Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Headache ; 59(9): 1659-1661, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31508812

RESUMO

Trigeminal-targeted treatments (TTTs), the most specific and selective therapeutic migraine approach to date, are effective in approximately 60% of patients regardless of treatment type or mechanism, at least if used alone. Sixty percent is also the proportion of migraineurs who develop migraine-like episodes following experimental intravenous administration of trigeminal neuropeptides and roughly 60% is the percentage of patients with a unilateral migraine tracing the area of cutaneous distribution of the trigeminal ophthalmic branch. Hence, mechanisms other than the trigeminovascular activation are probably involved in the 40% of migraineurs who do not respond to TTTs. A closer cooperation between clinical and basic neuroscientists is needed to explore migraine models because only a careful appraisal of migraine endophenotypes may help to unravel their underlying multifaceted pathophysiological machinery.


Assuntos
Transtornos de Enxaqueca/terapia , Doenças do Nervo Trigêmeo/terapia , Sistemas de Liberação de Medicamentos , Humanos , Transtornos de Enxaqueca/etiologia , Transtornos de Enxaqueca/fisiopatologia , Neuropeptídeos , Gânglio Trigeminal/fisiopatologia , Nervo Trigêmeo/química , Nervo Trigêmeo/efeitos dos fármacos , Nervo Trigêmeo/fisiopatologia , Doenças do Nervo Trigêmeo/complicações , Doenças do Nervo Trigêmeo/fisiopatologia , Triptaminas/uso terapêutico
2.
Lab Invest ; 99(2): 210-230, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30413814

RESUMO

In order to understand the pathobiology of neurotrophic keratopathy, we established a mouse model by coagulating the first branch of the trigeminal nerve (V1 nerve). In our model, the sensory nerve in the central cornea disappeared and remaining fibers were sparse in the peripheral limbal region. Impaired corneal epithelial healing in the mouse model was associated with suppression of both cell proliferation and expression of stem cell markers in peripheral/limbal epithelium as well as a reduction of transient receptor potential vanilloid 4 (TRPV4) expression in tissue. TRPV4 gene knockout also suppressed epithelial repair in mouse cornea, although it did not seem to directly modulate migration of epithelium. In a co-culture experiment, TRPV4-introduced KO trigeminal ganglion upregulated nerve growth factor (NGF) in cultured corneal epithelial cells, but ganglion with a control vector did not. TRPV4 gene introduction into a damaged V1 nerve rescues the impairment of epithelial healing in association with partial recovery of the stem/progenitor cell markers and upregulation of cell proliferation and of NGF expression in the peripheral/limbal epithelium. Gene transfer of TRPV4 did not accelerate the regeneration of nerve fibers. Sensory nerve TRPV4 is critical to maintain stemness of peripheral/limbal basal cells, and is one of the major mechanisms of homeostasis maintenance of corneal epithelium.


Assuntos
Epitélio Corneano , Células-Tronco , Canais de Cátion TRPV/metabolismo , Nervo Trigêmeo/metabolismo , Cicatrização/fisiologia , Animais , Células Cultivadas , Epitélio Corneano/citologia , Epitélio Corneano/lesões , Epitélio Corneano/metabolismo , Técnicas de Inativação de Genes , Camundongos , Células-Tronco/citologia , Células-Tronco/metabolismo , Canais de Cátion TRPV/genética , Nervo Trigêmeo/química
3.
Ann Anat ; 218: 141-155, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29680777

RESUMO

Stromal cells/telocytes (SCs/TCs) were recently described in the human adult trigeminal ganglion (TG). As some markers are equally expressed in SCs/TCs and endothelial cells, we hypothesized that a subset of the TG SCs/TCs is in fact represented by endothelial progenitor cells of a myelomonocytic origin. This study aimed to evaluate whether the interstitial cells of the human adult TG correlate with the myelomonocytic lineage. We used primary antibodies for c-erbB2/HER-2, CD31, nestin, CD10, CD117/c-kit, von Willebrand factor (vWF), CD34, Stro-1, CD146, α-smooth muscle actin (α-SMA), CD68, VEGFR-2 and cytokeratin 7 (CK7). The TG pial mesothelium and subpial vascular microstroma expressed c-erbB2/HER-2, CK7 and VEGFR-2. SCs/TCs neighbouring the neuronoglial units (NGUs) also expressed HER-2, which suggests a pial origin. These cells were also positive for CD10, CD31, CD34, CD68 and nestin. Endothelial cells expressed CD10, CD31, CD34, CD146, nestin and vWF. We also found vasculogenic networks with spindle-shaped and stellate endothelial progenitors expressing CD10, CD31, CD34, CD68, CD146 and VEGFR-2. Isolated mesenchymal stromal cells expressed Stro-1, CD146, CK7, c-kit and nestin. Pericytes expressed α-SMA and CD146. Using transmission electron microscopy (TEM), we found endothelial-specific Weibel-Palade bodies in spindle-shaped stromal progenitors. Our study supports the hypothesis that an intrinsic vasculogenic niche potentially involved in microvascular maintenance and repair might be present in the human adult trigeminal ganglion and that it might be supplied by either the pial mesothelium or the bone marrow niche.


