Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.642
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 156, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822429

RESUMO

BACKGROUND: Platinum-based chemotherapy regimens are a mainstay in the management of ovarian cancer (OC), but emergence of chemoresistance poses a significant clinical challenge. The persistence of ovarian cancer stem cells (OCSCs) at the end of primary treatment contributes to disease recurrence. Here, we hypothesized that the extracellular matrix protects CSCs during chemotherapy and supports their tumorigenic functions by activating integrin-linked kinase (ILK), a key enzyme in drug resistance. METHODS: TCGA datasets and OC models were investigated using an integrated proteomic and gene expression analysis and examined ILK for correlations with chemoresistance pathways and clinical outcomes. Canonical Wnt pathway components, pro-survival signaling, and stemness were examined using OC models. To investigate the role of ILK in the OCSC-phenotype, a novel pharmacological inhibitor of ILK in combination with carboplatin was utilized in vitro and in vivo OC models. RESULTS: In response to increased fibronectin secretion and integrin ß1 clustering, aberrant ILK activation supported the OCSC phenotype, contributing to OC spheroid proliferation and reduced response to platinum treatment. Complexes formed by ILK with the Wnt receptor frizzled 7 (Fzd7) were detected in tumors and correlated with metastatic progression. Moreover, TCGA datasets confirmed that combined expression of ILK and Fzd7 in high grade serous ovarian tumors is correlated with reduced response to chemotherapy and poor patient outcomes. Mechanistically, interaction of ILK with Fzd7 increased the response to Wnt ligands, thereby amplifying the stemness-associated Wnt/ß-catenin signaling. Notably, preclinical studies showed that the novel ILK inhibitor compound 22 (cpd-22) alone disrupted ILK interaction with Fzd7 and CSC proliferation as spheroids. Furthermore, when combined with carboplatin, this disruption led to sustained AKT inhibition, apoptotic damage in OCSCs and reduced tumorigenicity in mice. CONCLUSIONS: This "outside-in" signaling mechanism is potentially actionable, and combined targeting of ILK-Fzd7 may lead to new therapeutic approaches to eradicate OCSCs and improve patient outcomes.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptores Frizzled , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos , Animais , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Linhagem Celular Tumoral , Platina/farmacologia , Platina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos
4.
J Obstet Gynaecol ; 44(1): 2347430, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38835234

RESUMO

BACKGROUND: At present, the discovery of new biomarkers is of great significance for the early diagnosis, treatment and prognosis assessment of ovarian cancer. Previous findings indicated that aberrant G-protein-coupled receptor 176 (GPR176) expression might contribute to tumorigenesis and subsequent progression. However, the expression of GPR176 and the molecular mechanisms in ovarian cancer had not been investigated. METHODS: GPR176 expression was compared with clinicopathological features of ovarian cancer using immunohistochemical and bioinformatics analyses. GPR176-related genes and pathways were analysed using bioinformatics analysis. Additionally, the effects of GPR176 on ovarian cancer cell phenotypes were investigated. RESULTS: GPR176 expression positively correlated with elder age, clinicopathological staging, tumour residual status, and unfavourable survival of ovarian cancer, but negatively with purity loss, infiltration of B cells, and CD8+ T cells. Gene Set Enrichment Analysis showed that differential expression of GPR176 was involved in focal adhesion, ECM-receptor interaction, cell adhesion molecules and so on. STRING and Cytoscape were used to determine the top 10 nodes. Kyoto Encyclopaedia of Genes and Genomes analysis indicated that GPR176-related genes were involved in the ECM structural constituent and organisation and so on. GPR176 overexpression promoted the proliferation, anti-apoptosis, anti-pyroptosis, migration and invasion of ovarian cancer cells with overexpression of N-cadherin, Zeb1, Snail, Twist1, and under-expression of gasdermin D, caspase 1, and E-cadherin. CONCLUSION: GPR176 might be involved in the progression of ovarian cancer. It might be used as a biomarker to indicate the aggressive behaviour and poor prognosis of ovarian cancer and a target of genetic therapy.


