Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.784
Filtrar
1.
Mol Biol Rep ; 51(1): 720, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824268

RESUMO

BACKGROUND: Tumor-associated macrophages (TAM) exert a significant influence on the progression and heterogeneity of various subtypes of breast cancer (BRCA). However, the roles of heterogeneous TAM within BRCA subtypes remain unclear. Therefore, this study sought to elucidate the role of TAM across the following three BRCA subtypes: triple-negative breast cancer, luminal, and HER2. MATERIALS AND METHODS: This investigation aimed to delineate the variations in marker genes, drug sensitivity, and cellular communication among TAM across the three BRCA subtypes. We identified specific ligand-receptor (L-R) pairs and downstream mechanisms regulated by VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Experimental verification of these pairs was conducted by co-culturing macrophages with three subtypes of BRCA cells. RESULTS: Our findings reveal the heterogeneity of macrophages within the three BRCA subtypes, evidenced by variations in marker gene expression, composition, and functional characteristics. Notably, heterogeneous TAM were found to promote invasive migration and epithelial-mesenchymal transition (EMT) in MDA-MB-231, MCF-7, and SKBR3 cells, activating NF-κB pathway via P38 MAPK, TGF-ß1, and AKT, respectively, through distinct VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Inhibition of these specific L-R pairs effectively reversed EMT, migration, and invasion of each cancer cells. Furthermore, we observed a correlation between ligand gene expression and TAM sensitivity to anticancer drugs, suggesting a potential strategy for optimizing personalized treatment guidance. CONCLUSION: Our study highlights the capacity of heterogeneous TAM to modulate biological functions via distinct pathways mediated by specific L-R pairs within diverse BRCA subtypes. This study might provide insights into precision immunotherapy of different subtypes of BRCA.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Macrófagos Associados a Tumor , Humanos , Feminino , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Análise de Célula Única/métodos , Células MCF-7 , Movimento Celular/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Análise de Sequência de RNA/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Transdução de Sinais/genética , Microambiente Tumoral/genética
2.
Breast Cancer Res ; 26(1): 92, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840145

RESUMO

BACKGROUND: Identifying new targets in triple negative breast cancer (TNBC) remains critical. REG3A (regenerating islet-derived protein 3 A), a calcium-dependent lectin protein, was thoroughly investigated for its expression and functions in breast cancer. METHODS: Bioinformatics and local tissue analyses were employed to identify REG3A expression in breast cancer. Genetic techniques were employed to modify REG3A expression, and the resulting effects on the behaviors of breast cancer cells were examined. Subcutaneous xenograft models were established to investigate the involvement of REG3A in the in vivo growth of breast cancer cells. RESULTS: Analysis of the TCGA database uncovered increased REG3A levels in human breast cancer tissues. Additionally, REG3A mRNA and protein levels were elevated in TNBC tissues of locally treated patients, contrasting with low expression in adjacent normal tissues. In primary human TNBC cells REG3A shRNA notably hindered cell proliferation, migration, and invasion while triggering caspase-mediated apoptosis. Similarly, employing CRISPR-sgRNA for REG3A knockout showed significant anti-TNBC cell activity. Conversely, REG3A overexpression bolstered cell proliferation and migration. REG3A proved crucial for activating the Akt-mTOR cascade, as evidenced by decreased Akt-S6K1 phosphorylation upon REG3A silencing or knockout, which was reversed by REG3A overexpression. A constitutively active mutant S473D Akt1 (caAkt1) restored Akt-mTOR activation and counteracted the proliferation inhibition and apoptosis induced by REG3A knockdown in breast cancer cells. Crucially, REG3A played a key role in maintaining mTOR complex integrity. Bioinformatics identified zinc finger protein 680 (ZNF680) as a potential REG3A transcription factor. Knocking down or knocking out ZNF680 reduced REG3A expression, while its overexpression increased it in primary breast cancer cells. Additionally, enhanced binding between ZNF680 protein and the REG3A promoter was observed in breast cancer tissues and cells. In vivo, REG3A shRNA significantly inhibited primary TNBC cell xenograft growth. In REG3A-silenced xenograft tissues, reduced REG3A levels, Akt-mTOR inhibition, and activated apoptosis were evident. CONCLUSION: ZNF680-caused REG3A overexpression drives tumorigenesis in breast cancer possibly by stimulating Akt-mTOR activation, emerging as a promising and innovative cancer target.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas Associadas a Pancreatite , Proteínas Proto-Oncogênicas c-akt , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/genética , Animais , Camundongos , Linhagem Celular Tumoral , Apoptose/genética , Movimento Celular/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Carcinogênese/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Crit Rev Eukaryot Gene Expr ; 34(5): 31-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38842202