Assuntos
Células Endoteliais/ultraestrutura , Células-Tronco/ultraestrutura , Células Estromais/ultraestrutura , Telócitos/ultraestrutura , Gânglio Trigeminal/ultraestrutura , Biomarcadores/análise , Células Endoteliais/química , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Receptor ErbB-2/química , Células-Tronco/química , Células Estromais/química , Telócitos/química , Gânglio Trigeminal/anatomia & histologia , Gânglio Trigeminal/química , Nervo Trigêmeo/química , Nervo Trigêmeo/ultraestrutura , Corpos de Weibel-Palade/química , Corpos de Weibel-Palade/ultraestrutura
4.
Bioorg Med Chem Lett ; 27(19): 4521-4524, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28888821

RESUMO

The purpose of this study was to synthesize a new positron emission tomography radiotracer, N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-[11C]carboxamide ([11C]BCTC, [11C]1), and assess its in vivo binding to the transient receptor potential vanilloid subfamily member 1 (TRPV1) receptor in mice. [11C]BCTC was synthesized by reacting the hydrochloride of 4-tertiarybutylaniline (2·HCl) with [11C]phosgene ([11C]COCl2) to give isocyanate [11C]4, followed by reaction with 4-(3-chloropyridin-2-yl)tetrahydropyrazine (3). [11C]BCTC was obtained at a 16-20% radiochemical yield, based on the cyclotron-produced [11C]CO2 (decay-corrected to the end of bombardment), with >98% radiochemical purity and 65-110GBq/µmol specific activity at the end of synthesis. An ex vivo biodistribution study in mice confirmed the specific binding of [11C]BCTC to TRPV1 in the trigeminal nerve, which is a tissue with high TRPV1 expression.


Assuntos
Pirazinas/farmacocinética , Piridinas/farmacocinética , Canais de Cátion TRPV/química , Nervo Trigêmeo/química , Animais , Sítios de Ligação/efeitos dos fármacos , Isótopos de Carbono , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Pirazinas/síntese química , Pirazinas/química , Piridinas/síntese química , Piridinas/química , Traçadores Radioativos , Relação Estrutura-Atividade , Canais de Cátion TRPV/biossíntese , Distribuição Tecidual
5.
J Chem Neuroanat ; 43(2): 103-11, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22119519

RESUMO

Neurons in the rostral ventromedial medulla (RVM) are thought to modulate nociceptive transmission via projections to spinal and trigeminal dorsal horns. The cellular substrate for this descending modulation has been studied with regard to projections to spinal dorsal horn, but studies of the projections to trigeminal dorsal horn have been less complete. In this study, we combined anterograde tracing from RVM with immunocytochemical detection of the GABAergic synthetic enzyme, GAD67, to determine if the RVM sends inhibitory projections to trigeminal dorsal horn. We also examined the neuronal targets of this projection using immunocytochemical detection of NeuN. Finally, we used electron microscopy to verify cellular targets. We compared projections to both trigeminal and spinal dorsal horns. We found that RVM projections to both trigeminal and spinal dorsal horn were directed to postsynaptic profiles in the dorsal horn, including somata and dendrites, and not to primary afferent terminals. We found that RVM projections to spinal dorsal horn were more likely to contact neuronal somata and were more likely to contain GAD67 than projections from RVM to trigeminal dorsal horn. These findings suggest that RVM neurons send predominantly GABAergic projections to spinal dorsal horn and provide direct input to postsynaptic neurons such as interneurons or ascending projection neurons. The RVM projection to trigeminal dorsal horn is more heavily targeted to dendrites and is only modestly GABAergic in nature. These anatomical features may underlie differences between trigeminal and spinal dorsal horns with regard to the degree of inhibition or facilitation evoked by RVM stimulation.


