Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.197
Filtrar
1.
Drug Des Devel Ther ; 18: 2169-2187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882048

RESUMO

Purpose: Traditional Chinese medicine (TCM) therapy is an important means to treat hepatocellular carcinoma (HCC), Astragalus (Latin name: Hedysarum Multijugum Maxim; Chinese name: Huangqi, HQ) and Atractylodes (Latin name: Atractylodes Macrocephala Koidz; Chinese name: Baizhu, BZ) (HQBZ), a classic herb pair, is often used in combination to HCC. However, the main components and potential mechanisms of HQBZ therapy in HCC remain unclear. This study aimed to identify the potential active ingredients and molecular mechanisms of action of HQBZ in HCC treatment. Methods: The HQBZ-Compound-Target-HCC network and HQBZ-HCC transcriptional regulatory network were constructed to screen the core active compound components and targets of HQBZ therapy for HCC. Molecular docking techniques are used to verify the stability of binding core active compound components to targets. GO and KEGG enrichment analysis were used to explore the signaling pathway of HQBZ in HCC treatment, the mechanism of HQBZ treatment of HCC was verified based on in vivo H22 tumor bearing mice and in vitro cell experiments. Results: Network pharmacology and molecular docking studies showed that HQBZ treatment of HCC was related to the targeted regulation of IL-6 and STAT3 by the active compound biatractylolide, KEGG pathway enrichment analysis suggest that HQBZ may play a role in the treatment of HCC through IL-6/STAT3 signaling pathway. In vitro experiment results proved that HQBZ could regulate IL-6/STAT3 signaling pathway transduction on CD8+T cells, inhibit CD8+T cell exhaustion and restore the function of exhausted CD8+T cells. In vivo experiment results proved that HQBZ can regulate IL-6/STAT3 signaling pathway transduction in H22 liver cancer model mouse tumor tissue, increased the proportion of tumor infiltrating CD8+T cells. Conclusion: This study found that HQBZ may play a therapeutic role in HCC by targeting IL-6 and STAT3 through biatractylolide, its mechanism of action is related to regulating IL-6/STAT3 signaling pathway, reversing T cell failure and increasing tumor infiltration CD8+T cells.


Assuntos
Antineoplásicos Fitogênicos , Atractylodes , Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Farmacologia em Rede , Fator de Transcrição STAT3 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Camundongos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Atractylodes/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Simulação de Acoplamento Molecular , Astrágalo/química , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Medicina Tradicional Chinesa , Ensaios de Seleção de Medicamentos Antitumorais
2.
Cells ; 13(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920644

RESUMO

Hepatocellular carcinoma (HCC) development is associated with altered modifications in DNA methylation, changing transcriptional regulation. Emerging evidence indicates that DNA methyltransferase 1 (DNMT1) plays a key role in the carcinogenesis process. This study aimed to investigate how pirfenidone (PFD) modifies this pathway and the effect generated by the association between c-Myc expression and DNMT1 activation. Rats F344 were used for HCC development using 50 mg/kg of diethylnitrosamine (DEN) and 25 mg/kg of 2-Acetylaminofluorene (2-AAF). The HCC/PFD group received simultaneous doses of 300 mg/kg of PFD. All treatments lasted 12 weeks. On the other hand, HepG2 cells were used to evaluate the effects of PFD in restoring DNA methylation in the presence of the inhibitor 5-Aza. Histopathological, biochemical, immunohistochemical, and western blot analysis were carried out and our findings showed that PFD treatment reduced the amount and size of tumors along with decreased Glipican-3, ß-catenin, and c-Myc expression in nuclear fractions. Also, this treatment improved lipid metabolism by modulating PPARγ and SREBP1 signaling. Interestingly, PFD augmented DNMT1 and DNMT3a protein expression, which restores global methylation, both in our in vivo and in vitro models. In conclusion, our results suggest that PFD could slow down HCC development by controlling DNA methylation.


Assuntos
Carcinoma Hepatocelular , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Antígeno Nuclear de Célula em Proliferação , Piridonas , Animais , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Piridonas/farmacologia , Ratos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Células Hep G2 , Antígeno Nuclear de Célula em Proliferação/metabolismo , Masculino , Ratos Endogâmicos F344 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Dietilnitrosamina , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/genética
3.
Life Sci ; 348: 122680, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697280

RESUMO

AIMS: Hepatocellular carcinoma (HCC) is still a leading cause of cancer-related death worldwide. But its chemotherapeutic options are far from expectation. We here compared H-ras targeted genetic therapy to a commercial docetaxel formulation (DXT) in inhibiting HCC in rats. MAIN METHODS: After the physicochemical characterization of phosphorothioate-antisense oligomer (PS-ASO) against H-ras mutated gene, the PS-ASO-mediated in vitro hemolysis, in vivo hepatic uptake, its pharmacokinetic profile, tissue distribution in some highly perfused organs, its effect in normal rats, antineoplastic efficacy in carcinogen-induced HCC in rats were evaluated and compared against DXT treatment. Mutated H-ras expression by in situ hybridization, hep-par-I, CK-7, CD-15, p53 expression patterns by immunohistochemical methods, scanning electron microscopic evaluation of hepatic architecture, various hepatic marker enzyme levels and caspase-3/9 apoptotic enzyme activities were also carried out in the experimental rats. KEY FINDINGS: PS-ASO showed low in vitro hemolysis (<3 %), and had a sustained PS-ASO blood residence time in vivo compared to DTX, with a time-dependent hepatic uptake. It showed no toxic manifestations in normal rats. PS-ASO distribution was although initially less in the lung than liver and kidney, but at 8 h it accumulated more in lung than kidney. Antineoplastic potential of PS-ASO (treated for 6 weeks) excelled in inhibiting chemically induced tumorigenesis compared to DTX in rats, by inhibiting H-ras gene expression, some immonohistochemical modulations, and inducing caspase-3/9-mediated apoptosis. It prevented HCC-mediated lung metastatic tumor in the experimental rats. SIGNIFICANCE: PS-ASO genetic therapy showed potential to inhibit HCC far more effectively than DXT in rats.