RESUMO

Breast cancer is one of the most common malignant tumors worldwide. SLC7A2 is abnormally expressed in multiple cancers. However, its potential in triple negative breast cancer (TNBC) is still unclear. The purpose of this study was to investigate the roles of SLC7A2 and its underlying molecular mechanisms in TNBC. mRNA expression was detected by RT-qPCR. Protein expression was detected by western blot. Co-localization of ACOX1 and TCF1 was determined using FISH assay. Histone crotonylation was performed using in vitro histone crotonylation assay. Functional analysis was performed using CCK-8 and flow cytometry assays. Xenograft assay was conducted to further verify the role of SLC7A2 in TNBC. CD8A expression was detected using immunohistochemistry. We found that SLC7A2 is downregulated in TNBC tumors. Low levels are associated with advanced stages and lymph node metastasis. SLC7A2 expression is positively correlated with CD8A. SLC7A2-mediated lysine catabolism drives the activation of CD8+ T cells. Moreover, SLC7A2 promotes histone crotonylation via upregulating ACOX1. It also promotes interaction between ACOX1 and TCF1, thus promoting antitumor T cell immunity. Additionally, overexpression of SLC7A2 activates CD8+ T cells and enhances the chemosensitivity of anti-PD-1 therapies in vivo. In conclusion, SLC7A2 may function as an antitumor gene in TNBC by activating antitumor immunity, suggesting SLC7A2/ACOX1/TCF1 signaling as a promising therapeutic strategy.


Assuntos
Lisina , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Feminino , Lisina/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia
4.
Clin Exp Pharmacol Physiol ; 51(7): e13900, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843865

RESUMO

Traditional Chinese medicine, specifically the Jianpi Tiaoqi (JPTQ) decoction, has been explored for its role in treating breast cancer, particularly in inhibiting lung metastasis in affected mice. Our study evaluated the effects of JPTQ on several factors, including tumour growth, apoptosis, angiogenesis, epithelial-to-mesenchymal transition (EMT) and immune microenvironment regulation. We used bioluminescence imaging to observe in situ tumour growth and potential lung metastasis. Transcriptomic analysis provided insights into gene expression, whereas flow cytometry was used to examine changes in specific immune cells, such as CD4+ T cells and myeloid-derived suppressor cells. Several essential proteins and genes, including vascular endothelial growth factor (VEGF), matrix metalloprotein-9 (MMP-9) and B-cell lymphoma 2 (Bcl-2), were assessed through quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry. Our findings showed that JPTQ treatment inhibited tumour proliferation in cancer-bearing mice. Bioluminescence imaging and pathological analysis indicated a reduction in lung metastasis. Transcriptome analysis of lung and tumour tissues indicated that the genes associated with EMT, angiogenesis, proliferation and apoptosis were regulated in the JPTQ-treated group. Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment of immune-related pathways. Flow cytometry indicated that JPTQ treatment reduced the proportion of monocyte-myeloid-derived suppressor cells in the lung and increased the number of CD4+ T cells in the peripheral blood and the number of T helper 1 (Th1) cells in the spleen (P < 0.05). E-cadherin and cleaved caspase 3 were upregulated, whereas Snail, Bcl-2, Ki67 and VEGF were downregulated in the lung and tumour tissues; moreover, the expression of MMP-9 was downregulated in the lung tissue (P < 0.05). In essence, JPTQ not only inhibits tumour growth in affected mice, but also promotes positive immune responses, reduces angiogenesis, boosts tumour cell apoptosis, reverses EMT and decreases breast cancer lung metastasis.


