Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000198

RESUMO

Breast cancer (BC) continues to pose a significant burden on global cancer-related morbidity and mortality, primarily driven by metastasis. However, the combined influence of microRNAs (miRNAs) and intratumoral microbiota on BC metastasis remains largely unexplored. In this study, we aimed to elucidate the interplay between intratumoral microbiota composition, miRNA expression profiles, and their collective influence on metastasis development in BC patients by employing 16S rRNA sequencing and qPCR methodologies. Our findings revealed an increase in the expression of miR-149-5p, miR-20b-5p, and miR-342-5p in metastatic breast cancer (Met-BC) patients. The Met-BC patients exhibited heightened microbial richness and diversity, primarily attributed to diverse pathogenic bacteria. Taxonomic analysis identified several pathogenic and pro-inflammatory species enriched in Met-BC, contrasting with non-metastatic breast cancer (NonMet-BC) patients, which displayed an enrichment in potential probiotic and anti-inflammatory species. Notably, we identified and verified a baseline prognostic signature for metastasis in BC patients, with its clinical relevance further validated by its impact on overall survival. In conclusion, the observed disparities in miRNA expression and species-level bacterial abundance suggest their involvement in BC progression. The development of a prognostic signature holds promise for metastasis risk assessment, paving the way for personalized interventions and improved clinical outcomes in BC patients.


Assuntos
Neoplasias da Mama , Progressão da Doença , MicroRNAs , Microbiota , Metástase Neoplásica , Humanos , MicroRNAs/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/microbiologia , Feminino , Microbiota/genética , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Regulação Neoplásica da Expressão Gênica , Prognóstico , Adulto , Idoso
2.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000333

RESUMO

Breast cancer represents the most prevalent form of cancer and the leading cause of cancer-related mortality among females worldwide. It has been reported that several risk factors contribute to the appearance and progression of this disease. Despite the advancements in breast cancer treatment, a significant portion of patients with distant metastases still experiences no cure. The extracellular matrix represents a potential target for enhanced serum biomarkers in breast cancer. Furthermore, extracellular matrix degradation and epithelial-mesenchymal transition constitute the primary stages of local invasion during tumorigenesis. Additionally, the microbiome has a potential influence on diverse physiological processes. It is emerging that microbial dysbiosis is a significant element in the development and progression of various cancers, including breast cancer. Thus, a better understanding of extracellular matrix and microbiome interactions could provide novel alternatives to breast cancer treatment and management. In this review, we summarize the current evidence regarding the intricate relationship between breast cancer with the extracellular matrix and the microbiome. We discuss the arising associations and future perspectives in this field.


Assuntos
Neoplasias da Mama , Matriz Extracelular , Microbiota , Humanos , Neoplasias da Mama/microbiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Matriz Extracelular/metabolismo , Feminino , Transição Epitelial-Mesenquimal , Animais , Disbiose/microbiologia , Microambiente Tumoral
3.
Anticancer Res ; 44(6): 2271-2285, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821615

RESUMO

The gut microbiota has been implicated in many cancers through the secretion of blood-traveling metabolites or activation of oncogenic signaling. Currently, specific microbial signatures have been detected in the human breast, which are different from other microbial-rich compartments, such as the intestine and skin. Changes in the breast microbiome profile have been shown to positively or negatively correlate with breast cancer development, progression, and therapeutic outcomes. However, studies regarding the role and underlying mechanism of intratumoral microbiota in breast cancer have remained concealed. This review aimed to provide an overview of the role of the intratumoral microbiome in tumorigenesis and tumor progression, and how these intratumoral microbiota affect breast cancer. We also discuss the potential of using the intratumoral microbiome as a biomarker or treatment alternative in breast cancers.


Assuntos
Neoplasias da Mama , Progressão da Doença , Microbiota , Feminino , Humanos , Neoplasias da Mama/microbiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Carcinogênese , Resultado do Tratamento , Mama/microbiologia , Mama/patologia
4.
Mol Biol Rep ; 51(1): 611, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704796

