Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 251(6): 108, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32462472

RESUMO

MAIN CONCLUSION: Although exposure to low frequency electromagnetic radiation is harmful to plants, LF-EM irradiated Nerium oleander seedlings exhibited enhanced development and growth, probably taking advantage of defined structural leaf deformations. Currently, evidence supports the undesirable, often destructive impact of low frequency electromagnetic (LF-EM) radiation on plants. The response of plants to LF-EM radiation often entails induction in the biosynthesis of secondary metabolites, a subject matter that is well documented. Nerium oleander is a Mediterranean plant species, which evolved remarkable resistance to various environmental stress conditions. In the current investigation, cultivated N. oleander plants, following their long-term exposure to LF-EM radiation, exhibited major structural modifications as the flattening of crypts, the elimination of trichomes and the reduction of the layers of the epidermal cells. These changes co-existed with an oxidative stress response manifested by a significant increase in reactive oxygen species at both the roots and the above ground parts, a decline in the absorbance of light by photosynthetic pigments and the substantially increased biosynthesis of L-Dopa decarboxylase (DDC), an enzyme catalyzing the production of secondary metabolites that alleviate stress. The exposed plants exhibited greater primary plant productivity, despite a manifested photosynthetic pigment limitation and the severe oxidative stress. This unique response of N. oleander to severe abiotic stress conditions may be owed to the advantage offered by a structural change consistent to an easier diffusion of CO2 within the leaves. A major plant response to an emerging "pollutant" was documented.


Assuntos
Nerium/fisiologia , Fotossíntese/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Nerium/efeitos da radiação , Estresse Oxidativo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Radiação não Ionizante
2.
Environ Geochem Health ; 42(8): 2345-2360, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31428945

RESUMO

Phytostabilization is a green, cost-effective technique for mine rehabilitation and ecological restoration. In this study, the phytostabilization capacity of Erica australis L. and Nerium oleander L. was assessed in the climatic and geochemical context of the Riotinto mining district, southwestern Spain, where both plant species colonize harsh substrates of mine wastes and contaminated river banks. In addition to tolerating extreme acidic conditions (up to pH 3.36 for E. australis), both species were found to grow on substrates very poor in bioavailable nutrients (e.g., N and P) and highly enriched with potentially phytotoxic elements (e.g., Cu, Cd, Pb, S). The selective root absorption of essential elements and the sequestration of potentially toxic elements in the root cortex are the main adaptations that allow the studied species to cope in very limiting edaphic environments. Being capable of a tight elemental homeostatic control and tolerating extreme acidic conditions, E. australis is the best candidate for use in phytostabilization programs, ideally to promote early stages of colonization, improve physical and chemical conditions of substrates and favor the establishing of less tolerant species, such as N. oleander.


Assuntos
Recuperação e Remediação Ambiental/métodos , Ericaceae/fisiologia , Nerium/fisiologia , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Ericaceae/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Metais/análise , Metais/farmacocinética , Metais/toxicidade , Mineração , Nerium/efeitos dos fármacos , Nitrogênio/análise , Nitrogênio/farmacocinética , Fósforo/análise , Fósforo/farmacocinética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Rios , Solo/química , Poluentes do Solo/análise , Espanha , Especificidade da Espécie , Distribuição Tecidual
3.
Photosynth Res ; 130(1-3): 427-444, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27220729