Assuntos
Proliferação de Células , Medicamentos de Ervas Chinesas , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Animais , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Proliferação de Células/efeitos dos fármacos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia
5.
BMC Med Imaging ; 24(1): 136, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844842

RESUMO

BACKGROUND: To develop and validate a peritumoral vascular and intratumoral radiomics model to improve pretreatment predictions for pathologic complete responses (pCRs) to neoadjuvant chemoradiotherapy (NAC) in patients with triple-negative breast cancer (TNBC). METHODS: A total of 282 TNBC patients (93 in the primary cohort, 113 in the validation cohort, and 76 in The Cancer Imaging Archive [TCIA] cohort) were retrospectively included. The peritumoral vasculature on the maximum intensity projection (MIP) from pretreatment DCE-MRI was segmented by a Hessian matrix-based filter and then edited by a radiologist. Radiomics features were extracted from the tumor and peritumoral vasculature of the MIP images. The LASSO method was used for feature selection, and the k-nearest neighbor (k-NN) classifier was trained and validated to build a predictive model. The diagnostic performance was assessed using the ROC analysis. RESULTS: One hundred of the 282 patient (35.5%) with TNBC achieved pCRs after NAC. In predicting pCRs, the combined peritumoral vascular and intratumoral model (fusion model) yields a maximum AUC of 0.82 (95% confidence interval [CI]: 0.75, 0.88) in the primary cohort, a maximum AUC of 0.67 (95% CI: 0.57, 0.76) in the internal validation cohort, and a maximum AUC of 0.65 (95% CI: 0.52, 0.78) in TCIA cohort. The fusion model showed improved performance over the intratumoral model and the peritumoral vascular model, but not significantly (p > 0.05). CONCLUSION: This study suggested that combined peritumoral vascular and intratumoral radiomics model could provide a non-invasive tool to enable prediction of pCR in TNBC patients treated with NAC.


Assuntos
Imageamento por Ressonância Magnética , Terapia Neoadjuvante , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Resultado do Tratamento , Resposta Patológica Completa , Radiômica
6.
Oncoimmunology ; 13(1): 2364382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846083

RESUMO

Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC tumors are not sensitive to endocrine therapy, and standardized TNBC treatment regimens are lacking. TNBC is a more immunogenic subtype of breast cancer, making it more responsive to immunotherapy intervention. Tumor-associated macrophages (TAMs) constitute one of the most abundant immune cell populations in TNBC tumors and contribute to cancer metastasis. This study examines the role of the protein kinase HUNK in tumor immunity. Gene expression analysis using NanoString's nCounter PanCancer Immune Profiling panel identified that targeting HUNK is associated with changes in the IL-4/IL-4 R cytokine signaling pathway. Experimental analysis shows that HUNK kinase activity regulates IL-4 production in mammary tumor cells, and this regulation is dependent on STAT3. In addition, HUNK-dependent regulation of IL-4 secreted from tumor cells induces polarization of macrophages into an M2-like phenotype associated with TAMs. In return, IL-4 induces cancer metastasis and macrophages to produce epidermal growth factor. These findings delineate a paracrine signaling exchange between tumor cells and TAMs regulated by HUNK and dependent on IL-4/IL-4 R. This highlights the potential of HUNK as a target for reducing TNBC metastasis through modulation of the TAM population.


Assuntos
Interleucina-4 , Neoplasias de Mama Triplo Negativas , Macrófagos Associados a Tumor , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Feminino , Animais , Camundongos , Interleucina-4/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Linhagem Celular Tumoral , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Receptores de Interleucina-4/metabolismo , Receptores de Interleucina-4/genética
7.
J Cancer Res Clin Oncol ; 150(6): 291, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836955

RESUMO

PURPOSE: The neoadjuvant chemotherapy (NACT) regimen for triple negative breast cancer (TNBC) primarily consists of anthracyclines and taxanes, and the addition of platinum-based drugs can further enhance the efficacy. However, it is also accompanied by more adverse events, and considering the potential severe and irreversible toxicity of anthracyclines, an increasing number of studies are exploring nonanthracycline regimens that combine taxanes and platinum-based drugs. METHODS: The retrospective study included 273 stage II-III TNBC patients who received NACT. The AT group, consisting of 195 (71.4%) patients, received a combination of anthracyclines and taxanes, while the TCb group, consisting of 78 (28.6%) patients, received a combination of taxanes and carboplatin. Logistic regression analysis was performed to evaluate the factors influencing pathological complete response (pCR) and residual cancer burden (RCB). The log-rank test was used to assess the differences in event-free survival (EFS) and overall survival (OS) among the different treatment groups. Cox regression analysis was conducted to evaluate the factors influencing EFS and OS. RESULTS: After NACT and surgery, the TCb group had a higher rate of pCR at 44.9%, as compared to the AT group at 31.3%. The difference between the two groups was 13.6% (OR = 0.559, 95% CI 0.326-0.959, P = 0.035). The TCb group had a 57.7% rate of RCB 0-1, which was higher than the AT group's rate of 42.6%. The difference between the two groups was 15.1% (OR = 0.543, 95% CI 0.319-0.925, P = 0.024), With a median follow-up time of 40 months, the TCb group had better EFS (log-rank, P = 0.014) and OS (log-rank, P = 0.040) as compared to the AT group. Clinical TNM stage and RCB grade were identified as independent factors influencing EFS and OS, while treatment group was identified as an independent factor influencing EFS, with a close-to-significant impact on OS. CONCLUSION: In stage II-III triple TNBC patients, the NACT regimen combining taxanes and carboplatin yields higher rates of pCR and significant improvements in EFS and OS as compared to the regimen combining anthracyclines and taxanes.