Assuntos
Antineoplásicos , Docetaxel , Terapia Genética , Animais , Docetaxel/farmacologia , Ratos , Masculino , Terapia Genética/métodos , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Taxoides/farmacologia
4.
Toxicology ; 505: 153828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740169

RESUMO

The fungicide fluxapyroxad (BAS 700 F) has been shown to significantly increase the incidence of liver tumours in male Wistar rats at dietary levels of 1500 and 3000 ppm and in female rats at a dietary level of 3000 ppm via a non-genotoxic mechanism. In order to elucidate the mode of action (MOA) for fluxapyroxad-induced rat liver tumour formation a series of in vivo and in vitro investigative studies were undertaken. The treatment of male and female Wistar rats with diets containing 0 (control), 50, 250, 1500 and 3000 ppm fluxapyroxad for 1, 3, 7 and 14 days resulted in a dose-dependent increases in relative weight at 1500 and 3000 ppm from day 3 onwards in both sexes, with an increase in relative liver weight being also observed in male rats given 250 ppm fluxapyroxad for 14 days. Examination of liver sections revealed a centrilobular hepatocyte hypertrophy in some fluxapyroxad treated male and female rats. Hepatocyte replicative DNA synthesis (RDS) was significantly increased in male rats given 1500 and 3000 ppm fluxapyroxad for 3 and 7 days and in female rats given 50-3000 ppm fluxapyroxad for 7 days and 250-3000 ppm fluxapyroxad for 3 and 14 days; the maximal increases in RDS in both sexes being observed after 7 days treatment. The treatment of male and female Wistar rats with 250-3000 ppm fluxapyroxad for 14 days resulted in significant increases in hepatic microsomal total cytochrome P450 (CYP) content and CYP2B subfamily-dependent enzyme activities. Male Wistar rat hepatocytes were treated with control medium and medium containing 1-100 µM fluxapyroxad or 500 µM sodium phenobarbital (NaPB) for 4 days. Treatment with fluxapyroxad and NaPB increased CYP2B and CYP3A enzyme activities and mRNA levels but had little effect on markers of CYP1A and CYP4A subfamily enzymes and of the peroxisomal fatty acid ß-oxidation cycle. Hepatocyte RDS was significantly increased by treatment with fluxapyroxad, NaPB and 25 ng/ml epidermal growth factor (EGF). The treatment of hepatocytes from two male human donors with 1-100 µM fluxapyroxad or 500 µM NaPB for 4 days resulted in some increases in CYP2B and CYP3A enzyme activities and CYP mRNA levels but had no effect on hepatocyte RDS, whereas treatment with EGF resulted in significant increase in RDS in both human hepatocyte preparations. Hepatocytes from male Sprague-Dawley wild type (WT) and constitutive androstane receptor (CAR) knockout (CAR KO) rats were treated with control medium and medium containing 1-16 µM fluxapyroxad or 500 µM NaPB for 4 days. While both fluxapyroxad and NaPB increased CYP2B enzyme activities and mRNA levels in WT hepatocytes, only minor effects were observed in CAR KO rat hepatocytes. Treatment with both fluxapyroxad and NaPB only increased RDS in WT and not in CAR KO rat hepatocytes, whereas treatment with EGF increased RDS in both WT and CAR KO rat hepatocytes. In conclusion, a series of in vivo and in vitro investigative studies have demonstrated that fluxapyroxad is a CAR activator in rat liver, with similar properties to the prototypical CAR activator phenobarbital. A robust MOA for fluxapyroxad-induced rat liver tumour formation has been established. Based on the lack of effect of fluxapyroxad on RDS in human hepatocytes, it is considered that the MOA for fluxapyroxad-induced liver tumour formation is qualitatively not plausible for humans.


Assuntos
Receptor Constitutivo de Androstano , Fungicidas Industriais , Hepatócitos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares , Animais , Masculino , Feminino , Ratos , Fungicidas Industriais/toxicidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Humanos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Relação Dose-Resposta a Droga , Tamanho do Órgão/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Replicação do DNA/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia
5.
Biochem Pharmacol ; 225: 116309, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788959