Ovarian cancer is a gynecological cancer with high mortality. Due to the limited screening tests and treatments available, most ovarian cancer patients are diagnosed at a late stage and the prognosis is poor. The addition of new cancer diagnostic biomarkers and new intervention targets may improve quality of life and survival for patients with ovarian cancer. Previous studies have revealed the aberrant GPR176 expression might contribute to tumorigenesis and subsequent progression in many other tumours. In our study, GPR176 was found to promote the proliferation, anti-apoptosis, anti-pyroptosis, migration and invasion, EMT, and weakening the cellular adhesion of ovarian cancer cells, and involved in the Bcl-2/Bax or the PI3K/Akt/mTOR pathway. Therefore, abnormal expression of GPR176 might be served as a biomarker for aggressive behaviour and poor prognosis of ovarian cancer and a target for gene therapy.


Assuntos
Neoplasias Ovarianas , Receptores Acoplados a Proteínas G , Humanos , Feminino , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Pessoa de Meia-Idade , Terapia Genética/métodos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Prognóstico , Proliferação de Células/genética , Carcinogênese/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
5.
Sci Rep ; 14(1): 10427, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714753

RESUMO

This study aimed to synchronously determine epitranscriptome-wide RNA N6-methyladenosine (m6A) modifications and mRNA expression profile in high grade serous ovarian cancer (HGSOC). The methylated RNA immunoprecipitation sequencing (MeRIP-seq) was used to comprehensively examine the m6A modification profile and the RNA-sequencing (RNA-seq) was performed to analyze the mRNA expression profile in HGSOC and normal fallopian tube (FT) tissues. Go and KEGG analyses were carried out in the enrichment of those differentially methylated and expressed genes. MeRIP-seq data showed 53,794 m6A methylated peaks related to 19,938 genes in the HGSOC group and 51,818 m6A peaks representing 19,681 genes in the FT group. RNA-seq results revealed 2321 upregulated and 2486 downregulated genes in HGSOC. Conjoint analysis of MeRIP-seq and RNA-seq data identified differentially expressed genes in which 659 were hypermethylated (330 up- and 329 down-regulated) and 897 were hypomethylated (475 up- and 422 down-regulated). Functional enrichment analysis indicated that these differentially modulated genes are involved in pathways related to cancer development. Among methylation regulators, the m6A eraser (FTO) expression was significantly lower, but the m6A readers (IGF2BP2 and IGF2BP3) were higher in HGSOC, which was validated by the subsequent real-time PCR assay. Exploration through public databases further corroborated their possible clinical application of certain methylation regulators and differentially expressed genes. For the first time, our study screens the epitranscriptome-wide m6A modification and expression profiles of their modulated genes and signaling pathways in HGSOC. Our findings provide an alternative direction in exploring the molecular mechanisms of ovarian pathogenesis and potential biomarkers in the diagnosis and predicting the prognosis of the disease.


Assuntos
Adenosina , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas , RNA Mensageiro , Humanos , Feminino , Adenosina/análogos & derivados , Adenosina/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Projetos Piloto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/metabolismo , Gradação de Tumores , Pessoa de Meia-Idade , Transcriptoma , Metilação de DNA
6.
Nat Commun ; 15(1): 3771, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704377

RESUMO

Ovarian metastasis is one of the major causes of treatment failure in patients with gastric cancer (GC). However, the genomic characteristics of ovarian metastasis in GC remain poorly understood. In this study, we enroll 74 GC patients with ovarian metastasis, with 64 having matched primary and metastatic samples. Here, we show a characterization of the mutation landscape of this disease, alongside an investigation into the molecular heterogeneity and pathway mutation enrichments between synchronous and metachronous metastasis. We classify patients into distinct clonal evolution patterns based on the distribution of mutations in paired samples. Notably, the parallel evolution group exhibits the most favorable prognosis. Additionally, by analyzing the differential response to chemotherapy, we identify potential biomarkers, including SALL4, CCDC105, and CLDN18, for predicting the efficacy of paclitaxel treatment. Furthermore, we validate that CLDN18 fusion mutations improve tumor response to paclitaxel treatment in GC with ovarian metastasis in vitro and vivo.