Assuntos
Antraciclinas , Protocolos de Quimioterapia Combinada Antineoplásica , Carboplatina , Terapia Neoadjuvante , Taxoides , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Estudos Retrospectivos , Carboplatina/administração & dosagem , Antraciclinas/administração & dosagem , Antraciclinas/uso terapêutico , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Adulto , Taxoides/administração & dosagem , Taxoides/uso terapêutico , Idoso , Estadiamento de Neoplasias
8.
Oncol Rep ; 52(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847277

RESUMO

Ursolic acid (UA), a pentacyclic triterpenoid that has been found in a broad variety of fruits, spices and medicinal plants, has various biological effects such as reducing inflammation, protecting cells from damage, and preserving brain function. However, its impact on ferroptosis in cancer stem­like cells remains unexplored. The present study investigated the effect of UA on MDA­MB­231 and BT­549 cell­derived triple­negative breast CSCs (BCSCs) and its potential ferroptosis pathway. The effects of ferroptosis on BCSCs were demonstrated by the detection of ferroptosis­related indexes including the intracellular level of glutathione, malondialdehyde, reactive oxygen species and iron. The effects of UA on the biological behaviors of BCSCs were analyzed by Cell Counting Kit­8, stemness indexes detection and mammosphere formation assay. The mechanism of UA induction on BCSCs was explored by reverse transcription­quantitative PCR and western blotting. BALB/c­nude mice were subcutaneously injected with MDA­MB­231­derived BCSCs to establish xenograft models to detect the effects of UA in vivo. The results revealed that BCSCs have abnormal iron metabolism and are less susceptible to ferroptosis. UA effectively reduces the stemness traits and proliferation of BCSCs in spheroids and mice models by promoting ferroptosis. It was observed that UA stabilizes Kelch­like ECH­associated protein 1 and suppresses nuclear factor erythroid­related factor 2 (NRF2) activation. These findings suggested that the ability of UA to trigger ferroptosis through the inhibition of the NRF2 pathway could be a promising approach for treating BCSCs, potentially addressing metastasis and drug resistance in triple­negative breast cancer (TNBC). This expands the clinical applications of UA and provides a theoretical basis for its use in TNBC treatment.


Assuntos
Proliferação de Células , Ferroptose , Fator 2 Relacionado a NF-E2 , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas , Triterpenos , Ácido Ursólico , Ensaios Antitumorais Modelo de Xenoenxerto , Ferroptose/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Triterpenos/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Camundongos , Feminino , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
9.
Medicine (Baltimore) ; 103(23): e38434, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847725

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis, and the outcomes of common therapy were not favorable. METHODS: The samples of 84 patients with TNBC and 40 patients with breast fibroadenoma were collected in the pathology department specimen library of our hospital. The prognosis of patients was obtained through outpatient follow-up information, telephone and WeChat contacts, and medical records. The mRNA expression was analyzed using bioinformation and quantitative real-time polymerase chain reaction (qPCR). The protein expression was determined by hematoxylin-eosin staining and immunohistochemical staining. The results of survival analysis were visualized using Kaplan-Meier curves. RESULTS: The immunohistochemical staining showed that hypoxia-inducible factor-1alpha (HIF-1α) was mainly distributed in the nucleus and cytoplasm, while CD147 is mainly distributed in cell membrane and cytoplasm. The qPCR results exhibited that the expression level of HIF-1α and CD147 in TNBC tissue was significantly higher than that in breast fibroadenoma tissue. The expression of HIF-1α was related to the histological grade and lymph node metastasis in TNBC, and the expression of CD147 was related to Ki-67, histological grade and lymph node metastasis. There was a positive relationship between the expression of CD147 and HIF-1α. The upregulated expression of CD147 was closely related to the poor prognosis of OS in TNBC. CONCLUSION: CD147 could be a biomarker for the prognosis of TNBC and closely related to the expression of HIF-1α.