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Pregnane X receptor (PXR), a xenobiotic-sensing nuclear receptor, plays a critical role in the metabolism of endogenous and exogenous substances in the liver. Here, we investigate whether PXR plays a role in pathogenesis of HCC. We show that liver tumors were developed in diethylnitrosamine (DEN)-treated in PXR knockout (KO) mice. Hepatic levels of prostaglandin F2α (PGF2α) and aldo-keto reductase family 1 member C18 (Akr1c18), a prostaglandin synthase of catalyzing reduction of PGH2 to PGF2α, were significantly elevated in DEN-treated PXR KO mice. Hepatic mRNA levels of alpha fetoprotein (AFP), cyclin D1 (Ccnd1), fibroblast growth factor 21 (FGF21), and inflammatory cytokine interleukin 6 (IL-6) were significantly increased in DEN-treated PXR KO mice. Other members of Akr1c family, liver metabolizing enzymes including Cyp1a2, Cyp2b10 and Cyp3a11, and bile acid synthesis enzyme Cyp7a1 mRNA levels were significantly decreased in DEN-treated PXR KO mice. Our findings revealed that PXR deficiency promoted DEN-induced HCC in mice via induction of Akr1c18 expression and PGF2α levels and the increased PGF2α levels synthetized by Akr1c18 enhanced hepatocytes proliferation and induced inflammatory cytokine production, which accelerated liver tumor development after DEN treatment, suggesting that PXR deficiency may create a microenvironment that is more prone to DEN-induced liver tumors and targeting PXR and Akr1c18 to reduce PGF2α biosynthesis may be a potential and novel therapeutic strategy for HCC.


Assuntos
Dinoprosta , Receptor de Pregnano X , Animais , Humanos , Masculino , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Dietilnitrosamina/toxicidade , Dinoprosta/metabolismo , Dinoprosta/biossíntese , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética
6.
Sci Rep ; 14(1): 8013, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580754

RESUMO

Hepatocellular carcinoma (HCC) seriously threatens human health, mostly developed from liver fibrosis or cirrhosis. Since diethylnitrosamine (DEN) and carbon tetrachloride (CCl4)-induced HCC mouse model almost recapitulates the characteristic of HCC with fibrosis and inflammation, it is taken as an essential tool to investigate the pathogenesis of HCC. However, a comprehensive understanding of the protein expression profile of this model is little. In this study, we performed proteomic analysis of this model to elucidate its proteomic characteristics. Compared with normal liver tissues, 432 differentially expressed proteins (DEPs) were identified in tumor tissues, among which 365 were up-regulated and 67 were down-regulated. Through Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), protein-protein interaction networks (PPI) analysis and Gene-set enrichment analysis (GSEA) analysis of DEPs, we identified two distinguishing features of DEN and CCl4-induced HCC mouse model in protein expression, the upregulation of actin cytoskeleton and branched-chain amino acids metabolic reprogramming. In addition, matching DEPs from the mouse model to homologous proteins in the human HCC cohort revealed that the DEN and CCl4-induced HCC mouse model was relatively similar to the subtype of HCC with poor prognosis. Finally, combining clinical information from the HCC cohort, we screened seven proteins with prognostic significance, SMAD2, PTPN1, PCNA, MTHFD1L, MBOAT7, FABP5, and AGRN. Overall, we provided proteomic data of the DEN and CCl4-induced HCC mouse model and highlighted the important proteins and pathways in it, contributing to the rational application of this model in HCC research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentais , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteômica , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Dietilnitrosamina/efeitos adversos , Cirrose Hepática/patologia , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo
7.
Drug Des Devel Ther ; 18: 1321-1338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681206

RESUMO

Purpose: Cinobufotalin injection has obvious curative effects on liver cancer patients with less toxicity and fewer side effects than other therapeutic approaches. However, the core ingredients and mechanism underlying these anti-liver cancer effects have not been fully clarified due to its complex composition. Methods: Multidimensional network analysis was used to screen the core ingredients, key targets and pathways underlying the therapeutic effects of cinobufotalin injection on liver cancer, and in vitro and in vivo experiments were performed to confirm the findings. Results: By construction of ingredient networks and integrated analysis, eight core ingredients and ten key targets were finally identified in cinobufotalin injection, and all of the core ingredients are tightly linked with the key targets, and these key targets are highly associated with the cell cycle-related pathways, supporting that both cinobufotalin injection and its core ingredients exert anti-liver cancer roles by blocking cell cycle-related pathways. Moreover, in vitro and in vivo experiments confirmed that either cinobufotalin injection or one of its core ingredients, cinobufagin, significantly inhibited cell proliferation, colony formation, cell cycle progression and xenograft tumor growth, and the key target molecules involved in the cell cycle pathway such as CDK1, CDK4, CCNB1, CHEK1 and CCNE1, exhibit consistent changes in expression after treatment with cinobufotalin injection or cinobufagin. Interestingly, some key targets CDK1, CDK4, PLK1, CHEK1, TTK were predicted to bind with multiple of core ingredients of cinobufotalin injection, and the affinity between one of the critical ingredients cinobufagin and key target CDK1 was further confirmed by SPR assay. Conclusion: Cinobufotalin injection was confirmed to includes eight core ingredients, and they play therapeutic effects in liver cancer by blocking cell cycle-related pathways, which provides important insights for the mechanism of cinobufotalin injection antagonizing liver cancer and the development of novel small molecule anti-cancer drugs.