RESUMO

BACKGROUND: Endophytic fungi have an abundant sources rich source of rich bioactive molecules with pivotal pharmacological properties. Several studies have found that endophytic fungi-derived bioactive secondary metabolites have antiproliferative, anti-oxidant, and anti-inflammatory properties, but the molecular mechanism by which they induce cell cycle arrest and apoptosis pathways is unknown. This study aimed to determine the molecular mechanism underlying the anticancer property of the endophytic fungi derived active secondary metabolites on human breast cancer cells. METHODS: In this study, we identified four endophytic fungi from marine seaweeds and partially screened its phytochemical properties by Chromatography-Mass Spectrometry (GC-MS) analysis. Moreover, the molecular mechanism underlying the anticancer property of these active secondary metabolites (FA, FB, FC and FE) on human breast cancer cells were examined on MCF-7 cells by TT assay, Apoptotic assay by Acridine orang/Ethidium Bromide (Dual Staining), DNA Fragmentation by DAPI Staining, reactive oxygen species (ROS) determination by DCFH-DA assay, Cell cycle analysis was conducted Flow cytometry and the apoptotic signalling pathway was evaluated by westernblot analysis. Doxorubicin was used as a positive control drug for this experiment. RESULTS: The GC-MS analysis of ethyl acetate extract of endophytic fungi from the marine macro-algae revealed the different functional groups and bioactive secondary metabolites. From the library, we observed the FC (76%), FB (75%), FA (73%) and FE (71%) have high level of antioxidant activity which was assessed by DPPH scavenging assay. Further, we evaluated the cytotoxic potentials of these secondary metabolites on human breast cancer MCF-7 cells for 24 h and the IC50 value were calculated (FA:28.62 ± 0.3 µg/ml, FB:49.81 ± 2.5 µg/ml, FC:139.42 ± µg/ml and FE:22.47 ± 0.5 µg/ul) along with positive control Doxorubicin 15.64 ± 0.8 µg/ml respectively by MTT assay. The molecular mechanism by which the four active compound induced apoptosis via reactive oxygen species (ROS) and cell cycle arrest in MCF-7 cells was determined H2DCFDA staining, DAPI staining, Acridine orange and ethidium bromide (AO/EtBr) dual staining, flowcytometry analysis with PI staining and apoptotic key regulatory proteins expression levels measured by westernblot analysis. CONCLUSION: Our findings, revealed the anticancer potential of endophytic fungi from marine seaweed as a valuable source of bioactive compounds with anticancer properties and underscore the significance of exploring marine-derived endophytic fungi as a promising avenue for the development of novel anticancer agents. Further investigations are necessary to isolate and characterize specific bioactive compounds responsible for these effects and to validate their therapeutic potential in preclinical and clinical settings.


Assuntos
Apoptose , Neoplasias da Mama , Pontos de Checagem do Ciclo Celular , Endófitos , Espécies Reativas de Oxigênio , Alga Marinha , Humanos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Células MCF-7 , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Alga Marinha/microbiologia , Alga Marinha/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/microbiologia , Feminino , Endófitos/metabolismo , Fungos , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas
5.
Gut Microbes ; 16(1): 2347757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773738

RESUMO

Emerging evidence has revealed the novel role of gut microbiota in the development of cancer. The characteristics of function and composition in the gut microbiota of patients with breast cancer patients has been reported, however the detailed causation between gut microbiota and breast cancer remains uncertain. In the present study, 16S rRNA sequencing revealed that Prevotella, particularly the dominant species Prevotella copri, is significantly enriched and prevalent in gut microbiota of breast cancer patients. Prior-oral administration of P. copri could promote breast cancer growth in specific pathogen-free mice and germ-free mice, accompanied with sharp reduction of indole-3-pyruvic acid (IPyA). Mechanistically, the present of excessive P. copri consumed a large amount of tryptophan (Trp), thus hampering the physiological accumulation of IPyA in the host. Our results revealed that IPyA is an intrinsic anti-cancer reagent in the host at physiological level. Briefly, IPyA directly suppressed the transcription of UHRF1, following by the declined UHRF1 and PP2A C in nucleus, thus inhibiting the phosphorylation of AMPK, which is just opposite to the cancer promoting effect of P. copri. Therefore, the exhaustion of IPyA by excessive P. copri strengthens the UHRF1-mediated negative control to inactivated the energy-controlling AMPK signaling pathway to promote tumor growth, which was indicated by the alternation in pattern of protein expression and DNA methylation. Our findings, for the first time, highlighted P. copri as a risk factor for the progression of breast cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Mama , Microbioma Gastrointestinal , Indóis , Prevotella , Ubiquitina-Proteína Ligases , Neoplasias da Mama/microbiologia , Neoplasias da Mama/metabolismo , Animais , Feminino , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Indóis/metabolismo , Indóis/farmacologia , Prevotella/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Progressão da Doença , Camundongos Endogâmicos BALB C , Triptofano/metabolismo , Linhagem Celular Tumoral
6.
Mol Cancer ; 23(1): 99, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730464