Assuntos
Basigina , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Feminino , Pessoa de Meia-Idade , Basigina/metabolismo , Basigina/genética , Adulto , Prognóstico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Metástase Linfática , Fibroadenoma/patologia , Fibroadenoma/genética , Fibroadenoma/metabolismo , Estimativa de Kaplan-Meier , Imuno-Histoquímica , Idoso
10.
Int J Biol Sci ; 20(7): 2686-2697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725852

RESUMO

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.


Assuntos
Lipopolissacarídeos , Células-Tronco Neoplásicas , Fatores de Transcrição SOX9 , Humanos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Feminino , Lipopolissacarídeos/farmacologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Transdução de Sinais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Regulação Neoplásica da Expressão Gênica
11.
J Transl Med ; 22(1): 423, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704606

RESUMO

BACKGROUND: Cancer stem cells (CSCs) and long non-coding RNAs (lncRNAs) are known to play a crucial role in the growth, migration, recurrence, and drug resistance of tumor cells, particularly in triple-negative breast cancer (TNBC). This study aims to investigate stemness-related lncRNAs (SRlncRNAs) as potential prognostic indicators for TNBC patients. METHODS: Utilizing RNA sequencing data and corresponding clinical information from the TCGA database, and employing Weighted Gene Co-expression Network Analysis (WGCNA) on TNBC mRNAsi sourced from an online database, stemness-related genes (SRGs) and SRlncRNAs were identified. A prognostic model was developed using univariate Cox and LASSO-Cox analysis based on SRlncRNAs. The performance of the model was evaluated using Kaplan-Meier analysis, ROC curves, and ROC-AUC. Additionally, the study delved into the underlying signaling pathways and immune status associated with the divergent prognoses of TNBC patients. RESULTS: The research identified a signature of six SRlncRNAs (AC245100.6, LINC02511, AC092431.1, FRGCA, EMSLR, and MIR193BHG) for TNBC. Risk scores derived from this signature were found to correlate with the abundance of plasma cells. Furthermore, the nominated chemotherapy drugs for TNBC exhibited considerable variability between different risk score groups. RT-qPCR validation confirmed abnormal expression patterns of these SRlncRNAs in TNBC stem cells, affirming the potential of the SRlncRNAs signature as a prognostic biomarker. CONCLUSION: The identified signature not only demonstrates predictive power in terms of patient outcomes but also provides insights into the underlying biology, signaling pathways, and immune status associated with TNBC prognosis. The findings suggest the possibility of guiding personalized treatments, including immune checkpoint gene therapy and chemotherapy strategies, based on the risk scores derived from the SRlncRNA signature. Overall, this research contributes valuable knowledge towards advancing precision medicine in the context of TNBC.


Assuntos
Simulação por Computador , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Prognóstico , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Feminino , Resultado do Tratamento , Animais , Estimativa de Kaplan-Meier , Redes Reguladoras de Genes , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Curva ROC , Perfilação da Expressão Gênica , Modelos de Riscos Proporcionais , Imunidade/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
12.
Cell Biochem Funct ; 42(4): e4020, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702967

RESUMO

The regulatory potential of long noncoding RNA (lncRNA) FBXL19-AS1 has been highlighted in various cancers, but its effect on triple-negative breast cancer (TNBC) remains unclear. Here, we aimed to elucidate the role of FBXL19-AS1 in TNBC and its underlying mechanism. RT-qPCR was employed to detect the expressions of FBXL19-AS1 and miR-378a-3p in tissues and cells. Immunohistochemical staining and western blot were utilized to detect the expression levels of proteins. Cell activities were detected using flow cytometry, CCK-8, and transwell assay. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were deployed to investigate interactions of different molecules. Protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathways were used to analyze the downstream pathway. In vivo xenograft model was conducted to detect the effect of FBXL19-AS1 on tumor growth. FBXL19-AS1 was overexpressed in TNBC tissues and cell lines compared with counterparts. FBXL19-AS1 knockdown suppressed TNBC cell activities, whereas its overexpression exhibited the opposite effect. Mechanistically, FBXL19-AS1 was found to interact with miR-378a-3p. Further analysis revealed that miR-378a-3p exerted tumor-suppressive effects in TNBC cells. Additionally, miR-378a-3p targeted and downregulated the expression of ubiquitin aldehyde binding 2 (OTUB2), a deubiquitinase associated with TNBC progression. In vivo experiments substantiated the inhibitory effects of FBXL19-AS1 knockdown on TNBC tumorigenesis, and a miR-378a-3p inhibitor partially rescued these effects. The downstream pathway of the miR-378a-3p/OTUB2 axis was explored, revealing connections with proteins involved in modifying other proteins, removing ubiquitin molecules, and influencing signaling pathways, including the Hippo signaling pathway. Western blot analysis confirmed changes in YAP and TAZ expression levels, indicating a potential regulatory network. In summary, FBXL19-AS1 promotes exacerbation in TNBC by suppressing miR-378a-3p, leading to increased OTUB2 expression. The downstream mechanism may be related to the Hippo signaling pathway. These findings propose potential therapeutic targets for TNBC treatment.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Enzimas Desubiquitinantes/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética
13.
Med Oncol ; 41(6): 143, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717628