Assuntos
Antineoplásicos , Bufanolídeos , Proliferação de Células , Neoplasias Hepáticas , Bufanolídeos/farmacologia , Bufanolídeos/química , Bufanolídeos/administração & dosagem , Humanos , Animais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos Endogâmicos BALB C , Ciclo Celular/efeitos dos fármacos , Camundongos Nus , Relação Dose-Resposta a Droga , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Células Tumorais Cultivadas , Relação Estrutura-Atividade , Estrutura Molecular , Injeções
8.
J Vasc Interv Radiol ; 35(7): 1033-1042.e11, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513753

RESUMO

PURPOSE: To investigate immuno-ethanol ablation using an ethanol and immune adjuvant formulation as a potent immunoablation approach that can achieve an enhanced anticancer effect in the treatment of hepatocellular carcinoma (HCC). MATERIALS AND METHODS: Ethanol concentration- and exposure time-dependent cellular responses were investigated. Curcumin was combined with ethanol as an immunoablation agent. Cellular uptake of curcumin, cancer cell killing, and inflammatory markers of ethanol-curcumin treatment were characterized. To evaluate the potential in vivo anticancer immunity of ethanol-curcumin treatment, each right and left lobe of rat liver was concurrently inoculated with N1S1 HCC cells and a mixture of treated N1S1 cells (ethanol only or ethanol-curcumin) in Sprague Dawley rats (each group: 5 rats; control: nontreated N1S1 cells). Tumor growth and immune response were characterized with 7T magnetic resonance (MR) imaging, flow cytometry analysis, and immunohistology. RESULTS: An optimized ethanol-curcumin (10% ethanol and 0.5% weight/volume (w/v) curcumin solution) treatment contributed to an enhanced cellular uptake of curcumin, increased cancer cell killing, and decreased inflammatory reaction. Ethanol-curcumin-treated N1S1 cell implantation in the rat liver demonstrated N1S1 HCC tumor rejection. The secondary tumor growth by nontreated N1S1 cell inoculation was significantly suppressed at the same time. Activated anticancer immunity was evidenced by significantly increased CD8+ T cell infiltration (3.5-fold) and CD8+-to-regulatory T cell ratio (4.5-fold) in the experimental group compared with those in the control group. CONCLUSIONS: Enhanced anticancer effect of immuno-ethanol ablation could be achieved with ethanol-curcumin agent. The results underscore the importance of optimized immunoablation therapeutic procedures for enhanced therapeutic outcomes.


Assuntos
Carcinoma Hepatocelular , Curcumina , Etanol , Ratos Sprague-Dawley , Animais , Etanol/farmacologia , Etanol/administração & dosagem , Curcumina/farmacologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Ratos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Técnicas de Ablação , Antineoplásicos/farmacologia , Neoplasias Hepáticas Experimentais/imunologia , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Imunoterapia/métodos , Relação Dose-Resposta a Droga , Carga Tumoral/efeitos dos fármacos , Fatores de Tempo
9.
J Complement Integr Med ; 21(2): 167-174, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236421

RESUMO

OBJECTIVES: We aimed to examine the potential protective effects of Iraqi H. tiliaceus L. chloroform leaves extract on DEN-induced HCC in male Wistar Albino rats. METHODS: Rats were assigned to four groups, six in each group. Group I: rats were administered a daily oral dose of 1 mL/kg/day of distilled water. Group II: rats were intraperitoneally injected with 70 mg/kg DEN once per week for 10 consecutive weeks. Group III: rats received 250 mg/kg of chloroform leaves extract. Groups IV: the rats were administered 500 mg/kg of chloroform leaves extract, along with their food, for five days per week over 20 weeks, with a subsequent dose of DEN once per week for 10 consecutive weeks. RESULTS: The results indicate that the extract demonstrated a significant reduction (p<0.05) in oxidative stress, pro-inflammatory mediators, and HCC parameters, the extract also had a beneficial effect on liver function tests, and there was a significant elevation (p<0.05) of antioxidant parameters in a dose-dependent manner. CONCLUSIONS: This study supports the protective properties of the chloroform extract of Iraqi H. tiliaceus L. leaves in HCC.


Assuntos
Dietilnitrosamina , Hibiscus , Extratos Vegetais , Folhas de Planta , Ratos Wistar , Animais , Extratos Vegetais/farmacologia , Masculino , Dietilnitrosamina/toxicidade , Folhas de Planta/química , Hibiscus/química , Ratos , Antioxidantes/farmacologia , Clorofórmio , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/prevenção & controle , Fitoterapia
10.
J Hepatol ; 79(6): 1418-1434, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37604269