Assuntos
Química Encefálica/fisiologia , Bulbo/química , Bulbo/fisiologia , Células do Corno Posterior/química , Células do Corno Posterior/fisiologia , Tratos Piramidais/química , Tratos Piramidais/fisiologia , Nervo Trigêmeo/química , Animais , Química Encefálica/genética , Marcação de Genes/métodos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/fisiologia , Masculino , Bulbo/ultraestrutura , Células do Corno Posterior/ultraestrutura , Tratos Piramidais/ultraestrutura , Ratos , Ratos Sprague-Dawley , Medula Espinal/química , Medula Espinal/fisiologia , Medula Espinal/ultraestrutura , Nervo Trigêmeo/fisiologia , Nervo Trigêmeo/ultraestrutura
6.
ACS Chem Neurosci ; 2(1): 38-50, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22778855

RESUMO

The capacity of cutaneous, including trigeminal endings, to detect chemicals is known as chemesthesis or cutaneous chemosensation. This sensory function involves the activation of nociceptor and thermoreceptor endings and has a protective or defensive function, as many of these substances are irritants or poisonous. However, humans have also developed a liking for the distinct sharpness or pungency of many foods, beverages, and spices following activation of the same sensory afferents. Our understanding of the cellular and molecular mechanisms of chemosensation in the trigeminal system has experienced enormous progress in the past decade, following the cloning and functional characterization of several ion channels activated by physical and chemical stimuli. This brief review attempts to summarize our current knowledge in this field, including a functional description of various sensory channels, especially TRP channels, involved in trigeminal chemosensitivy. Finally, some of these new findings are discussed in the context of the pathophysiology of trigeminal chemosensation, including pain, pruritus, migraine, cough, airway inflammation, and ophthalmic diseases.


Assuntos
Células Quimiorreceptoras/fisiologia , Dor/fisiopatologia , Paladar/fisiologia , Tato/fisiologia , Nervo Trigêmeo/fisiologia , Animais , Células Quimiorreceptoras/química , Humanos , Canais de Cátion TRPV/fisiologia , Gânglio Trigeminal/química , Gânglio Trigeminal/fisiologia , Nervo Trigêmeo/química
7.
Anat Rec (Hoboken) ; 293(6): 1070-80, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20186959

RESUMO

Distribution of three soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins, syntaxin-1, synaptosomal-associated protein of 25 kDa (SNAP-25), and vesicle-associated membrane protein-2 (VAMP-2), was examined in dental pulp and periodontal ligament of the rat incisor. In the trigeminal ganglion, syntaxin-1 and SNAP-25 immunoreactivity was predominately detected in medium- to large-sized neurons. Most syntaxin-1 immunoreactive neurons expressed SNAP-25. In contrast, VAMP-2 was localized in small- to medium-sized neurons and in slender-shaped cells surrounding SNAP-25-immunopositive neurons. When the inferior alveolar nerve, one of the mandibular nerve branches innervating the dental pulp and periodontal ligament, was ligated, SNARE proteins accumulated at the site proximal to the ligation. In the incisor dental pulp, all nerve fibers displayed immunoreactivity for syntaxin-1, SNAP-25, and VAMP-2. In the periodontal ligament of the incisor, almost all nerve fibers displayed both syntaxin-1 and SNAP-25 immunoreactivity, but lacked VAMP-2 immunoreactivity. SNAP-25 protein expression was localized around the vesicle membranes at the axon terminal of the periodontal mechanoreceptors. These present data suggest that these three SNARE proteins are synthesized at the trigeminal ganglion, transported centrally and peripherally, and expressed in sensory endings where apparent synapses are not present. Because those proteins participate in docking and exocytosis of synapse vesicles in the central nervous system, they might also contribute to vesicle exocytosis at receptive fields where apparent synapses are not present.


Assuntos
Polpa Dentária/química , Polpa Dentária/metabolismo , Incisivo/química , Incisivo/metabolismo , Ligamento Periodontal/química , Ligamento Periodontal/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Animais , Polpa Dentária/inervação , Imuno-Histoquímica , Incisivo/inervação , Masculino , Fibras Nervosas/química , Fibras Nervosas/metabolismo , Fibras Nervosas/ultraestrutura , Ligamento Periodontal/inervação , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas SNARE/biossíntese , Células Receptoras Sensoriais/química , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/ultraestrutura , Sinapses/química , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteína 25 Associada a Sinaptossoma/biossíntese , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/genética , Sintaxina 1/biossíntese , Sintaxina 1/química , Sintaxina 1/genética , Nervo Trigêmeo/química , Nervo Trigêmeo/metabolismo , Nervo Trigêmeo/ultraestrutura , Proteína 2 Associada à Membrana da Vesícula/biossíntese , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/genética
8.
Curr Biol ; 18(15): 1133-7, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18682213