RESUMO

Picrorhiza kurroa, an "Indian gentian," a known Himalayan medicinal herb with rich source of phytochemicals like picrosides I, II, and other glycosides, has been traditionally used for the treatment of liver and respiratory ailments. Picrosides anti-proliferative, anti-oxidant, anti-inflammatory and other pharmacological properties were evaluated in treating triple-negative breast cancer (TNBC). Picroside I and II were procured from Sigma-Aldrich and were analyzed for anti-cancer activity in triple-negative breast cancer (MDA-MB-231) cells. Cell viability was analyzed using MTT and trypan blue assays. Apoptosis was analyzed through DNA fragmentation and Annexin V/PI flow cytometric analysis. Wound healing and cell survival assays were employed to determine the inhibition of invasion capacity and anti-proliferative activity of picrosides in MDA-MB-231 cells. Measurement of intracellular ROS was studied through mitochondrial membrane potential assessment using DiOC6 staining for anti-oxidant activity of picrosides in MDA-MB-231 cells. Both Picroside I and II have shown decreased cell viability of MDA-MB-231 cells with increasing concentrations. IC50 values of 95.3 µM and 130.8 µM have been obtained for Picroside I and II in MDA-MB-231 cells. Early apoptotic phase have shown an increase of 20% (p < 0.05) with increasing concentrations (0, 50, 75, and 100 µM) of Picroside I and 15% (p < 0.05) increase with Picroside II. Decrease in mitochondrial membrane potential of 2-2.5-fold (p < 0.05) was observed which indicated decreased reactive oxygen species (ROS) generation with increasing concentrations of Picroside I and II. An increasing percentage of 70-80% (p < 0.05) cell population was arrested in G0/G1 phase of cell cycle after Picroside I and II treatment in cancer cells. Our results suggest that Picroside I and II possess significant anti-proliferative and anti-cancer activity which is mediated by inhibition of cell growth, decreased mitochondrial membrane potential, DNA damage, apoptosis, and cell cycle arrest. Therefore, Picroside I and II can be developed as a potential anti-cancer drug of future and further mechanistic studies are underway to identify the mechanism of anti-cancer potential.


Assuntos
Apoptose , Proliferação de Células , Cinamatos , Glucosídeos Iridoides , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Glucosídeos Iridoides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Cinamatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia
14.
FASEB J ; 38(10): e23696, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38787620

RESUMO

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays a crucial role in antitumor immunity. However, the role of MIF in influencing the tumor microenvironment (TME) and prognosis of triple-negative breast cancer (TNBC) remains to be elucidated. Using R, we analyzed single-cell RNA sequencing (scRNA-seq) data of 41 567 cells from 10 TNBC tumor samples and spatial transcriptomic data from two patients. Relationships between MIF expression and immune cell infiltration, clinicopathological stage, and survival prognosis were determined using samples from The Cancer Genome Atlas (TCGA) and validated in a clinical cohort using immunohistochemistry. Analysis of scRNA-seq data revealed that MIF secreted by epithelial cells in TNBC patients could regulate the polarization of macrophages into the M2 phenotype, which plays a key role in modulating the TME. Spatial transcriptomic data also showed that epithelial cells (tumor cells) and MIF were proximally located. Analysis of TCGA samples confirmed that tumor tissues of patients with high MIF expression were enriched with M2 macrophages and showed a higher T stage. High MIF expression was significantly associated with poor patient prognosis. Immunohistochemical staining showed high MIF expression was associated with younger patients and worse clinicopathological staging. MIF secreted by epithelial cells may represent a potential biomarker for the diagnosis and prognosis of TNBC and may promote TNBC invasion by remodeling the tumor immune microenvironment.