RESUMO

BACKGROUND & AIMS: Integrin αv (ITGAV, CD51) is regarded as a key component in multiple stages of tumor progression. However, the clinical failure of cilengitide, a specific inhibitor targeting surface CD51, suggests the importance of yet-unknown mechanisms by which CD51 promotes tumor progression. METHODS: In this study, we used several hepatocellular carcinoma (HCC) cell lines and murine hepatoma cell lines. To investigate the role of CD51 on HCC progression, we used a 3D invasion assay and in vivo bioluminescence imaging. We used periostin-knockout transgenic mice to uncover the role of the tumor microenvironment on CD51 cleavage. Moreover, we used several clinically relevant HCC models, including patient-derived organoids and patient-derived xenografts, to evaluate the therapeutic efficacy of cilengitide in combination with the γ-secretase inhibitor LY3039478. RESULTS: We found that CD51 could undergo transmembrane cleavage by γ-secretase to produce a functional intracellular domain (CD51-ICD). The cleaved CD51-ICD facilitated HCC invasion and metastasis by promoting the transcription of oxidative phosphorylation-related genes. Furthermore, we identified cancer-associated fibroblast-derived periostin as the major driver of CD51 cleavage. Lastly, we showed that cilengitide-based therapy led to a dramatic therapeutic effect when supplemented with LY3039478 in both patient-derived organoid and xenograft models. CONCLUSIONS: In summary, we revealed previously unrecognized mechanisms by which CD51 is involved in HCC progression and uncovered the underlying cause of cilengitide treatment failure, as well as providing evidence supporting the translational prospects of combined CD51-targeted therapy in the clinic. IMPACT AND IMPLICATIONS: Integrin αv (CD51) is a widely recognized pro-tumoral molecule that plays a crucial role in various stages of tumor progression, making it a promising therapeutic target. However, despite early promising results, cilengitide, a specific antagonist of CD51, failed in a phase III clinical trial. This prompted further investigation into the underlying mechanisms of CD51's effects. This study reveals that the γ-secretase complex directly cleaves CD51 to produce an intracellular domain (CD51-ICD), which functions as a pro-tumoral transcriptional regulator and can bypass the inhibitory effects of cilengitide by entering the nucleus. Furthermore, the localization of CD51 in the nucleus is significantly associated with the prognosis of patients with HCC. These findings provide a theoretical basis for re-evaluating cilengitide in clinical settings and highlight the importance of identifying a more precise patient subpopulation for future clinical trials targeting CD51.


Assuntos
Carcinoma Hepatocelular , Integrina alfaV , Neoplasias Hepáticas Experimentais , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Secretases da Proteína Precursora do Amiloide , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Integrina alfaV/genética , Integrina alfaV/metabolismo , Neoplasias Hepáticas/genética , Microambiente Tumoral
11.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176094

RESUMO

This study aimed to analyze the biochemical, histological, and gene expression alterations produced in a hepatocarcinogenesis model induced by the chronic administration of diethylnitrosamine (DEN) and 2-acetylaminofluorene (2-AAF) in Wistar rats. Thirteen rats weighing 180 to 200 g were divided into two groups: control and treated. Rats in the treated group were administered an intraperitoneal (i.p.) injection of DEN (50 mg/kg/week) and an intragastric (i.g.) dose of 2-AAF (25 mg/kg/week) for 18 weeks. The treated group had significant increases in their total cholesterol, HDL-C, AST, ALT, ALKP, and GGT levels. Furthermore, a histological analysis showed the loss of normal liver architecture with nuclear pleomorphism in the hepatocytes, atypical mitosis, and fibrous septa that were distributed between the portal triads and collagen fibers through the hepatic sinusoids. The gene expressions of 24 genes related to fibrosis, inflammation, apoptosis, cell growth, angiogenesis, lipid metabolism, and alpha-fetoprotein (AFP) were analyzed; only TGFß, COL1α1, CYP2E1, CAT, SOD, IL6, TNF-α, and ALB showed significant differences when both groups were compared. Additionally, lung histopathological alterations were found in the treated group, suggesting metastasis. In this model, the chronic administration of DEN+2-AAF induces characteristic alterations of hepatocellular carcinoma in Wistar rats without AFP gene expression changes, highlighting different signatures in hepatocellular carcinoma heterogeneity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentais , Neoplasias Hepáticas , Ratos , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ratos Wistar , Fígado/metabolismo , 2-Acetilaminofluoreno/toxicidade , Dietilnitrosamina/toxicidade , alfa-Fetoproteínas , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia
12.
Apoptosis ; 28(7-8): 1184-1197, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37179285

RESUMO

This study was designed to assess the ameliorative effects of eugenol and to propose the possible mechanisms of action of eugenol in diethylnitrosamine (DENA)/acetylaminofluorene (AAF)-caused lung cancer in Wistar rats. To induce lung cancer, DENA at a dose of 150 mg/kg body weight (b.wt) for 2 weeks were intraperitoneally injected once each week and AAF was administered orally at a dose of 20 mg/kg b.wt. four times each week for the next 3 weeks. DENA/AAF-administered rats were orally supplemented with eugenol at a dose of 20 mg/kg b.wt administered once a day until 17 weeks starting from the 1st week of DENA administration. Lung histological lesions, including sheets of tumor cells, micropapillary adenocarcinoma, and apoptotic cells, resulting from the DENA/AAF dosage, were ameliorated by eugenol treatment. However, a significant drop in the levels of LPO in the lungs and a remarkable rise in GSH content and GPx and SOD activities were observed in DENA/AAF-administered rats treated with eugenol compared with those in DENA/AAF-administered controls. Moreover, in DENA/AAF-administered rats, eugenol supplementation significantly reduced TNF-α and IL-1ß levels and mRNA expression levels of NF-κB, NF-κB p65, and MCP-1 but significantly elevated the level of Nrf2. Furthermore, the DENA/AAF-administered rats treated with eugenol exhibited a significant downregulation of Bcl-2 expression levels in addition to a significant upregulation in P53 and Bax expression levels. Otherwise, the administration of DENA/AAF elevated the protein expression level of Ki-67, and this elevation was reversed by eugenol treatment. In conclusion, eugenol has effective antioxidant, anti-inflammatory, proapoptotic, and antiproliferative properties against lung cancer.