RESUMO

The gut microbiota has been demonstrated to be correlated with the clinical phenotypes of diseases, including cancers. However, there are few studies on clinical subtyping based on the gut microbiota, especially in breast cancer (BC) patients. Here, using machine learning methods, we analysed the gut microbiota of BC, colorectal cancer (CRC), and gastric cancer (GC) patients to identify their shared metabolic pathways and the importance of these pathways in cancer development. Based on the gut microbiota-related metabolic pathways, human gene expression profile and patient prognosis, we established a novel BC subtyping system and identified a subtype called "challenging BC". Tumours with this subtype have more genetic mutations and a more complex immune environment than those of other subtypes. A score index was proposed for in-depth analysis and showed a significant negative correlation with patient prognosis. Notably, activation of the TPK1-FOXP3-mediated Hedgehog signalling pathway and TPK1-ITGAE-mediated mTOR signalling pathway was linked to poor prognosis in "challenging BC" patients with high scores, as validated in a patient-derived xenograft (PDX) model. Furthermore, our subtyping system and score index are effective predictors of the response to current neoadjuvant therapy regimens, with the score index significantly negatively correlated with both treatment efficacy and the number of immune cells. Therefore, our findings provide valuable insights into predicting molecular characteristics and treatment responses in "challenging BC" patients.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/microbiologia , Neoplasias da Mama/metabolismo , Feminino , Prognóstico , Animais , Camundongos , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Perfilação da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Multiômica
7.
Proc Natl Acad Sci U S A ; 121(20): e2306776121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709933

RESUMO

A high-fat diet (HFD) is a high-risk factor for the malignant progression of cancers through the disruption of the intestinal microbiota. However, the role of the HFD-related gut microbiota in cancer development remains unclear. This study found that obesity and obesity-related gut microbiota were associated with poor prognosis and advanced clinicopathological status in female patients with breast cancer. To investigate the impact of HFD-associated gut microbiota on cancer progression, we established various models, including HFD feeding, fecal microbiota transplantation, antibiotic feeding, and bacterial gavage, in tumor-bearing mice. HFD-related microbiota promotes cancer progression by generating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, the HFD microbiota released abundant leucine, which activated the mTORC1 signaling pathway in myeloid progenitors for PMN-MDSC differentiation. Clinically, the elevated leucine level in the peripheral blood induced by the HFD microbiota was correlated with abundant tumoral PMN-MDSC infiltration and poor clinical outcomes in female patients with breast cancer. These findings revealed that the "gut-bone marrow-tumor" axis is involved in HFD-mediated cancer progression and opens a broad avenue for anticancer therapeutic strategies by targeting the aberrant metabolism of the gut microbiota.


Assuntos
Neoplasias da Mama , Diferenciação Celular , Dieta Hiperlipídica , Progressão da Doença , Microbioma Gastrointestinal , Leucina , Células Supressoras Mieloides , Animais , Dieta Hiperlipídica/efeitos adversos , Leucina/metabolismo , Feminino , Humanos , Camundongos , Células Supressoras Mieloides/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/microbiologia , Neoplasias da Mama/metabolismo , Obesidade/microbiologia , Obesidade/metabolismo , Obesidade/patologia , Linhagem Celular Tumoral
8.
Thorac Cancer ; 15(12): 974-986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485288

RESUMO

BACKGROUND: The causal relationship between breast cancer (BC) and the oral microbiome remains unclear. In this case-control study, using two-sample Mendelian randomization (MR), we thoroughly explored the relationship between the oral microbiome and BC in the East Asian population. METHODS: Genetic summary data related to oral microbiota and BC were collected from genome-wide association studies involving participants of East Asian descent. MR estimates were generated by conducting various analyses. Sequencing data from a case-control study were used to verify the validity of these findings. RESULTS: MR analysis revealed that 30 tongue and 37 salivary bacterial species were significantly associated with BC. Interestingly, in both tongue and salivary microbiomes, we observed the causal effect of six genera, namely, Aggregatibacter, Streptococcus, Prevotella, Haemophilus, Lachnospiraceae, Oribacterium, and Solobacterium, on BC. Our case-control study findings suggest differences in specific bacteria between patients with BC and healthy controls. Moreover, sequencing data confirmed the MR analysis results, demonstrating that compared with the healthy control group, the BC group had a higher relative abundance of Pasteurellaceae and Streptococcaceae but a lower relative abundance of Bacteroidaceae. CONCLUSIONS: Our MR analysis suggests that the oral microbiome exerts a causative effect on BC risk, supported by the sequencing data of a case-control study. In the future, studies should be undertaken to comprehensively understand the complex interaction mechanisms between the oral microbiota and BC.