Assuntos
Biomarcadores Tumorais , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos , Macrófagos , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Feminino , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Prognóstico , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica
15.
PeerJ ; 12: e17360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737746

RESUMO

Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.


Assuntos
Benzopiranos , Neoplasias da Mama , Caderinas , Transição Epitelial-Mesenquimal , Proteína 1 Relacionada a Twist , Vimentina , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Caderinas/metabolismo , Vimentina/metabolismo , Vimentina/genética , Linhagem Celular Tumoral , Proteína 1 Relacionada a Twist/metabolismo , Proteína 1 Relacionada a Twist/genética , Benzopiranos/farmacologia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Células MCF-7 , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Invasividade Neoplásica/genética , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz/genética , Proteínas Nucleares
16.
Pharm Biol ; 62(1): 394-403, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38739003

RESUMO

CONTEXT: Tabersonine has been investigated for its role in modulating inflammation-associated pathways in various diseases. However, its regulatory effects on triple-negative breast cancer (TNBC) have not yet been fully elucidated. OBJECTIVE: This study uncovers the anticancer properties of tabersonine in TNBC cells, elucidating its role in enhancing chemosensitivity to cisplatin (CDDP). MATERIALS AND METHODS: After tabersonine (10 µM) and/or CDDP (10 µM) treatment for 48 h in BT549 and MDA-MB-231 cells, cell proliferation was evaluated using the cell counting kit-8 and colony formation assays. Quantitative proteomics, online prediction tools and molecular docking analyses were used to identify potential downstream targets of tabersonine. Transwell and wound-healing assays and Western blot analysis were used to assess epithelial-mesenchymal transition (EMT) phenotypes. RESULTS: Tabersonine demonstrated inhibitory effects on TNBC cells, with IC50 values at 48 h being 18.1 µM for BT549 and 27.0 µM for MDA-MB-231. The combined treatment of CDDP and tabersonine synergistically suppressed cell proliferation in BT549 and MDA-MB-231 cells. Enrichment analysis revealed that the proteins differentially regulated by tabersonine were involved in EMT-related signalling pathways. This combination treatment also effectively restricted EMT-related phenotypes. Through the integration of online target prediction and proteomic analysis, Aurora kinase A (AURKA) was identified as a potential downstream target of tabersonine. AURKA expression was reduced in TNBC cells post-treatment with tabersonine. DISCUSSION AND CONCLUSIONS: Tabersonine significantly enhances the chemosensitivity of CDDP in TNBC cells, underscoring its potential as a promising therapeutic agent for TNBC treatment.


Assuntos
Aurora Quinase A , Proliferação de Células , Cisplatino , Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Cisplatino/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Sinergismo Farmacológico , Alcaloides Indólicos/farmacologia
17.
BMC Womens Health ; 24(1): 285, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734591

RESUMO

BACKGROUND: Metaplastic breast carcinomas are a rare variant group of breast carcinomas. They are usually high-grade and triple-negative tumors. They often present with large primary tumor sizes. However, the involvement of axillary lymph nodes is infrequent at the time of diagnosis. Metaplastic breast carcinomas are associated with a worse prognosis and a poorer response to chemotherapy in comparison with other non-metaplastic triple-negative breast cancers. Up until this point, there are no specific treatment recommendations for metaplastic breast carcinomas beyond those intended for invasive breast cancer in general. CASE PRESENTATION: A 40-year-old woman complained of a palpable mass in her left axilla. On ultrasonography, the mass was solid, spindle-shaped, hypoechoic with regular borders, and exhibited decreased vascularity. At first, the mass appeared to be of a muscular origin. There was not any clinical nor ultrasonic evidence of a primary breast tumor. On magnetic resonance imaging, the axillary mass was a well-defined with regular borders, measuring 24 × 35 mm. Needle biopsy showed a spindle cell tumor with mild to moderate atypia. The subsequent surgical resection revealed a spindle cell neoplasm within a lymph node, favoring a metastatic origin of the tumor. The tumor cells lacked expression of estrogen, progesterone, and HER2 receptors. PET-CT scan indicated pathological uptake in the left breast. Accordingly, the patient was diagnosed with metaplastic breast cancer that had metastasized to the axillary lymph node. She commenced a combined chemotherapy regimen of doxorubicin and cyclophosphamide. After six treatment cycles, she underwent left modified radical mastectomy with axillary lymph node dissection. Pathological examination of the specimens revealed a total burn-out tumor in the breast due to excellent treatment response. There were no residual tumor cells. All dissected lymph nodes were free of tumor. At the one-year follow-up, the patient showed no signs of tumor recurrence. CONCLUSION: This report sheds light on a distinctive presentation of metaplastic breast carcinoma, emphasizing the need for vigilance in diagnosing this rare and aggressive breast cancer variant. In addition, the patient's remarkable response to chemotherapy highlights potential treatment avenues for metaplastic breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Adulto , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Axila , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Metástase Linfática , Metaplasia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
18.
Sci Rep ; 14(1): 11057, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744942