RESUMO

Somatosensory neurons in teleosts and amphibians are sensitive to thermal, mechanical, or nociceptive stimuli [1, 2]. The two main types of such cells in zebrafish--Rohon-Beard and trigeminal neurons--have served as models for neural development [3-6], but little is known about how they encode tactile stimuli. The hindbrain networks that transduce somatosensory stimuli into a motor output encode information by using very few spikes in a small number of cells [7], but it is unclear whether activity in the primary receptor neurons is similarly efficient. To address this question, we manipulated the activity of zebrafish neurons with the light-activated cation channel, Channelrhodopsin-2 (ChR2) [8, 9]. We found that photoactivation of ChR2 in genetically defined populations of somatosensory neurons triggered escape behaviors in 24-hr-old zebrafish. Electrophysiological recordings from ChR2-positive trigeminal neurons in intact fish revealed that these cells have extremely low rates of spontaneous activity and can be induced to fire by brief pulses of blue light. Using this technique, we find that even a single action potential in a single sensory neuron was at times sufficient to evoke an escape behavior. These results establish ChR2 as a powerful tool for the manipulation of neural activity in zebrafish and reveal a degree of efficiency in coding that has not been found in primary sensory neurons.


Assuntos
Reação de Fuga , Potenciais Somatossensoriais Evocados , Canais Iônicos/fisiologia , Neurônios Aferentes/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Eletrofisiologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/fisiologia , Canais Iônicos/metabolismo , Luz , Neurônios Aferentes/química , Neurônios Aferentes/metabolismo , Estimulação Luminosa , Nervo Trigêmeo/química , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
10.
Arch Oral Biol ; 51(4): 273-81, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16266688

RESUMO

The control of pain perception is a challenge in clinical dentistry, most prominent during tooth pulp inflammation. The tooth pulp is a well-defined target, and is densely supplied by a sensory trigeminal innervation. Opioids are signaling molecules that are suggested to participate in pain perception. Here we analysed the presence of delta opioid receptor (DOR) in trigeminal neurons innervating the tooth pulp of rat molars. Immunohistochemical and ultrastructural analysis revealed that DOR was identified in peripheral nerves in the molar dental pulp, both in the root and the coronal pulpal parts, with branching in the highly innervated subodontoblast layer. DOR was localised in about one third of all the trigeminal dental neurons, identified by means of retrograde neuronal transport of fluorogold (FG) from the dental pulp. Of the DOR-labeled neurons, nearly all were small and medium-sized (147.5-1,810.2 microm(2), mean 749.1 +/- 327.3 microm(2)). Confocal microscopy confirmed that DOR-immunoreactivity was distributed as granules in the neuronal cytoplasm. Approximately 70% of the DOR-immunoreactive neurons were also immunopositive for vanilloid receptor 1 (TRPV1). Ultrastructural analysis demonstrated DOR-immunoreactivity in the unmyelinated and in some of the myelinated nerve fibers in the dental pulp. These results indicate that DOR may influence the function in a subset of small and medium-sized trigeminal sensory neurons supporting the tooth, which are mainly known for their ability to mediate nociceptive stimuli. Agonists, acting on DOR, may thus have an influence on a subpopulation of nociceptive neurons supporting the rat tooth.


Assuntos
Polpa Dentária/inervação , Neurônios/química , Receptores Opioides delta/análise , Nervo Trigêmeo/química , Animais , Contagem de Células , Tamanho Celular , Citoplasma/química , Feminino , Dente Molar/inervação , Neurônios/ultraestrutura , Ratos , Ratos Endogâmicos , Canais de Cátion TRPV/análise , Nervo Trigêmeo/ultraestrutura
11.
Chem Senses ; 30(8): 627-42, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16141291