Assuntos
Neoplasias da Mama , Análise da Randomização Mendeliana , Microbiota , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/microbiologia , Estudos de Casos e Controles , População do Leste Asiático , Estudo de Associação Genômica Ampla , Boca/microbiologia
9.
Protein Cell ; 15(6): 419-440, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38437016

RESUMO

Tumor-resident microbiota in breast cancer promotes cancer initiation and malignant progression. However, targeting microbiota to improve the effects of breast cancer therapy has not been investigated in detail. Here, we evaluated the microbiota composition of breast tumors and found that enterotoxigenic Bacteroides fragilis (ETBF) was highly enriched in the tumors of patients who did not respond to taxane-based neoadjuvant chemotherapy. ETBF, albeit at low biomass, secreted the toxic protein BFT-1 to promote breast cancer cell stemness and chemoresistance. Mechanistic studies showed that BFT-1 directly bound to NOD1 and stabilized NOD1 protein. NOD1 was highly expressed on ALDH+ breast cancer stem cells (BCSCs) and cooperated with GAK to phosphorylate NUMB and promote its lysosomal degradation, thereby activating the NOTCH1-HEY1 signaling pathway to increase BCSCs. NOD1 inhibition and ETBF clearance increase the chemosensitivity of breast cancer by impairing BCSCs.


Assuntos
Bacteroides fragilis , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas , Proteína Adaptadora de Sinalização NOD1 , Humanos , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/microbiologia , Neoplasias da Mama/genética , Feminino , Bacteroides fragilis/metabolismo , Bacteroides fragilis/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Animais , Camundongos , Linhagem Celular Tumoral , Metaloendopeptidases
10.
Aesthet Surg J ; 44(7): 706-714, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38366904

RESUMO

BACKGROUND: In breast surgeries, a lactiferous duct leading to lactic glands of breast parenchyma allows direct contamination by normal bacterial flora of the nipple-areola complex. Complete blockage of nipple flora from the intraoperative field is almost impossible. OBJECTIVES: We aimed to analyze the microbiological profile of nipple flora of breast cancer patients who underwent an implant-based immediate breast reconstruction after a total mastectomy, and to evaluate the association of nipple bacterial flora with postoperative complications. METHODS: A retrospective chart review was performed of patients who underwent an implant-based immediate breast reconstruction after a total mastectomy. A nipple swab culture was performed preoperatively. Patient demographics, surgical characteristics, and complications were compared between positive and negative nipple swab culture groups. Microbiological profile data including antibacterial resistance were collected. RESULTS: Among 128 breasts, 60 cases (46.9%) had positive preoperative nipple swab culture results. Staphylococcus epidermidis accounted for 41.4% of microorganisms isolated. A multivariate logistic regression analysis of postoperative complications revealed that the presence of nipple bacterial flora was a risk factor for capsular contracture. Seven cases of postoperative infection were analyzed. In 2 cases (40% of pathogen-proven infection), the causative pathogen matched the patient's nipple bacterial flora, which was methicillin-resistant S. epidermidis in both cases. CONCLUSIONS: Nipple bacterial flora was associated with an increased risk of capsular contracture. Preoperative analysis of nipple bacterial flora can be an informative source for treating clinically diagnosed postoperative infections. More studies are needed to determine the effectiveness of active antibiotic decolonization of the nipple.