Assuntos
Biomarcadores Tumorais , Mutação , Neoplasias Ovarianas , Paclitaxel , Neoplasias Gástricas , Paclitaxel/uso terapêutico , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Biomarcadores Tumorais/genética , Claudinas/genética , Claudinas/metabolismo , Evolução Molecular , Animais , Pessoa de Meia-Idade , Prognóstico , Linhagem Celular Tumoral , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Idoso , Antineoplásicos Fitogênicos/uso terapêutico
7.
BMC Cancer ; 24(1): 551, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693472

RESUMO

OBJECTIVE: We aimed to screen novel gene signatures for ovarian cancer (OC) and explore the role of biomarkers in OC via regulating pyroptosis using bioinformatics analysis. METHODS: Differentially expressed genes (DEGs) of OC were screened from GSE12470 and GSE16709 datasets. Hub genes were determined from protein-protein interaction networks after bioinformatics analysis. The role of Centromeric protein M (CENPM) in OC was assessed by subcutaneous tumor experiment using hematoxylin-eosin and immunohistochemical staining. Tumor metastasis was evaluated by detecting epithelial-mesenchymal transition-related proteins. The proliferation, migration, and invasion were determined using cell counting kit and transwell assay. Enzyme-linked immunosorbent assay was applied to measure inflammatory factors. The mRNA and protein expression were detected using real-time quantitative PCR and western blot. RESULTS: We determined 9 hub genes (KIFC1, PCLAF, CDCA5, KNTC1, MCM3, OIP5, CENPM, KIF15, and ASF1B) with high prediction value for OC. In SKOV3 and A2780 cells, the expression levels of hub genes were significantly up-regulated, compared with normal ovarian cells. CENPM was selected as a key gene. Knockdown of CENPM suppressed proliferation, migration, and invasion of OC cells. Subcutaneous tumor experiment revealed that CENPM knockdown significantly suppressed tumor growth and metastasis. Additionally, pyroptosis was promoted in OC cells and xenograft tumors after CENPM knockdown. Furthermore, CENPM knockdown activated cGAS-STING pathway and the pathway inhibitor reversed the inhibitory effect of CENPM knockdown on viability, migration, and invasion of OC cells. CONCLUSION: CENPM was a novel biomarker of OC, and knockdown of CENPM inhibited OC progression by promoting pyroptosis and activating cGAS-STING pathway.


Assuntos
Proteínas de Membrana , Nucleotidiltransferases , Neoplasias Ovarianas , Piroptose , Transdução de Sinais , Humanos , Feminino , Piroptose/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Animais , Camundongos , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Movimento Celular/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
8.
Technol Cancer Res Treat ; 23: 15330338241249692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706262

RESUMO

PURPOSE: PIWI-interacting RNAs (piRNAs) are a type of noncoding small RNA that can interact with PIWI-like RNA-mediated gene silencing (PIWIL) proteins to affect biological processes such as transposon silencing through epigenetic effects. Recent studies have found that piRNAs are widely dysregulated in tumors and associated with tumor progression and a poor prognosis. Therefore, this study aimed to investigate the effect of piR-1919609 on the proliferation, apoptosis, and drug resistance of ovarian cancer cells. METHODS: In this study, we used small RNA sequencing to screen and identify differentially expressed piRNAs in primary ovarian cancer, recurrent ovarian cancer, and normal ovaries. A large-scale verification study was performed to verify the expression of piR-1919609 in different types of ovarian tissue, including ovarian cancer tissue and normal ovaries, by RT-PCR and to analyze its association with the clinical prognosis of ovarian cancer. The expression of PIWILs in ovarian cancer was verified by RT-PCR, Western blotting and immunofluorescence. The effects of piR-1919609 on ovarian cancer cell proliferation, apoptosis and drug resistance were studied through in vitro and in vivo models. RESULTS: (1) piR-1919609 was highly expressed in platinum-resistant ovarian cancer tissues (p < 0.05), and this upregulation was significantly associated with a poor prognosis and a shorter recurrence time in ovarian cancer patients (p < 0.05). (2) PIWIL2 was strongly expressed in ovarian cancer tissues (p < 0.05). It was expressed both in the cytoplasm and nucleus of ovarian cancer cells. (3) Overexpression of piR-1919609 promoted ovarian cancer cell proliferation, inhibited apoptosis, and promoted tumor growth in nude mice. (4) Inhibition of piR-1919609 effectively reversed ovarian cancer drug resistance. CONCLUSION: In summary, we showed that piR-1919609 is involved in the regulation of drug resistance in ovarian cancer cells and might be an ideal potential target for reversing platinum resistance in ovarian cancer.