RESUMO

Leaf development is influenced by almost all the prevailing environmental conditions as well as from the conditions at the time of bud formation. Furthermore, the growth form of a plant determines the leaf longevity and subsequently the investment in biomass and the internal structure of the mesophyll. Therefore, photosynthetic traits of a growing leaf, though, partly predetermined, should also acclimate to temporal changes during developmental period. In addition, the age of the plant can affect photosynthesis of the growing leaf, yet, in the majority of studies, the age is associated to the size of the plant. To test if the reproductive status of the plant affects the time kinetics of the photosynthetic capacity of a growing leaf and the relative contribution of the plants' growth form to the whole procedure, field measurements were conducted in juveniles (prereproductive individuals) and adults (fully reproductive individuals) of an evergreen sclerophyllous shrub (Nerium oleander), a semi-deciduous dimorphic shrub (Phlomis fruticosa), and a winter deciduous tree with pre-leafing flowering (Cercis siliquastrum). PSII structural and functional integrity was progressively developed in all species, but already completed, only some days after leaf expansion in P. fruticosa. Developing leaf as well as fully developed leaf in adults of C. siliquastrum showed enhanced relative size of the pool of final PSI electron acceptors. Photosynthetic traits between juveniles and adults of P. fruticosa were similar, though the matured leaf of adults exhibited lower transpiration rates and improved water-use efficiency than that of juveniles. Adults of the evergreen shrub attained higher CO2 assimilation rate than juveniles in matured leaf which can be attributed to higher electron flow devoted to carboxylation, and lower photorespiration rate. The reproductive phase of the plant seemed to be involved in modifications of the PSII and PSI functions of the deciduous tree, in carboxylation and photorespiration traits of the evergreen shrub, and in water conductance efficiency of the semi-deciduous shrub. However, it is interesting, that regardless of the growth form of the plant and the prospective leaf longevity of the developing leaf, adults need to support flowering outmatch juveniles, in terms of photosynthesis.


Assuntos
Fabaceae/crescimento & desenvolvimento , Nerium/crescimento & desenvolvimento , Phlomis/crescimento & desenvolvimento , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Clorofila/análise , Clorofila/fisiologia , Fabaceae/fisiologia , Fluorescência , Região do Mediterrâneo , Nerium/fisiologia , Nitrogênio/análise , Phlomis/fisiologia , Folhas de Planta/química , Folhas de Planta/fisiologia , Água/análise
4.
Ying Yong Sheng Tai Xue Bao ; 27(10): 3114-3122, 2016 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-29726135

RESUMO

The leaves of four evergreen plants, i.e., Fatsia japonica, Nerium indicum, Mahonia bealei and Acer cinnamomifolium were used as the experimental materials. By measuring the changes of in vitro leaf in soluble sugar, soluble protein, free proline, POD activity, chlorophyll content and relative electrolytic conductivity under aritificial simulated low temperature, combining the measurements of SPAD, leaf surface features and anatomical changes in organizational structure in the process of natural wintering, the cold resistance of four evergreen tree species was evaluated comprehensively. The results showed that in the process of artificial low temperature stress, the chlorophyll content of the leaves of four evergreen species decreased, the content of soluble protein pea-ked at -20 ℃, and the soluble sugar, free proline, POD activity and relative electrolytic conductivity showed an overall upward trend. The semilethal temperatures of four species were -8.0, -13.4, -19.4 and -14.8 ℃, respectively. During the winter, the leaf SPAD of the four species changed markedly, reflecting that the change of relative chlorophyll content was related to the change of temperature. Meanwhile, the leaf thickness, cutin layer thickness, stockade tissue thickness and tightness of four species increased and the plasmolysis occurred thereafter. Also the content of starch grains and calcium oxalate cluster crystal increased. The typical stomatal pits and the intensive non-glandular trichome within the pits of N. indicum and the sclerenchyma of M. Bealei could improve the cold resistance of plants to some extent. In addition, the phenomena like the breakage of wax layer in leaf surface, the fracture of epidermal hair and the deformation of palisade tissue indicated that plants were damaged to a certain extent by low temperature.


Assuntos
Temperatura Baixa , Folhas de Planta/fisiologia , Árvores/fisiologia , Acer/fisiologia , Araliaceae/fisiologia , Clorofila/análise , Mahonia/fisiologia , Nerium/fisiologia , Folhas de Planta/química , Estações do Ano
5.
Plant Sci ; 185-186: 218-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22325884

