Peroxidação de Lipídeos , Transdução de Sinais , Ferro/metabolismo
19.
Cells ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38994955

RESUMO

This review describes and summarizes, for the first time, the molecular mechanisms of the cytotoxic effect of selenium nanoparticles of various origins on hepatocellular carcinoma cells. The text provides information from recent years indicating the regulation of various signaling pathways and endoplasmic reticulum stress by selenium nanoparticles; the pathways of cell death of liver cancer cells as a result of exposure to selenium nanoparticles are considered. Particular attention is paid to the participation of selenoproteins and selenium-containing thioredoxin reductases and glutathione peroxidases in these processes. Previously, there were no reviews that fully reflected the cytotoxic effects of selenium nanoparticles specifically in hepatocellular carcinoma, despite the fact that many reviews and experimental articles have been devoted to the causes of this disease and the molecular mechanisms of regulation of cytotoxic effects by other agents. The relevance of this review is primarily explained by the fact that despite the development of various drugs and approaches for the treatment and prevention of hepatocellular carcinoma, this disease is still the fourth leading cause of death in the world. For this reason, a complete understanding of the latest trends in the treatment of oncology of various etiologies, especially hepatocellular carcinoma, is extremely important.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Selênio , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Selênio/uso terapêutico , Selênio/farmacologia , Nanopartículas/química , Selenoproteínas/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos
20.
Cells ; 13(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38994998

RESUMO

Iron is often accumulated in the liver during pathological conditions such as cirrhosis and cancer. Elevated expression of glucose transporters GLUT1 and GLUT3 is associated with reduced overall survival in patients with hepatocellular carcinoma. However, it is not known whether iron can regulate glucose transporters and contribute to tumor proliferation. In the present study, we found that treatment of human liver cell line HepG2 with ferric ammonium citrate (FAC) resulted in a significant upregulation of GLUT3 mRNA and protein in a dose-dependent manner. Similarly, iron accumulation in mice fed with high dietary iron as well as in mice injected intraperitoneally with iron dextran enhanced the GLUT3 expression drastically in the liver. We demonstrated that iron-induced hepatic GLUT3 upregulation is mediated by the LKB1/AMPK/CREB1 pathway, and this activation was reversed when treated with iron chelator deferiprone. In addition, inhibition of GLUT3 using siRNA prevented iron-mediated increase in the expression of cell cycle markers and cellular hyperproliferation. Furthermore, exogenous sodium beta-hydroxybutyrate treatment prevented iron-mediated hepatic GLUT3 activation both in vitro and in vivo. Together, these results underscore the importance of iron, AMPK, CREB1 and GLUT3 pathways in cell proliferation and highlight the therapeutic potential of sodium beta-hydroxybutyrate in hepatocellular carcinoma with high GLUT3 expression.


Assuntos
Proliferação de Células , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Transportador de Glucose Tipo 3 , Ferro , Fígado , Proliferação de Células/efeitos dos fármacos , Animais , Humanos , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 3/genética , Células Hep G2 , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ferro/metabolismo , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Compostos de Amônio Quaternário/farmacologia , Compostos Férricos/farmacologia , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...