Assuntos
Apoptose , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , Prognóstico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Platina/uso terapêutico , Platina/farmacologia
9.
BMC Cancer ; 24(1): 645, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802745

RESUMO

BACKGROUND: Cerebellar degeneration-related (CDR) proteins are associated with paraneoplastic cerebellar degeneration (PCD) - a rare, neurodegenerative disease caused by tumour-induced autoimmunity against neural antigens resulting in degeneration of Purkinje neurons in the cerebellum. The pathogenesis of PCD is unknown, in large part due to our limited understanding of the functions of CDR proteins. To this end, we performed an extensive, multi-omics analysis of CDR-knockout cells focusing on the CDR2L protein, to gain a deeper understanding of the properties of the CDR proteins in ovarian cancer. METHODS: Ovarian cancer cell lines lacking either CDR1, CDR2, or CDR2L were analysed using RNA sequencing and mass spectrometry-based proteomics to assess changes to the transcriptome, proteome and secretome in the absence of these proteins. RESULTS: For each knockout cell line, we identified sets of differentially expressed genes and proteins. CDR2L-knockout cells displayed a distinct expression profile compared to CDR1- and CDR2-knockout cells. Knockout of CDR2L caused dysregulation of genes involved in ribosome biogenesis, protein translation, and cell cycle progression, ultimately causing impaired cell proliferation in vitro. Several of these genes showed a concurrent upregulation at the transcript level and downregulation at the protein level. CONCLUSIONS: Our study provides the first integrative multi-omics analysis of the impact of knockout of the CDR genes, providing both new insights into the biological properties of the CDR proteins in ovarian cancer, and a valuable resource for future investigations into the CDR proteins.


Assuntos
Proliferação de Células , Técnicas de Inativação de Genes , Neoplasias Ovarianas , Proteômica , Ribossomos , Humanos , Ribossomos/metabolismo , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Proteômica/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Proteoma/metabolismo , Multiômica
10.
Mol Genet Genomics ; 299(1): 51, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743077

RESUMO

This study examines the prognostic role and immunological relevance of EMP1 (epithelial membrane protein-1) in a pan-cancer analysis, with a focus on ovarian cancer. Utilizing data from TCGA, CCLE, and GTEx databases, we assessed EMP1 mRNA expression and its correlation with tumor progression, prognosis, and immune microenvironment across various cancers. Our results indicate that EMP1 expression is significantly associated with poor prognosis in multiple cancer types, including ovarian, bladder, testicular, pancreatic, breast, brain, and uveal melanoma. Immune-related analyses reveal a positive correlation between EMP1 and immune cell infiltration, particularly neutrophils, macrophages, and dendritic cells, as well as high expression of immune checkpoint such as CD274, HAVCR2, IL10, PDCD1LG2, and TGFB1 in most tumors. In vivo experiments confirm that EMP1 promotes ovarian cancer cell proliferation, metastasis, and invasion. In conclusion, EMP1 emerges as a potential prognostic biomarker and therapeutic target in various cancers, particularly ovarian cancer, due to its influence on tumor progression and immune cell dynamics. Further research is warranted to elucidate the precise mechanisms of EMP1 in cancer biology and to translate these findings into clinical applications.


Assuntos
Biomarcadores Tumorais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas , Microambiente Tumoral , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Prognóstico , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Animais , Proliferação de Células/genética , Linhagem Celular Tumoral , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Glicoproteínas de Membrana/genética
11.
Med Oncol ; 41(6): 155, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744773