Assuntos
Anticarcinógenos , Neoplasias Hepáticas Experimentais , Neoplasias Pulmonares , Ratos , Animais , Ratos Wistar , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , 2-Acetilaminofluoreno/efeitos adversos , 2-Acetilaminofluoreno/metabolismo , Dietilnitrosamina/toxicidade , Dietilnitrosamina/metabolismo , Eugenol/efeitos adversos , NF-kappa B/genética , NF-kappa B/metabolismo , Apoptose , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fígado/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia
13.
Int J Cancer ; 152(12): 2615-2628, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36912275

RESUMO

Due to a combination of rapid disease progression and the lack of curative treatment options, hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide. Infiltrated, monocyte-derived, tumor-associated macrophages are known to play a role in HCC pathogenesis, but the involvement of Kupffer cells (KCs) remains elusive. Here, we used the Clec4F-diphteria toxin receptor transgenic mouse model to specifically investigate the effect of KC depletion on HCC initiation, progression and neoplastic growth following liver resection. For this purpose, several HCC mouse models with varying underlying etiologies were used and partial hepatectomy was performed. Our results show that in HCC, developed on a fibrotic or non-alcoholic steatohepatitis background, depletion of embryonic KCs at the onset of HCC induction and the subsequent replacement by monocyte-derived KCs does not affect the tumor burden, tumor microenvironment or the phenotype of isolated KCs at end-stage disease. In non-chronic liver disease-associated diethylnitrosamine-induced HCC, ablation of Clec4F+ KCs did not alter tumor progression or neoplastic growth following liver resection. Our results show that temporal ablation of resident KCs does not impact HCC pathogenesis, neither in the induction phase nor in advanced disease, and indicate that bone marrow-derived KCs are able to swiftly repopulate the available KC niche and adopt their phenotype.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Células de Kupffer , Neoplasias Hepáticas Experimentais , Neoplasias Hepáticas , Macrófagos Associados a Tumor , Células de Kupffer/imunologia , Progressão da Doença , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , Animais , Camundongos , Neoplasias Hepáticas Experimentais/imunologia , Neoplasias Hepáticas Experimentais/patologia , Células Precursoras de Monócitos e Macrófagos/imunologia , Carcinogênese/imunologia , Carcinogênese/patologia , Camundongos Endogâmicos C57BL , Masculino
14.
Sci Rep ; 13(1): 4681, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949140

RESUMO

In the present study, the hepatoprotective effect of 5-benzylidine-2-thiohydantoin (5B2T), a unique derivative of the thiohydantoin group, on liver injury induced by diethylnitrosamine (DEN) in male rats was investigated. The experimental animals were divided into three groups, each with 14 rats. Rats in group I were considered to be controls and received only 10% Tween 80. Rats in group II were injected with 200 mg/kg DEN intraperitoneally. Rats in group III were injected with a single dose of DEN 200 mg/kg intraperitoneally and received the treatment orally (50 mg/kg, 5B2T) for two durations, 3 and 6 weeks. At the end of the experiment, blood was collected for the analysis of liver function and pro-inflammatory cytokine IL-6 and tumor necrosis factor α (TNF-α) levels. Additionally, liver specimens were used for histopathological examination and immunohistochemistry. The single intraperitoneal injection of 200 mg/kg DEN into rats resulted in significant elevation of serum enzyme levels of AST, ALT and ALP, which are indicators of hepatocellular damage, along with elevation in TNF-α and IL-6 in the DEN group. The results of both LFTs and ELISA in the treatment group showed improvements and a decline in the levels of the markers. Histopathological examination showed fibrosis, necrosis and infiltration of inflammatory cells in the DEN group, with lower intensity in the treatment group. The results of immunohistochemical staining revealed strong positive staining of both HSA and Ki-67 antibodies in the DEN group, with much lower intensity in the treatment group. The results of the docking study indicated that 5B2T has a remarkable interaction with TNF-α (PDB ID: 1TNF) and human IL-6 (PDB ID: 1IL6) with binding site energies of - 7.1 and - 6.1 (kcal/mol), respectively. The correct absorption and binding between the drug and the receptor was evaluated through computerized molecular docking by using the AutoDock program. The conclusion of the results from the current study reflected the interesting hepatoprotective abilities of 5B2T against DEN-induced hepatocellular damage and cancer in experimental rats.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Neoplasias Hepáticas Experimentais , Humanos , Ratos , Masculino , Animais , Dietilnitrosamina/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Fígado/metabolismo , Neoplasias Hepáticas Experimentais/patologia
15.
J Pharm Sci ; 112(5): 1401-1410, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36596392

RESUMO

Delivery of messenger RNA (mRNA) using lipid nanoparticles (LNPs) is expected to be applied to various diseases following the successful clinical use of the mRNA COVID-19 vaccines. This study aimed to evaluate the effect of the cholesterol molar percentage of mRNA-LNPs on protein expression in hepatocellular carcinoma-derived cells and in the liver after intramuscular or subcutaneous administration of mRNA-LNPs in mice. For mRNA-LNPs with cholesterol molar percentages reduced to 10 mol% and 20 mol%, we formulated neutral charge particles with a diameter of approximately 100 nm and polydispersity index (PDI) <0.25. After the intramuscular or subcutaneous administration of mRNA-LNPs with different cholesterol molar percentages in mice, protein expression in the liver decreased as the cholesterol molar percentage in mRNA-LNPs decreased from 40 mol% to 20 mol% and 10 mol%, suggesting that reducing the cholesterol molar percentage in mRNA-LNPs decreases protein expression in the liver. Furthermore, in HepG2 cells, protein expression decreased as cholesterol in mRNA-LNPs was reduced by 40 mol%, 20 mol%, and 10 mol%. These results suggest that the downregulated expression of mRNA-LNPs with low cholesterol content in the liver involves degradation in systemic circulating blood and decreased protein expression after hepatocyte distribution.