RESUMO

We explored the influence of methodological and chemical parameters on the detection of nasal chemesthesis (i.e., trigeminal stimulation) evoked by volatile organic compounds (VOCs). To avoid odor biases, chemesthesis was probed via nasal pungency detection in anosmics and via nasal localization (i.e., lateralization) in normosmics, in both cases using forced-choice procedures. In the experiments with anosmics, 12 neat VOCs were selected based on previous reports of lack of chemesthetic response. Although none of the VOCs reached 100% detection, detectability and confidence of detection were higher when using a glass vessel system adapted with nosepieces to fit the nostrils tightly than when using wide-mouth glass jars. Half the stimuli were detected well above chance and half were not. When the latter were tested again after being heated to 37 degrees C, that is, body temperature (from room temperature, 23 degrees C), to increase their vapor concentration, only one, octane, significantly increased its detectability. Chemesthesis gauged with normosmics mirrored that with anosmics. Gas chromatography measurements showed that, even at 23 degrees C, the saturated vapor concentrations of the undetected stimuli, except vanillin, were well above the respective calculated nasal pungency threshold (NPT) from an equation that, in the past, had accurately described and predicted NPTs. We conclude that, except for octane and perhaps vanillin, the failure of the other four VOCs to precipitate nasal chemesthesis rests on a chemical-structural limitation, for example, the molecules lack a key property to fit a receptor pocket, rather than on a concentration limitation, for example, the vapor concentration is too low to reach a threshold value.


Assuntos
Cavidade Nasal/efeitos dos fármacos , Transtornos do Olfato/fisiopatologia , Compostos Orgânicos/farmacologia , Nervo Trigêmeo/química , Nervo Trigêmeo/fisiologia , Adulto , Idoso , Feminino , Temperatura Alta , Humanos , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/química , Transtornos do Olfato/diagnóstico , Transtornos do Olfato/etiologia , Limiar Sensorial , Estimulação Química , Nervo Trigêmeo/efeitos dos fármacos , Volatilização
12.
Pain ; 114(1-2): 257-65, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15733652

RESUMO

In order to examine the effect of estrogen on facial pain, we first compared the face-rubbing evoked by a formalin injection in the lip of aromatase-knockout (ArKO) mice, lacking endogenous estrogen production, 17 beta-estradiol-treated ArKO mice (ArKO-E2) and wild-type (WT) littermates. During the 'acute' phase of pain the time spent rubbing was similar in the three groups, whereas during the following 'interphase' and the second phase of pain, grooming was increased in ArKO mice. Estradiol-treatment restored a behaviour similar to WT group. To better understand estrogens modulation on pain processes, we examined changes in 5-HT and CGRP innervations of trigeminal nucleus caudalis (TNC) in ArKO, ArKO-E2 and WT groups sacrificed during the interphase. Whereas serotonin and CGRP immunoreactivities were comparable in WT and ArKO non-injected control groups, our data showed that 9 min after formalin injection, the density of serotoninergic terminals increased significantly in WT, but not in ArKO mice, while that of CGRP-immunoreactive fibers was lower in WT than in ArKO mice on the injected side. Estradiol-treatment only partially reversed these changes in ArKO-E2 mice. We conclude that estrogen deprivation in ArKO mice can be responsible for increased nociceptive response and that it is accompanied by transmitter changes favouring pro- over anti-nociceptive mechanisms in TNC during interphase of the formalin model. That estradiol-treatment completely reverses the behavioural abnormality suggests that estrogens absence produces chiefly functional activation-dependent changes. However, the fact that the immunohistochemical abnormalities were not totally normalized by estradiol-treatment suggested that some permanent developmental alterations may occur in ArKO mice.


Assuntos
Aromatase/deficiência , Estrogênios/deficiência , Medição da Dor/métodos , Dor/metabolismo , Nervo Trigêmeo/metabolismo , Animais , Aromatase/genética , Peptídeo Relacionado com Gene de Calcitonina/análise , Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Estradiol/farmacologia , Estradiol/uso terapêutico , Estrogênios/genética , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Dor/tratamento farmacológico , Dor/psicologia , Medição da Dor/efeitos dos fármacos , Nervo Trigêmeo/química , Nervo Trigêmeo/efeitos dos fármacos
13.
Arch Histol Cytol ; 68(4): 321-35, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16477151