RESUMO

Interleukin-6 (IL-6) and hypoxia-inducible factor-1α (HIF-1α) play important roles in epithelial-mesenchymal transformation (EMT) and tumor development. Previous studies have demonstrated that IL-6 promotes EMT, invasion, and metastasis in epithelial ovarian cancer (EOC) cells by activating the STAT3/HIF-1α pathway. MicroRNA (miRNA) is non-coding small RNAs that also play an important role in tumor development. Notably, Let-7 and miR-200 families are prominently altered in EOC. However, whether IL-6 regulates the expression of Let-7 and miR-200 families through the STAT3/HIF-1α signaling to induce EMT in EOC remains poorly understood. In this study, we conducted in vitro and in vivo investigations using two EOC cell lines, SKOV3, and OVCAR3 cells. Our findings demonstrate that IL-6 down-regulates the mRNA levels of Let-7c and miR-200c while up-regulating their target genes HMGA2 and ZEB1 through the STAT3/HIF-1α signaling in EOC cells and in vivo. Additionally, to explore the regulatory role of HIF-1α on miRNAs, both exogenous HIF blockers YC-1 and endogenous high expression or inhibition of HIF-1α can be utilized. Both approaches can confirm that the downstream molecule HIF-1α inhibits the expression and function of Let-7c and miR-200c. Further mechanistic research revealed that the overexpression of Let-7c or miR-200c can reverse the malignant evolution of EOC cells induced by IL-6, including EMT, invasion, and metastasis. Consequently, our results suggest that IL-6 regulates the expression of Let-7c and miR-200c through the STAT3/HIF-1α pathway, thereby promoting EMT, invasion, and metastasis in EOC cells.


Assuntos
Carcinoma Epitelial do Ovário , Transição Epitelial-Mesenquimal , Subunidade alfa do Fator 1 Induzível por Hipóxia , Interleucina-6 , MicroRNAs , Invasividade Neoplásica , Neoplasias Ovarianas , Fator de Transcrição STAT3 , Transdução de Sinais , MicroRNAs/genética , Humanos , Transição Epitelial-Mesenquimal/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Animais , Invasividade Neoplásica/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos , Metástase Neoplásica , Camundongos Endogâmicos BALB C
12.
Rev Invest Clin ; 76(2): 103-115, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38753591

RESUMO

Background: Ovarian cancer is a fatal gynecologic malignancy. Long non-coding RNA (lncRNA) has been verified to serve as key regulator in ovarian cancer tumorigenesis. Objective: The aim of the study was to study the functions and mechanism of lncRNA PITPNA-AS1 in ovarian cancer cellular process. Methods: Clinical ovarian cancer samples were collected and stored at an academic medical center. Cellular fractionation assays and fluorescence in situ hybridization were conducted to locate PITPNA-AS1 in OC cells. TUNEL staining, colony-forming assays, and Transwell assays were performed for evaluating cell apoptosis as well as proliferative and migratory abilities. Western blot was conducted for quantifying protein levels of epithelialmesenchymal transition markers. The binding relation between genes was verified by RNA pulldown, RNA immunoprecipitation, and luciferase reporter assays. Gene expression levels in ovarian cancer tissues and cells were subjected to RT-qPCR. Results: PITPNA-AS1 level was downregulated in ovarian cancer samples and cells. PITPNA-AS1 overexpression contributed to the accelerated ovarian cancer cell apoptosis and inhibited cell migration, proliferation, and epithelial-mesenchymal transition process. In addition, PITPNA-AS1 interacted with miR-223-3p to regulate RHOB. RHOB knockdown partially counteracted the repressive impact of PITPNA-AS1 on ovarian cancer cell activities. Conclusion: PITPNA-AS1 inhibited ovarian cancer cellular behaviors by targeting miR-223-3p and regulating RHOB.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Regulação para Baixo
13.
Swiss Med Wkly ; 154: 3386, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754016