RESUMO

Circulating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically comprises thousands of gene expression reads per cell, which artificial intelligence algorithms can accurately analyze. This work presents machine-learning-based classifiers that differentiate CTCs from peripheral blood mononuclear cells (PBMCs) based on single cell RNA sequencing data. We developed four tree-based models and we trained and tested them on a dataset consisting of Smart-Seq2 sequenced data from primary tumor sections of breast cancer patients and PBMCs and on a public dataset with manually annotated CTC expression profiles from 34 metastatic breast patients, including triple-negative breast cancer. Our best models achieved about 95% balanced accuracy on the CTC test set on per cell basis, correctly detecting 133 out of 138 CTCs and CTC-PBMC clusters. Considering the non-invasive character of the liquid biopsy examination and our accurate results, we can conclude that our work has potential application value.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/sangue , Análise de Célula Única/métodos , Leucócitos Mononucleares/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/diagnóstico , Análise de Sequência de RNA/métodos , Algoritmos , Biomarcadores Tumorais/genética
19.
J Clin Invest ; 134(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747288

RESUMO

Triple-negative breast cancer (TNBC) presents a formidable challenge in oncology due to its aggressive phenotype and the immunosuppressive nature of its tumor microenvironment (TME). In this issue of the JCI, Zhu, Banerjee, and colleagues investigated the potential of targeting the OTU domain-containing protein 4 (OTUD4)/CD73 axis to mitigate immunosuppression in TNBC. They identified elevated CD73 expression as a hallmark of immunosuppression in TNBC. Notably, the CD73 expression was regulated by OTUD4-mediated posttranslational modifications. Using ST80, a pharmacologic inhibitor of OTUD4, the authors demonstrated the restoration of cytotoxic T cell function and enhanced efficacy of anti-PD-L1 therapy in preclinical models. These findings underscore the therapeutic potential of targeting the OTUD4/CD73 axis in TNBC.


Assuntos
5'-Nucleotidase , Processamento de Proteína Pós-Traducional , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Humanos , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , 5'-Nucleotidase/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Microambiente Tumoral/imunologia , Feminino , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Animais
20.
Mol Cancer ; 23(1): 102, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755678

RESUMO

Peptides and proteins encoded by noncanonical open reading frames (ORFs) of circRNAs have recently been recognized to play important roles in disease progression, but the biological functions and mechanisms of these peptides and proteins are largely unknown. Here, we identified a potential coding circular RNA, circTRIM1, that was upregulated in doxorubicin-resistant TNBC cells by intersecting transcriptome and translatome RNA-seq data, and its expression was correlated with clinicopathological characteristics and poor prognosis in patients with TNBC. CircTRIM1 possesses a functional IRES element along with an 810 nt ORF that can be translated into a novel endogenously expressed protein termed TRIM1-269aa. Functionally, we demonstrated that TRIM1-269aa, which is involved in the biological functions of circTRIM1, promoted chemoresistance and metastasis in TNBC cells both in vitro and in vivo. In addition, we found that TRIM1-269aa can be packaged into exosomes and transmitted between TNBC cells. Mechanistically, TRIM1-269aa enhanced the interaction between MARCKS and calmodulin, thus promoting the calmodulin-dependent translocation of MARCKS, which further initiated the activation of the PI3K/AKT/mTOR pathway. Overall, circTRIM1, which encodes TRIM1-269aa, promoted TNBC chemoresistance and metastasis by enhancing MARCKS translocation and PI3K/AKT/mTOR activation. Our investigation has yielded novel insights into the roles of protein-coding circRNAs and supported circTRIM1/TRIM1-269aa as a novel promising prognostic and therapeutic target for patients with TNBC.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Circular , Serina-Treonina Quinases TOR , Neoplasias de Mama Triplo Negativas , Humanos , RNA Circular/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Feminino , Camundongos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Transdução de Sinais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...