RESUMO

The prenatal development of neural circuits for rhythmical oral-motor behaviors used for feeding is essential for the survival of the newborn mammal. The N-methyl-D-aspartate (NMDA) receptor plays a critical role in brainstem circuits underlying postnatal oral-motor behaviors. To understand a role for the NMDA receptor in the emergence of sucking behavior we conducted physiological and immunohistochemical experiments using fetal rats. Physiology experiments examined the development of the NMDA dose response of the brainstem circuit responsible for generating rhythmical trigeminal activity by recording trigeminal motor outputs using an in vitro preparation. The high dose of NMDA agonist bath application affected the mean cycle duration of rhythmical trigeminal activity (RTA) at both embryonic day (E) 18-19 and E20-21 in comparison with standard concentration of NMDA agonist. NMDA receptor immunohistochemistry studies, using antibodies directed against subunits NR1, NR2A, NR2B, NR3A and NR3B were performed to determine the prenatal regulation of NMDA subunits in trigeminal motoneurons (Mo5), and mesencephalic trigeminal neurons (Me5) between E17 to E20. In Mo5, NR1, NR2A, NR2B and NR3A immunoreactivity was observed throughout the time frame sampled. NR3B immunoreactivity was not observed in Mo5 or Me5. In Mo5, there was a significant decrease in the percentage of NR2B immunoreactive neurons between E17 and E20, and a concurrent increase in the NR2A/NR2B ratio between E17 and E20. In Me5, NR1, NR2A and NR3A immunoreactivity was observed throughout the time frame sampled; a significant decrease in the percentage of NR2A immunoreactive neurons between E17 and E20, and NR3A immunoreactive neurons between E17 and E18 occurred. The timing of subunit changes between E17 and E18 is coincident with the prenatal emergence of rhythmical jaw movements, and in vitro rhythmical trigeminal activity, shown in earlier studies. Our data suggest that NMDA receptor plays an important role in the development and function of prenatal oral-motor circuits.


Assuntos
Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/fisiologia , Nervo Trigêmeo/química , Nervo Trigêmeo/embriologia , Animais , Feminino , Imunofluorescência , Mesencéfalo/química , Mesencéfalo/citologia , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , N-Metilaspartato/fisiologia , Subunidades Proteicas/biossíntese , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética , Nervo Trigêmeo/citologia , Nervo Trigêmeo/metabolismo
14.
Brain Behav Evol ; 64(4): 207-22, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15319552

RESUMO

An in vitro brain stem preparation from turtles exhibits a neural correlate of eyeblink classical conditioning during pairing of auditory (CS) and trigeminal (US) nerve stimulation while recording from the abducens nerve. The premotor neuronal circuits controlling abducens nerve-mediated eyeblinks in turtles have not been previously described, which is a necessary step for understanding cellular mechanisms of conditioning in this preparation. The purpose of the present study was to neuroanatomically define the premotor pathways that underlie the trigeminal and auditory nerve-evoked abducens eyeblink responses. The results show that the principal sensory trigeminal nucleus forms a disynaptic pathway from both the trigeminal and auditory nerves to the principal and accessory abducens motor nuclei. Additionally, the principal abducens nucleus receives vestibular inputs, whereas the accessory nucleus receives input from the cochlear nucleus. The late R2-like component of abducens nerve responses is mediated by the spinal trigeminal nucleus in the medulla. Both the principal sensory trigeminal nucleus and the abducens motor nuclei receive CS-US convergence and therefore both, or either, might be considered potential sites of synapse modification during in vitro abducens conditioning. Further data are required to determine the role of the principal sensory trigeminal nucleus in in vitro conditioning.


Assuntos
Nervo Abducente/química , Vias Auditivas/química , Piscadela/fisiologia , Nervo Coclear/química , Condicionamento Clássico/fisiologia , Nervo Trigêmeo/química , Nervo Abducente/fisiologia , Animais , Vias Auditivas/fisiologia , Tronco Encefálico/química , Tronco Encefálico/fisiologia , Nervo Coclear/fisiologia , Histocitoquímica , Técnicas In Vitro , Bulbo/química , Bulbo/fisiologia , Microinjeções , Microscopia de Fluorescência , Ponte/química , Ponte/fisiologia , Traçadores Radioativos , Sinapses/química , Sinapses/fisiologia , Nervo Trigêmeo/fisiologia , Tartarugas
15.
Eur J Neurosci ; 19(8): 2089-98, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15090036

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) mediates trophic effects for specific classes of sensory neurons. The adult tooth pulp is a well-defined target of sensory trigeminal innervation. Here we investigated potential roles of GDNF in the regulation of adult trigeminal neurons and the dental pulp nerve supply of the rat maxillary first molar. Western blot analysis and radioactive 35S-UTP in situ hybridization revealed that GDNF in the dental pulp and its mRNAs were localized with Ngf in the coronal pulp periphery, in particular in the highly innervated subodontoblast layer. Retrograde neuronal transport of iodinated GDNF and Fluorogold (FG) from the dental pulp indicated that GDNF was transported in about one third of all the trigeminal dental neurons. Of the GDNF-labelled neurons, nearly all (97%) were large-sized (> or =35 microm in diameter). Analysis of FG-labelled neurons revealed that, of the trigeminal neurons supporting the adult dental pulp, approximately 20% were small-sized, lacked isolectin B4 binding and did not transport GDNF. Of the large-sized dental trigeminal neurons approximately 40% transported GDNF. About 90% of the GDNF-accumulating neurons were negative for the high-temperature nociceptive marker VRL-1. Our results show that a subclass of large adult trigeminal neurons are potentially dependent on dental pulp-derived GDNF while small dental trigeminal neurons seems not to require GDNF. This suggests that GDNF may function as a neurotrophic factor for subsets of nerves in the tooth, which apparently mediate mechanosensitive stimuli. As in dorsal root ganglia both small- and large-sized neurons are known to be GDNF-dependent; these data provide molecular evidence that the sensory supply in the adult tooth differs, in some aspects, from the cutaneous sensory system.