RESUMO

BACKGROUND AND AIMS OF THE STUDY: Due to its importance for treatment and potential prevention in family members, germline testing for BRCA1/2 in patients with newly diagnosed ovarian cancer is decisive and considered a standard of care. Maintenance therapy with poly(ADP-ribose) polymerase (PARP) inhibitors substantially improves progression-free survival in patients with BRCA mutations and homologous recombination-deficient tumours by inducing synthetic lethality. In Switzerland, they are licensed only for these patients. Therefore, it is crucial to test patients early while they are receiving adjuvant chemotherapy. This study aimed to determine whether genetic counselling followed by homologous recombination deficiency testing is feasible for initialising maintenance therapy within eight weeks and cost-effective in daily practice in Switzerland compared to somatic tumour analysis of all patients at diagnosis. METHODS: This single-centre retrospective study included 44 patients with newly diagnosed high-grade serous ovarian cancer of a Federation of Gynaecology and Obstetrics (FIGO) stage of IIIA-IVB diagnosed between 12/2020 and 12/2022. It collected the outcomes of genetic counselling, germline testing, and somatic Geneva test for homologous recombination deficiency. Delays in initiating maintenance therapy, total testing costs per patient, and progression-free survival were examined to assess feasibility and cost-effectiveness in clinical practice. RESULTS: Thirty-seven of 44 patients (84%) with newly diagnosed ovarian cancer received counselling, of which 34 (77%) were tested for germline BRCA and other homologous recombination repair gene mutations. Five (15%) BRCA and three (9%) other homologous recombination deficiency mutations were identified. Eleven of the remaining 26 patients (42%) had tumours with somatic homologous recombination deficiency. The mean time to the initiation of maintenance therapy of 5.2 weeks was not longer than in studies for market authorisation (SOLO1, PAOLA, and PRIMA). The mean testing costs per patient were 3880 Swiss Franks (CHF), compared to 5624 CHF if all patients were tested at diagnosis with the myChoice CDx test (p <0.0001). CONCLUSION: Using genetic counselling to consent patients with newly diagnosed ovarian cancer for germline testing fulfils the international gold standard. Subsequent somatic homologous recombination deficiency analysis complements testing and identifies more patients who will benefit from PARP inhibitor maintenance therapy. Contrary to previous health cost model studies, the procedure does not increase testing costs in the Swiss population and does not delay maintenance therapy. Therefore, all patients should be offered a primary germline analysis. The challenge for the future will be to ensure sufficient resources for prompt genetic counselling and germline testing.


Assuntos
Análise Custo-Benefício , Estudos de Viabilidade , Aconselhamento Genético , Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/economia , Estudos Retrospectivos , Aconselhamento Genético/economia , Pessoa de Meia-Idade , Suíça , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/economia , Mutação em Linhagem Germinativa , Idoso , Testes Genéticos/economia , Testes Genéticos/métodos , Adulto , Intervalo Livre de Progressão
14.
Cancer Med ; 13(10): e7217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752472

RESUMO

Our previous studies have shown that upregulation of SLC7A1 in epithelial ovarian cancer (EOC) tumor cells significantly increases cancer cell proliferation, migration, and cisplatin resistance; however, the molecular mechanism by which SLC7A1 functions in EOC remains unknown. In later studies, we found that SLC7A1 is also highly expressed in the interstitial portion of high-grade serous ovarian cancer (HGSOC), but the significance of this high expression in the interstitial remains unclear. Here, we showed the Interstitial high expression of SLC7A1 in HGSOC by immunohistochemistry. SLC7A1 enriched in cancer-associated fibroblasts (CAFs) was upregulated by TGF-ß1. Transwell assay, scratch assay, cck8 assay and cell adhesion assay showed that SLC7A1 highly expressed in CAFs promoted tumor cells invasion, migration and metastasis in vitro. The effect of SLC7A1 on MAPK and EMT pathway proteins in ovarian cancer (OC) was verified by RNA sequencing and western blotting. Overexpression of SLC7A1 in OC is involved in MAPK/ ERK pathway and EMT. In general, in HGSOC, CAFs overexpressing SLC7A1 supported the migration and invasion of tumor cells; SLC7A1 is highly expressed in ovarian cancer and is involved in ERK phosphorylation and EMT signaling in MAPK signaling pathway. This suggests that SLC7A1 may be a potential therapeutic target for OC metastasis.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Sistema de Sinalização das MAP Quinases , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Progressão da Doença , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Regulação Neoplásica da Expressão Gênica , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/genética , Proliferação de Células , Invasividade Neoplásica , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/genética , Fator de Crescimento Transformador beta1/metabolismo , Gradação de Tumores
15.
Sci Rep ; 14(1): 11048, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745057