Assuntos
Implante Mamário , Implantes de Mama , Neoplasias da Mama , Mastectomia , Mamilos , Humanos , Feminino , Estudos Retrospectivos , Mamilos/microbiologia , Pessoa de Meia-Idade , Adulto , Implantes de Mama/efeitos adversos , Implantes de Mama/microbiologia , Mastectomia/efeitos adversos , Implante Mamário/efeitos adversos , Implante Mamário/instrumentação , Neoplasias da Mama/cirurgia , Neoplasias da Mama/microbiologia , Fatores de Risco , Idoso , Staphylococcus epidermidis/isolamento & purificação , Complicações Pós-Operatórias/microbiologia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Modelos Logísticos , Contratura Capsular em Implantes/microbiologia , Contratura Capsular em Implantes/diagnóstico , Contratura Capsular em Implantes/epidemiologia
11.
Clin Transl Oncol ; 26(6): 1407-1418, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38194019

RESUMO

INTRODUCTION: Breast cancer (BC) is the most prevalent type of cancer and has the highest mortality among women worldwide. BC patients have a high risk of depression, which has been recognized as an independent factor in the progression of BC. However, the potential mechanism has not been clearly demonstrated. METHODS: To explore the correlation and mechanism between depression and BC progression, we induced depression and tumor in BC mouse models. Depression was induced via chronic unpredictable mild stress (CUMS) and chronic restraint stress (CRS). Amino acid (AA) neurotransmitter-targeted metabonomics and gut microbiota 16S rDNA gene sequencing were employed in the mouse model after evaluation with behavioral tests and pathological analysis. RESULTS: The tumors in cancer-depression (CD) mice grew faster than those in cancer (CA) mice, and lung metastasis was observed in CD mice. Metabonomics revealed that the neurotransmitters and plasma AAs in CD mice were dysregulated, namely the tyrosine and tryptophan pathways and monoamine neurotransmitters in the brain. Gut microbiota analysis displayed an increased ratio of Firmicutes/Bacteroides. In detail, the abundance of f_Lachnospiraceae and s_Lachnospiraceae increased, whereas the abundance of o_Bacteroidales and s_Bacteroides_caecimuris decreased. Moreover, the gut microbiota was more closely associated with AA neurotransmitters than with plasma AA. CONCLUSION: Depression promoted the progression of BC by modulating the abundance of s_Lachnospiraceae and s_Bacteroides_caecimuris, which affected the metabolism of monoamine neurotransmitters in the brain and AA in the blood.


Assuntos
Aminoácidos , Neoplasias da Mama , Depressão , Progressão da Doença , Microbioma Gastrointestinal , Neurotransmissores , Animais , Microbioma Gastrointestinal/fisiologia , Feminino , Camundongos , Neurotransmissores/metabolismo , Aminoácidos/metabolismo , Depressão/metabolismo , Depressão/microbiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/microbiologia , Neoplasias da Mama/metabolismo , Metabolômica , Modelos Animais de Doenças , Estresse Psicológico/microbiologia , Estresse Psicológico/metabolismo , Estresse Psicológico/complicações
12.
Clin Transl Oncol ; 26(6): 1480-1496, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38217684

RESUMO

PURPOSE: Breast cancer (BC) is a devastating disease for women. Microbial influences may be involved in the development and progression of breast cancer. This study aimed to investigate the difference in intestinal flora abundance between breast cancer patients and healthy controls (HC) based on previous 16S ribosomal RNA (rRNA) gene sequencing results, which have been scattered and inconsistent in previous studies. MATERIALS AND METHODS: In agreement with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we searched for pertinent literature in Pubmed, Embase, Cochrane Library, and Web of Science databases from build until February 1, 2023. Relative abundance, diversity of intestinal microflora by level, microbial composition, community structure, diversity index, and other related data were extracted. We used a fixed or random effects model for data analysis. We also conducted funnel plot analysis, sensitivity analysis, Egger's, and Begg's tests to assess the bias risk. RESULTS: A total of ten studies involving 734 BC patients were enrolled. It was pointed out that there were significant differences in the Chao index between BC and HC in these studies [SMD = - 175.44 (95% CI - 246.50 to - 104.39)]. The relative abundance of Prevotellaceae [SMD = - 0.27 (95% CI - 0.39 to - 0.15)] and Bacteroides [SMD = 0.36 (95% CI 0.23-0.49)] was significantly different. In the included articles, the relative abundance of Prevotellaceae, Ruminococcus, Roseburia inulinivorans, and Faecalibacterium prausnitzii decreased in BC. Accordingly, the relative richness of Erysipelotrichaceae was high in BC. CONCLUSIONS: This observational meta-analysis revealed that the changes in gut microbiota were correlated with BC, and the changes in some primary fecal microbiota might affect the beginning of breast cancer.