RESUMO

Variable indirect photosynthetic rate (P(n)) responses occur on injured leaves after insect herbivory. It is important to understand factors that influence indirect P(n) reductions after injury. The current study examines the relationship between gas exchange and chlorophyll a fluorescence parameters with injury intensity (% single leaf tissue removal) from clipping or Spodoptera eridania Stoll (Noctuidae) herbivory on Nerium oleander L. (Apocynaceae). Two experiments showed intercellular [CO(2)] increases but P(n) and stomatal conductance reductions with increasing injury intensity, suggesting non-stomatal P(n) limitation. Also, P(n) recovery was incomplete at 3d post-injury. This is the first report of a negative exponential P(n) impairment function with leaf injury intensity to suggest high N. oleander leaf sensitivity to indirect P(n) impairment. Negative linear functions occurred between most other gas exchange and chlorophyll a fluorescence parameters with injury intensity. The degree of light harvesting impairment increased with injury intensity via lower (1) photochemical efficiency indicated lower energy transfer efficiency from reaction centers to PSII, (2) photochemical quenching indicated reaction center closure, and (3) electron transport rates indicated less energy traveling through PSII. Future studies can examine additional mechanisms (mesophyll conductance, carbon fixation, and cardenolide induction) to cause N. oleander indirect leaf P(n) reductions after injury.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Nerium/fisiologia , Fotossíntese/fisiologia , Spodoptera/fisiologia , Animais , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Transporte de Elétrons , Fluorescência , Herbivoria , Luz , Nerium/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Ferimentos e Lesões
6.
Proc Natl Acad Sci U S A ; 107(30): 13372-7, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20624981

RESUMO

The terrestrial hydrological cycle is strongly influenced by transpiration--water loss through the stomatal pores of leaves. In this report we present studies showing that the energy content of radiation absorbed by the leaf influences stomatal control of transpiration. This observation is at odds with current concepts of how stomata sense and control transpiration, and we suggest an alternative model. Specifically, we argue that the steady-state water potential of the epidermis in the intact leaf is controlled by the difference between the radiation-controlled rate of water vapor production in the leaf interior and the rate of transpiration. Any difference between these two potentially large fluxes is made up by evaporation from (or condensation on) the epidermis, causing its water potential to pivot around this balance point. Previous work established that stomata in isolated epidermal strips respond by opening with increasing (and closing with decreasing) water potential. Thus, stomatal conductance and transpiration rate should increase when there is condensation on (and decrease when there is evaporation from) the epidermis, thus tending to maintain homeostasis of epidermal water potential. We use a model to show that such a mechanism would have control properties similar to those observed with leaves. This hypothesis provides a plausible explanation for the regulation of leaf and canopy transpiration by the radiation load and provides a unique framework for studies of the regulation of stomatal conductance by CO(2) and other factors.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Dióxido de Carbono/metabolismo , Helianthus/metabolismo , Helianthus/fisiologia , Luz , Modelos Biológicos , Nerium/metabolismo , Nerium/fisiologia , Fotossíntese/efeitos da radiação , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Árvores/metabolismo , Água/metabolismo , Xanthium/metabolismo , Xanthium/fisiologia
7.
J Environ Health ; 72(8): 8-15, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20420048

RESUMO

As noise pollution is becoming more and more serious, many researchers are studying the noise attenuation effect provided by plants. This article examines six kinds of evergreens as research subjects so as to compare the different arrangements and densities of plants and their effect on noise attenuation. The authors studied the relationship between each of the plant's characteristics (the characteristics include leaf area, leaf fresh weight, leaf tactility, and leaf shape) and their average relative noise attenuation (deltaLAep). The authors then generated the noise-reducing spectrum of the six plants. The results show that there is a notable difference in noise-reducing effects for low frequency and high frequency (p < .05) when the plants are arranged differently. Also, every plant demonstrates a specific noise-reducing spectrum. By quantifying noise attenuation characteristics and abilities of plants, the authors combine noise attenuation species to achieve the mutual benefits of plant varieties and establish an ecotypic sound barrier model with effective density and arrangement.


Assuntos
Poluição Ambiental/prevenção & controle , Ruído/prevenção & controle , Folhas de Planta/fisiologia , Análise de Variância , Cedrus/fisiologia , China , Simulação por Computador , Ecossistema , Nerium/fisiologia , Photinia , Plantas , Sasa/fisiologia , Espectrografia do Som , Viburnum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...