RESUMO

Information about cell composition in tissue samples is crucial for biomarker discovery and prognosis. Specifically, cancer tissue samples present challenges in deconvolution studies due to mutations and genetic rearrangements. Here, we optimized a robust, DNA methylation-based protocol, to be used for deconvolution of ovarian cancer samples. We compared several state-of-the-art methods (HEpiDISH, MethylCIBERSORT and ARIC) and validated the proposed protocol in an in-silico mixture and in an external dataset containing samples from ovarian cancer patients and controls. The deconvolution protocol we eventually implemented is based on MethylCIBERSORT. Comparing deconvolution methods, we paid close attention to the role of a reference panel. We postulate that a possibly high number of samples (in our case: 247) should be used when building a reference panel to ensure robustness and to compensate for biological and technical variation between samples. Subsequently, we tested the performance of the validated protocol in our own study cohort, consisting of 72 patients with malignant and benign ovarian disease as well as in five external cohorts. In conclusion, we refined and validated a reference-based algorithm to determine cell type composition of ovarian cancer tissue samples to be used in cancer biology studies in larger cohorts.


Assuntos
Algoritmos , Metilação de DNA , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Biomarcadores Tumorais/genética
16.
J Ovarian Res ; 17(1): 102, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745302

RESUMO

Ovarian cancer is a major gynecological cancer that has poor prognosis associated mainly to its late diagnosis. Cisplatin is an FDA approved ovarian cancer therapy and even though the therapy is initially promising, the patients mostly progress to resistance against cisplatin. The underlying mechanisms are complex and not very clearly understood. Using two different paired cell lines representing cisplatin-sensitive and the cisplatin-resistant ovarian cancer cells, the ES2 and the A2780 parental and cisplatin-resistant cells, we show an elevated proto-oncogene c-Myb in resistant cells. We further show down-regulated lncRNA NKILA in resistant cells with its de-repression in resistant cells when c-Myb is silenced. NKILA negatively correlates with cancer cell and invasion but has no effect on cellular proliferation or cell cycle. C-Myb activates NF-κB signaling which is inhibited by NKILA. The cisplatin resistant cells are also marked by upregulated stem cell markers, particularly LIN28A and OCT4, and downregulated LIN28A-targeted let-7 family miRNAs. Whereas LIN28A and downregulated let-7s individually de-repress c-Myb-mediated cisplatin resistance, the ectopic expression of let-7s attenuates LIN28A effects, thus underlying a c-Myb-NKILA-LIN28A-let-7 axis in cisplatin resistance of ovarian cancer cells that needs to be further explored for therapeutic intervention.


Assuntos
Cisplatino , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , MicroRNAs , Neoplasias Ovarianas , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myb , RNA Longo não Codificante , Proteínas de Ligação a RNA , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
17.
Sci Adv ; 10(20): eadj5428, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748789

RESUMO

High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.


Assuntos
Imunidade Inata , Interferon Tipo I , Neoplasias Ovarianas , Transdução de Sinais , Humanos , Feminino , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Interferon Tipo I/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/imunologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Gradação de Tumores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética
18.
Sci Rep ; 14(1): 11133, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750159

RESUMO

Ovarian cancer (OC) is one of the most prevalent and fatal malignant tumors of the female reproductive system. Our research aimed to develop a prognostic model to assist inclinical treatment decision-making.Utilizing data from The Cancer Genome Atlas (TCGA) and copy number variation (CNV) data from the University of California Santa Cruz (UCSC) database, we conducted analyses of differentially expressed genes (DEGs), gene function, and tumor microenvironment (TME) scores in various clusters of OC samples.Next, we classified participants into low-risk and high-risk groups based on the median risk score, thereby dividing both the training group and the entire group accordingly. Overall survival (OS) was significantly reduced in the high-risk group, and two independent prognostic factors were identified: age and risk score. Additionally, three genes-C-X-C Motif Chemokine Ligand 10 (CXCL10), RELB, and Caspase-3 (CASP3)-emerged as potential candidates for an independent prognostic signature with acceptable prognostic value. In Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, pathways related to immune responses and inflammatory cell chemotaxis were identified. Cellular experiments further validated the reliability and precision of our findings. In conclusion, necroptosis-related genes play critical roles in tumor immunity, and our model introduces a novel strategy for predicting the prognosis of OC patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Necroptose , Neoplasias Ovarianas , Microambiente Tumoral , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/mortalidade , Prognóstico , Necroptose/genética , Microambiente Tumoral/genética , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Transcriptoma , Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA
19.
Commun Biol ; 7(1): 583, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755265