Assuntos
Neoplasias da Mama , Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Humanos , Neoplasias da Mama/microbiologia , RNA Ribossômico 16S/genética , Feminino , Microbioma Gastrointestinal/genética , Fezes/microbiologia
13.
Cells ; 12(15)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37566024

RESUMO

Emerging evidence suggests a profound association between the microbiota composition in the gastrointestinal tract and breast cancer progression. The gut microbiota plays a crucial role in modulating the immune response, releasing metabolites, and modulating estrogen levels, all of which have implications for breast cancer growth. However, recent research has unveiled a novel aspect of the relationship between the microbiota and breast cancer, focusing on microbes residing within the mammary tissue, which was once considered sterile. These localized microbial communities have been found to change in the presence of a tumor as compared to healthy mammary tissue, unraveling their potential contribution to tumor progression. Studies have identified specific bacterial species that are enriched within breast tumors and have highlighted the mechanisms by which even these microbes influence cancer progression through immune modulation, direct carcinogenic activity, and effects on cellular pathways involved in cell proliferation or apoptosis. This review aims to provide an overview of the current knowledge on the mechanisms of crosstalk between the gut/mammary microbiota and breast cancer. Understanding this intricate interplay holds promise for developing innovative therapeutic approaches.


Assuntos
Neoplasias da Mama , Mama , Microbioma Gastrointestinal , Animais , Humanos , Mama/microbiologia , Neoplasias da Mama/microbiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Imunidade , Simbiose , Interações entre Hospedeiro e Microrganismos
14.
Neoplasia ; 27: 100786, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366464

RESUMO

BACKGROUND: Stromal and immune cell composition alterations in benign breast tissue associate with future cancer risk. Pilot data suggest the innate microbiome of normal breast tissue differs between women with and without breast cancer. Microbiome alterations might explain tissue microenvironment variations associated with disease status. METHODS: Prospectively-collected sterile normal breast tissues from women with benign (n=16) or malignant (n=17) disease underwent 16SrRNA sequencing with Illumina MiSeq and Hybrid-denovo pipeline processing. Breast tissue was scored for fibrosis and fat percentages and immune cell infiltrates (lobulitis) classified as absent/mild/moderate/severe. Alpha and beta diversity were calculated on rarefied OTU data and associations analyzed with multiple linear regression and PERMANOVA. RESULTS: Breast tissue stromal fat% was lower and fibrosis% higher in benign disease versus cancer (median 30% versus 60%, p=0.01, 70% versus 30%, p=0.002, respectively). The microbiome varied with stromal composition. Alpha diversity (Chao1) correlated with fat% (r=0.38, p=0.02) and fibrosis% (r=-0.32, p=0.05) and associated with different microbial populations as indicated by beta diversity metrics (weighted UniFrac, p=0.08, fat%, p=0.07, fibrosis%). Permutation testing with FDR control revealed taxa differences for fat% in Firmicutes, Bacilli, Bacillales, Staphylococcaceae and genus Staphylococcus, and fibrosis% in Firmicutes, Spirochaetes, Bacilli, Bacillales, Spirochaetales, Proteobacteria RF32, Sphingomonadales, Staphylococcaceae, and genera Clostridium, Staphylococcus, Spirochaetes, Actinobacteria Adlercreutzia. Moderate/severe lobulitis was more common in cancer (73%) than benign disease (13%), p=0.003, but no significant microbial associations were seen. CONCLUSION: These data suggest a link between breast tissue stromal alterations and its microbiome, further supporting a connection between the breast tissue microenvironment and breast cancer.


Assuntos
Neoplasias da Mama/microbiologia , Mama/microbiologia , Microbiota , Microambiente Tumoral , Bactérias/genética , Mama/imunologia , Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Feminino , Fibrose , Humanos , Projetos Piloto , Estudos Prospectivos , RNA Ribossômico 16S/química , Células Estromais/microbiologia
15.
Cell ; 185(8): 1292-1294, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35427497

RESUMO

Tumors contain bacteria, but the functional significance of this tumor microbiota is not appreciated. Fu et al. show that bacteria within breast tumor cells contribute to metastasis, in part, by enhancing tumor cell survival to mechanical fluid shear stress as would be found in the circulation.