Assuntos
Colesterol , Fígado , RNA Mensageiro , RNA Mensageiro/administração & dosagem , Animais , Camundongos , Colesterol/análise , Colesterol/sangue , Colesterol/metabolismo , Linhagem Celular Tumoral , Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentais , Fígado/metabolismo , Luciferases/metabolismo , Masculino , Humanos , Lipossomos/administração & dosagem , Lipossomos/análise , Lipossomos/química , Nanopartículas/administração & dosagem , Nanopartículas/análise , Nanopartículas/química
16.
J Vasc Interv Radiol ; 34(5): 782-789, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36539151

RESUMO

PURPOSE: To evaluate the feasibility of using dual-energy computed tomography (CT) and theranostic cesium hydroxide (CsOH) for image guidance of thermochemical ablation (TCA) in a rabbit VX2 tumor model. MATERIALS AND METHODS: In vivo experiments were performed on New Zealand white rabbits, where VX2 tumor fragments (0.3 mL) were inoculated into the right and left flanks (n = 16 rabbits, 32 tumors). Catheters were placed in the approximate center of 1- to 2-cm diameter tumors under ultrasound guidance. TCA was delivered in 1 of 3 treatment groups: untreated control, 5-M TCA, or 10-M TCA. The TCA base reagent was doped with 250-mM CsOH. Dual-energy CT was performed before and after TCA. Cesium (CS)-specific images were postprocessed on the basis of previous phantom calibrations to determine Cs concentration. Line profiles were drawn through the ablation center. Twenty-four hours after TCA, subjects were euthanized, and the resulting damage was evaluated with histopathology. RESULTS: Cs was detected in 100% of treated tumors (n = 21). Line profiles indicated highest concentrations at the injection site and decreased concentrations at the tumor margins, with no Cs detected beyond the ablation zone. The maximum detected Cs concentration ranged from 14.39 to 137.33 mM. A dose-dependent trend in tissue necrosis was demonstrated between the 10-M TCA and 5-M TCA treatment groups (P = .0005) and untreated controls (P = .0089). CONCLUSIONS: Dual-energy CT provided image guidance for delivery, localization, and quantification of TCA in the rabbit VX2 model.


Assuntos
Neoplasias Hepáticas Experimentais , Tomografia Computadorizada por Raios X , Coelhos , Animais , Tomografia Computadorizada por Raios X/métodos , Neoplasias Hepáticas Experimentais/cirurgia , Césio
17.
J Vasc Interv Radiol ; 34(3): 404-408.e1, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36473611

RESUMO

Liver cirrhosis is a major underlying factor in the development of hepatocellular carcinoma. Currently, there is an unmet need for midsize experimental vertebrate models that would offer reproducible implantable liver tumors in a cirrhotic liver background. This study establishes a protocol for a syngeneic rabbit model of VX2 liver cancer with underlying liver cirrhosis induced using carbon tetrachloride (CCl4). Male New Zealand white rabbits (n = 3) received CCl4 by intragastric administration once weekly. Concentrations started at 5% v/v CCl4 dissolved in olive oil. CCl4 dosing was progressively increased every week by 2.5% v/v increments for the duration of treatment (16 weeks total). VX2 tumors were then orthotopically implanted into the left hepatic lobe and allowed to grow for 3 weeks. Cross-sectional imaging confirmed the presence of hepatic tumors. Gross and histopathological evaluations showed reproducible tumor growth in the presence of liver cirrhosis in all animals.


Assuntos
Carcinoma Hepatocelular , Cirrose Hepática Experimental , Neoplasias Hepáticas Experimentais , Neoplasias Hepáticas , Coelhos , Masculino , Animais , Tetracloreto de Carbono/efeitos adversos , Fígado/patologia , Cirrose Hepática , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas Experimentais/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/patologia
18.
Asian Pac J Cancer Prev ; 23(8): 2843-2850, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037142