Assuntos
Fatores de Crescimento Neural/biossíntese , Neurônios/metabolismo , Dente/metabolismo , Nervo Trigêmeo/metabolismo , Animais , Transporte Axonal/fisiologia , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Humanos , Fatores de Crescimento Neural/análise , Neurônios/química , Neurônios/citologia , Ratos , Ratos Wistar , Dente/química , Dente/citologia , Nervo Trigêmeo/química , Nervo Trigêmeo/citologia
16.
J Comp Neurol ; 471(2): 144-52, 2004 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-14986308

RESUMO

A conditioned abducens nerve response is generated in in vitro brainstem preparations from turtles by pairing a weak conditioned stimulus (CS) applied to the auditory nerve that immediately precedes an unconditioned stimulus (US) applied to the trigeminal nerve. Tract-tracing studies showed direct projections from auditory and trigeminal nerves to abducens motor neurons. In light of these findings for convergent CS-US inputs, it is hypothesized that auditory and trigeminal nerve synaptic inputs onto abducens motor neurons are in spatial proximity because the CS is a weak input that may be required to be near the US inputs to have an associative effect, and conditioning occurs only when the CS and US are temporally separated by less than 100 ms. This study examined the spatial relationship of 133 anterogradely labeled synaptic boutons conveying CS or US information on retrogradely labeled abducens motor neurons. The results show that trigeminal and auditory nerve terminal fields occupy primarily the soma and proximal dendrites of abducens motor neurons. Quantitative analysis shows that the majority of labeled boutons (76% and 85% from injections of the trigeminal and auditory nerves, respectively) were apposed to somata or were localized to dendritic segments no more than about 30 microm from the nucleus. There were no quantitative differences between trigeminal and auditory nerve boutons in terms of their localization on dendrites or bouton diameter. Finally, triple labeling experiments demonstrated that individual abducens motor neurons receive inputs from both nerves and that these inputs may be in close spatial proximity to one another. This synaptic arrangement allows for the possibility that in vitro abducens conditioning is generated by coincident CS-US detection mediated by NMDA receptors and may utilize a Hebbian-like plasticity mechanism.


Assuntos
Nervo Abducente/química , Nervo Coclear/química , Condicionamento Clássico/fisiologia , Terminações Pré-Sinápticas/química , Nervo Trigêmeo/química , Nervo Abducente/fisiologia , Animais , Nervo Coclear/fisiologia , Neurônios Motores/química , Neurônios Motores/fisiologia , Terminações Pré-Sinápticas/fisiologia , Nervo Trigêmeo/fisiologia , Tartarugas
17.
J Neurochem ; 87(1): 230-7, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12969269

RESUMO

Glutamatergic signal transduction occurs in CNS white matter, but quantitative data on glutamate uptake and metabolism are lacking. We report that the level of the astrocytic glutamate transporter GLT in rat fimbria and corpus callosum was approximately 35% of that in parietal cortex; uptake of [3H]glutamate was 24 and 43%, respectively, of the cortical value. In fimbria and corpus callosum levels of synaptic proteins, synapsin I and synaptophysin were 15-20% of those in cortex; the activities of glutamine synthetase and phosphate-activated glutaminase, enzymes involved in metabolism of transmitter glutamate, were 11-25% of cortical values, and activities of aspartate and alanine aminotransferases were 50-70% of cortical values. The glutamate level in fimbria and corpus callosum was 5-6 nmol/mg tissue, half the cortical value. These data suggest a certain capacity for glutamatergic neurotransmission. In optic and trigeminal nerves, [3H]glutamate uptake was < 10% of the cortical uptake. Formation of [14C]glutamate from [U-14C]glucose in fimbria and corpus callosum of awake rats was 30% of cortical values, in optic nerve it was 13%, illustrating extensive glutamate metabolism in white matter in vivo. Glutamate transporters in brain white matter may be important both physiologically and during energy failure when reversal of glutamate uptake may contribute to excitotoxicity.