Assuntos
Bactérias , Neoplasias da Mama , Metástase Neoplásica , Neoplasias da Mama/microbiologia , Neoplasias da Mama/patologia , Sobrevivência Celular , Feminino , Humanos , Estresse Mecânico
16.
Cell ; 185(8): 1356-1372.e26, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35395179

RESUMO

Tumor-resident intracellular microbiota is an emerging tumor component that has been documented for a variety of cancer types with unclear biological functions. Here, we explored the functional significance of these intratumor bacteria, primarily using a murine spontaneous breast-tumor model MMTV-PyMT. We found that depletion of intratumor bacteria significantly reduced lung metastasis without affecting primary tumor growth. During metastatic colonization, intratumor bacteria carried by circulating tumor cells promoted host-cell survival by enhancing resistance to fluid shear stress by reorganizing actin cytoskeleton. We further showed that intratumor administration of selected bacteria strains isolated from tumor-resident microbiota promoted metastasis in two murine tumor models with significantly different levels of metastasis potential. Our findings suggest that tumor-resident microbiota, albeit at low biomass, play an important role in promoting cancer metastasis, intervention of which might therefore be worth exploring for advancing oncology care.


Assuntos
Neoplasias da Mama , Microbiota , Metástase Neoplásica , Animais , Neoplasias da Mama/microbiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Células Neoplásicas Circulantes/patologia
17.
BMC Cancer ; 22(1): 245, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248004

RESUMO

BACKGROUND: Cancer patients experience gastrointestinal and behavioral symptoms, and are at increased risk of systemic infection and inflammation. These conditions are a major source of morbidity and decreased quality of life prior to cancer treatment, but poorly defined etiologies impede successful treatment. The gastrointestinal microbiota shape inflammation, influence cancer progression and treatment, and colonize tumors. However, research has not directly determined if peripheral tumors influence the microbiome and intestinal physiology, thus influencing gastrointestinal and behavioral symptoms. Therefore, the purpose of this study was to examine consequences of orthotopic, syngeneic mammary tumor implantation, growth, and resection on fecal bacteriome composition and intestinal barrier function in relation to systemic inflammation and enteric bacterial translocation in mice. METHODS: Female mice were randomized to 3 experimental groups: sham surgical control, tumor recipients, and tumor recipients later receiving tumor-resection. Mice were sacrificed three weeks after tumor implantation or resection for collection of stool, colon, spleen, and brain tissue and analysis. RESULTS: Tumor-bearing mice exhibited several markers of colonic barrier disruption, including dampened expression of tight junction proteins (Cldn1 and Ocln) and elevated circulating lipopolysaccharide binding protein (LBP). Compromised colonic barrier integrity was associated with altered fecal bacterial profiles in tumor-mice, including lower relative abundance of Lactobacillus, but higher Bacteroides. Consistent with colonic barrier disruption and altered microbiomes, tumor-mice displayed markers of systemic inflammation including splenomegaly, higher splenic bacterial load, and elevated splenic and brain pro-inflammatory cytokines. Several  bacteria cultured from spleens had 16S rRNA gene amplicons matching those in fecal samples, suggesting they were of intestinal origin. Fecal Lactobacillus was highly-interrelated to physiological parameters disrupted by tumors via correlation network analysis. Tumor resection ameliorated circulating LBP, splenomegaly, and splenic cytokines, but not other parameters associated with loss of colonic barrier integrity and bacterial translocation. CONCLUSIONS: Orthotopic mammary tumors alter the microbiome, reduce intestinal barrier function, increase translocation of enteric bacteria, and alter systemic inflammation. This provides insight into how tumors commence gastrointestinal and behavioral symptoms prior to treatment, and identify targets for future therapeutics, such as probiotic Lactobacillus supplementation.


Assuntos
Translocação Bacteriana , Neoplasias da Mama/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Animais , Colo/microbiologia , Modelos Animais de Doenças , Feminino , Inflamação/microbiologia , Camundongos , RNA Ribossômico 16S/metabolismo
18.
BMC Cancer ; 22(1): 30, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980006