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the leading drivers of cancer-related mortality in the world. As a result, researchers are constantly looking for ways to optimize the screening and diagnosis of the said malignancy. OBJECTIVE: To establish the mice model of hepatocellular carcinoma with the administration of a suitable dose of diethylnitrosamine (DEN) and examine the utility of EphA7 and pEphA7 as ideal diagnostic markers in HCC. METHODS: Swiss Albino (BALB/c) mice of around 10-12 weeks old were exposed to a known hepatocarcinogen-diethylnitrosamine at a dose of 20 mg/kg body weight at weekly intervals for a period of 4, 8, 12, & 16 weeks. Blood was collected from mice of different experimental groups, and age-matched control and serum were separated from whole blood samples. The liver homogenate was prepared after completion of treatment, and the resulting supernatant was used for enzyme assays. A range of liver biomarker enzyme assays such as Gamma-glutamyl transpeptidase (GGT), Acetylcholine esterase (AChE), GPx activity and GSH level, Heme oxygenase-1 (HO-1), GPC3 and alpha-fetoprotein (AFP) level along with the expression of Caspase-3, EphA7 and pEphA7 were evaluated. RESULTS: An elevation in body weight and relative liver weight across the treatment period (4, 8, 12, 16 weeks) was observed in DEN-treated mice. Significant differences in GGT levels between control and DEN treated mice were noted in the present study (P < 0.005). In the 16th week of the treatment period, a significant difference in AchE level was noted between the treated and control group (P < 0.001). However, there was no statistically significant difference in the levels of SGOT and SGPT levels between the control and DEN treated groups (P > 0.001). Lower GSH and GPx levels were demonstrated in the treated mice as compared to control over all the treatment period. Loss of Caspase-3 expression and significant differences in expression of HO-1 activity in treated vs. non-treated group of mice were observed. Significant differences in EphA7 and pEphA7 protein expression levels were noted in the DEN-treated vs. control groups across all the treatment periods (4 weeks: P < 0.05; 8 weeks: P < 0.05; 12 weeks:  P < 0.005; 16 weeks: P < 0.05). CONCLUSION: The present study indicated that EphA7 and phosphoEphA7 over-expression might contribute to the malignancy transition, invasion development, and metastasis of HCC. As a result, along with the known markers such as AFP and others, EphA7 and pEphA7 could be a very putative biomarkers of HCC, particularly at a very early stage of cancer development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentais , Neoplasias Hepáticas , Animais , Peso Corporal , Carcinoma Hepatocelular/patologia , Caspase 3 , Dietilnitrosamina/toxicidade , Detecção Precoce de Câncer , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , alfa-Fetoproteínas
19.
Clin Transl Med ; 12(7): e871, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35853101

RESUMO

The stability of a protein, as well as its function and versatility, can be enhanced through oligomerization. KITENIN (KAI1 C-terminal interacting tetraspanin) is known to promote the malignant progression of colorectal cancer (CRC). How KITENIN maintains its structural integrity and stability are largely unknown, however. Here we investigated the mechanisms regulating the stability of KITENIN with the aim of developing therapeutics blocking its oncogenic functions. We found that KITENIN formed a homo-oligomeric complex and that the intracellular C-terminal domain (KITENIN-CTD) was needed for this oligomerization. Expression of the KITENIN-CTD alone interfered with the formation of the KITENIN homodimer, and the amino acid sequence from 463 to 471 within the KITENIN-CTD was the most effective. This sequence coupled with a cell-penetrating peptide was named a KITENIN dimerization-interfering peptide (KDIP). We next studied the mechanisms by which KDIP affected the stability of KITENIN. The KITENIN-interacting protein myosin-X (Myo10), which has oncogenic activity in several cancers, functioned as an effector to stabilize the KITENIN homodimer in the cis formation. Treatment with KDIP resulted in the disintegration of the homodimer via downregulation of Myo10, which led to increased binding of RACK1 to the exposed RACK1-interacting motif (463-471 aa), and subsequent autophagy-dependent degradation of KITENIN and reduced CRC cell invasion. Intravenous injection of KDIP significantly reduced the tumour burden in a syngeneic mouse tumour model and colorectal liver metastasis in an intrasplenic hepatic metastasis model. Collectively, our present results provide a new cancer therapeutic peptide for blocking colorectal liver metastasis, which acts by inducing the downregulation of Myo10 and specifically targeting the stability of the oncogenic KITENIN protein.


Assuntos
Neoplasias Colorretais , Proteínas de Membrana , Peptídeos , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Dimerização , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/secundário , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Miosinas/química , Miosinas/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Peptídeos/farmacologia , Estabilidade Proteica/efeitos dos fármacos
20.
Sci Rep ; 12(1): 10548, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732709

RESUMO

Our previous study demonstrated that purple rice bran extract (PRBE) could inhibit diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Protocatechuic acid (PCA) is the major phenolic acid contained in the PRBE. Therefore, this study aimed to determine whether PCA is an anticarcinogenic compound in purple rice extract. Rats were intraperitoneally injected with DEN to induce glutathione S-transferase placental form (GST-P)-positive foci. Rats were fed with PRBE at 500 mg kg-1 body weight or PCA at 4 mg kg-1 body weight for 5 and 15 weeks. PCA administration attenuated DEN-induced hepatic GST-P positive foci to a degree similar to PRBE. The molecular mechanisms of PCA in the initiation stage were correlated with reduced activity of cytochrome P450 reductase and induction of glutathione S-transferase. In addition, PCA also downregulated the expression of TNF-α and IL-1ß genes in rat liver. These genes are associated with the inhibition of inflammation. In the promotion stage, PCA suppressed cell proliferation correlated with the downregulation of Cyclin D1 expression. Moreover, it also induced apoptosis, indicated by increased expression of P53 and Bad genes, and decreased the expression of the anti-apoptotic Bcl-xl in DEN-initiated rats. These findings suggest that PCA is an active compound in the anticarcinogenic action of purple rice bran.


Assuntos
Anticarcinógenos , Neoplasias Hepáticas Experimentais , Oryza , Animais , Anticarcinógenos/farmacologia , Peso Corporal , Carcinogênese/metabolismo , Dietilnitrosamina/toxicidade , Feminino , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Hidroxibenzoatos , Fígado/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/prevenção & controle , Oryza/metabolismo , Placenta/metabolismo , Extratos Vegetais/farmacologia , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...