RESUMO

Tumor-associated macrophages of the M2 phenotype promote cancer initiation and progression. Importantly, M2 macrophage-derived exosomes play key roles in the malignancy of cancer cells. Here, we report that circTMCO3 is upregulated in ovarian cancer patients, and its high expression indicates poor survival. M2-derived exosomes promote proliferation, migration, and invasion in ovarian cancer, but these effects are abolished by knockdown of circTMCO3. Furthermore, circTMCO3 functions as a competing endogenous RNA for miR-515-5p to reduce its abundance, thus upregulating ITGA8 in ovarian cancer. miR-515-5p inhibits ovarian cancer malignancy via directly downregulating ITGA8. The decreased oncogenic activity of circTMCO3-silencing exosomes is reversed by miR-515-5p knockdown or ITGA8 overexpression. Exosomal circTMCO3 promotes ovarian cancer progression in nude mice. Thus, M2 macrophage-derived exosomes promote malignancy by delivering circTMCO3 and targeting the miR-515-5p/ITGA8 axis in ovarian cancer. Our findings not only provide mechanistic insights into ovarian cancer progression, but also suggest potential therapeutic targets.


Assuntos
Exossomos , Camundongos Nus , MicroRNAs , Neoplasias Ovarianas , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Humanos , Exossomos/metabolismo , Exossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proliferação de Células , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Movimento Celular
20.
BMC Med ; 22(1): 199, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755585

RESUMO

BACKGROUND: The prospective phase III multi-centre L-MOCA trial (NCT03534453) has demonstrated the encouraging efficacy and manageable safety profile of olaparib maintenance therapy in the Asian (mainly Chinese) patients with platinum-sensitive relapsed ovarian cancer (PSROC). In this study, we report the preplanned exploratory biomarker analysis of the L-MOCA trial, which investigated the effects of homologous recombination deficiency (HRD) and programmed cell death ligand 1 (PD-L1) expression on olaparib efficacy. METHODS: HRD status was determined using the ACTHRD assay, an enrichment-based targeted next-generation sequencing assay. PD-L1 expression was assessed by SP263 immunohistochemistry assay. PD-L1 expression positivity was defined by the PD-L1 expression on ≥ 1% of immune cells. Kaplan-Meier method was utilised to analyse progression-free survival (PFS). RESULTS: This exploratory biomarker analysis included 225 patients and tested HRD status [N = 190; positive, N = 125 (65.8%)], PD-L1 expression [N = 196; positive, N = 56 (28.6%)], and BRCA1/2 mutation status (N = 219). The HRD-positive patients displayed greater median PFS than the HRD-negative patients [17.9 months (95% CI: 14.5-22.1) versus 9.2 months (95% CI: 7.5-13.8)]. PD-L1 was predominantly expressed on immune cells. Positive PD-L1 expression on immune cells was associated with shortened median PFS in the patients with germline BRCA1/2 mutations [14.5 months (95% CI: 7.4-18.2) versus 22.2 months (95% CI: 18.3-NA)]. Conversely, positive PD-L1 expression on immune cells was associated with prolonged median PFS in the patients with wild-type BRCA1/2 [20.9 months (95% CI: 13.9-NA) versus 8.3 months (95% CI: 6.7-13.8)]. CONCLUSIONS: HRD remained an effective biomarker for enhanced olaparib efficacy in the Asian patients with PSROC. Positive PD-L1 expression was associated with decreased olaparib efficacy in the patients with germline BRCA1/2 mutations but associated with improved olaparib efficacy in the patients with wild-type BRCA1/2. TRIAL REGISTRATION: NCT03534453. Registered at May 23, 2018.


Assuntos
Antígeno B7-H1 , Biomarcadores Tumorais , Quimioterapia de Manutenção , Neoplasias Ovarianas , Ftalazinas , Piperazinas , Humanos , Feminino , Ftalazinas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Piperazinas/uso terapêutico , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Quimioterapia de Manutenção/métodos , Idoso , Adulto , Estudos Prospectivos , Recidiva Local de Neoplasia/tratamento farmacológico , Proteína BRCA2/genética , Antineoplásicos/uso terapêutico , Proteína BRCA1/genética , Recombinação Homóloga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...