RESUMO

BACKGROUND: Breast cancer (BC) is the most common malignancy in women, in whom it reaches 20% of the total neoplasia incidence. Most BCs are considered sporadic and a number of factors, including familiarity, age, hormonal cycles and diet, have been reported to be BC risk factors. Also the gut microbiota plays a role in breast cancer development. In fact, its imbalance has been associated to various human diseases including cancer although a consequential cause-effect phenomenon has never been proven. METHODS: The aim of this work was to characterize the breast tissue microbiome in 34 women affected by BC using an NGS-based method, and analyzing the tumoral and the adjacent non-tumoral tissue of each patient. RESULTS: The healthy and tumor tissues differed in bacterial composition and richness: the number of Amplicon Sequence Variants (ASVs) was higher in healthy tissues than in tumor tissues (p = 0.001). Moreover, our analyses, able to investigate from phylum down to species taxa for each sample, revealed major differences in the two richest phyla, namely, Proteobacteria and Actinobacteria. Notably, the levels of Actinobacteria and Proteobacteria were, respectively, higher and lower in healthy with respect to tumor tissues. CONCLUSIONS: Our study provides information about the breast tissue microbial composition, as compared with very closely adjacent healthy tissue (paired samples within the same woman); the differences found are such to have possible diagnostic and therapeutic implications; further studies are necessary to clarify if the differences found in the breast tissue microbiome are simply an association or a concausative pathogenetic effect in BC. A comparison of different results on similar studies seems not to assess a universal microbiome signature, but single ones depending on the environmental cohorts' locations.


Assuntos
Neoplasias da Mama/microbiologia , Mama/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Adulto , Biodiversidade , Feminino , Humanos , Pessoa de Meia-Idade , RNA Ribossômico 16S/análise
19.
Clin Transl Oncol ; 24(3): 597-604, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34741726

RESUMO

BACKGROUND: Prognosis of breast cancer (BC) patients differs considerably and identifying reliable prognostic biomarker(s) is imperative. With evidence that the microbiome plays a critical role in the response to cancer therapies, we aimed to identify a cancer microbiome signature for predicting the prognosis of BC patients. METHODS: The TCGA BC microbiome data (TCGA-BRCA-microbiome) was downloaded from cBioPortal. Univariate and multivariate Cox regression analyses were used to examine association of microbial abundance with overall survival (OS) and to identify a microbial signature for creating a prognostic scoring model. The performance of the scoring model was assessed by the area under the ROC curve (AUC). Nomograms using the microbial signature, clinical factors, and molecular subtypes were established to predict OS and progression-free survival (PFS). RESULTS: Among 1406 genera, the abundances of 94 genera were significantly associated with BC patient OS in TCGA-BRCA-microbiome dataset. From that set we identified a 15-microbe prognostic signature and developed a 15-microbial abundance prognostic scoring (MAPS) model. Patients in low-risk group significantly prolong OS and PFS as compared to those in high-risk group. The time-dependent ROC curves with MAPS showed good predictive efficacy both in OS and PFS. Moreover, MAPS is an independent prognostic factor for OS and PFS over clinical factors and PAM50-based molecular subtypes and superior to the previously published 12-gene signature. The integration of MAPS into nomograms significantly improved prognosis prediction. CONCLUSION: MAPS was successfully established to have independent prognostic value, and our study provides a new avenue for developing prognostic biomarkers by microbiome profiling.


Assuntos
Neoplasias da Mama/microbiologia , Microbiota , Neoplasias da Mama/mortalidade , Feminino , Humanos , Prognóstico , Taxa de Sobrevida
20.
Commun Biol ; 4(1): 1229, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707244

RESUMO

Breast cancer is the most diagnosed cancer amongst women worldwide. We have previously shown that there is a breast microbiota which differs between women who have breast cancer and those who are disease-free. To better understand the local biochemical perturbations occurring with disease and the potential contribution of the breast microbiome, lipid profiling was performed on non-tumor breast tissue collected from 19 healthy women and 42 with breast cancer. Here we identified unique lipid signatures between the two groups with greater amounts of lysophosphatidylcholines and oxidized cholesteryl esters in the tissue from women with breast cancer and lower amounts of ceramides, diacylglycerols, phosphatidylcholines, and phosphatidylethanolamines. By integrating these lipid signatures with the breast bacterial profiles, we observed that Gammaproteobacteria and those from the class Bacillus, were negatively correlated with ceramides, lipids with antiproliferative properties. In the healthy tissues, diacylglyerols were positively associated with Acinetobacter, Lactococcus, Corynebacterium, Prevotella and Streptococcus. These bacterial groups were found to possess the genetic potential to synthesize these lipids. The cause-effect relationships of these observations and their contribution to disease patho-mechanisms warrants further investigation for a disease afflicting millions of women around the world.


Assuntos
Bactérias/isolamento & purificação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/microbiologia , Mama/microbiologia , Lipidômica , Microbiota , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...