Assuntos
Sistema Nervoso Central/metabolismo , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Glutaminase/metabolismo , Animais , Transporte Biológico/fisiologia , Biomarcadores/análise , Encéfalo/metabolismo , Química Encefálica , Sistema Nervoso Central/química , Ativação Enzimática , Transportador 2 de Aminoácido Excitatório/análise , Fórnice/química , Fórnice/metabolismo , Glucose/metabolismo , Glutamato-Amônia Ligase/análise , Ácido Glutâmico/análise , Ácido Glutâmico/farmacocinética , Glutaminase/análise , Glutamina/análise , Masculino , Bulbo/química , Bulbo/metabolismo , Nervo Óptico/química , Nervo Óptico/metabolismo , Proteolipídeos/química , Proteolipídeos/metabolismo , Ratos , Ratos Wistar , Nervo Trigêmeo/química , Nervo Trigêmeo/metabolismo
18.
Invest Ophthalmol Vis Sci ; 42(10): 2242-51, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11527937

RESUMO

PURPOSE: To determine the architectural pattern and neuropeptide content of canine corneal innervation. METHODS: Corneal nerve fibers in normal dog eyes were labeled immunohistochemically with antibodies against protein gene product (PGP)-9.5, calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal polypeptide (VIP), and tyrosine hydroxylase (TH). Relative innervation densities and distribution patterns for each fiber population were assessed qualitatively by serial line-drawing reconstructions and quantitatively by computer-assisted analyses. RESULTS: More than 99% of all corneal PGP-9.5-immunoreactive (IR) nerves contained both CGRP and SP, approximately 30% contained TH, and none contained VIP. Distribution patterns of corneal PGP-9.5-, CGRP-, SP-, and TH-IR nerves were indistinguishable, except that TH-IR fibers were absent from the corneal epithelium. Morphologically, canine corneal innervation consisted of a rich anterior stromal plexus, divided on the basis of morphologic criteria into anterior and posterior levels, and a rich epithelial innervation, characterized by large numbers of horizontally oriented, basal epithelial "leash" formations. Leash axons in all quadrants of the corneal epithelium oriented preferentially toward a common locus in the perilimbal cornea. CONCLUSIONS: The results of this study demonstrate for the first time the detailed architectural features, distinctive basal epithelial leash orientations, and peptidergic content of canine corneal innervation. The normal innervation pattern described in this study will provide other investigators with essential baseline data for assessing corneal nerve alterations in canine patients with spontaneous chronic corneal epithelial defects (SCCED) and other ocular diseases or injuries.


Assuntos
Córnea/inervação , Cães/anatomia & histologia , Proteínas do Tecido Nervoso/análise , Sistema Nervoso Simpático/anatomia & histologia , Sistema Nervoso Simpático/química , Nervo Trigêmeo/anatomia & histologia , Nervo Trigêmeo/química , Animais , Peptídeo Relacionado com Gene de Calcitonina/análise , Técnicas Imunoenzimáticas , Fibras Nervosas/química , Neuroquímica , Substância P/análise , Tioléster Hidrolases/análise , Tirosina 3-Mono-Oxigenase/análise , Ubiquitina Tiolesterase , Peptídeo Intestinal Vasoativo/análise
19.
Cell Tissue Res ; 297(2): 203-11, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10470490

RESUMO

In this immunocytochemical study we investigated the distribution of nervous structures in the lower lip of adult rats. The region is characterized by a rich cutaneous and mucosal sensory innervation originating from terminal branches of the trigeminal system. Lower lip innervation was investigated by detection of the general neuronal marker protein gene product 9.5 (PGP 9.5) and the growth-associated protein 43 (GAP-43), a neurochemical marker of neuronal plasticity. The entire neural network of both cutaneous and mucosal aspects was stained by the antibody to PGP 9.5. In particular, nerve fibers were observed in the submucosal and the subepithelial plexuses. Thin immunoreactive fibers were observed within the epithelial layers ending as free fibers or as fibers associated with immunopositive Merkel cells. Well-identified anatomical structures receiving sensory or autonomic innervation were also surrounded by PGP 9.5-ir nerve fibers, in particular, hair follicles, vibrissae, glands, and blood vessels. GAP-43-immunostained nerve fibers were observed in all these structures; however, they were generally less numerous than the PGP 9.5-immunoreactive elements. An equal amount of PGP 9.5 and GAP-43 immunoreactivity occurred, in contrast, in the subepidermal and the submucosal plexuses, or in the epidermis and the mucosal epithelium. The present results show that GAP-43 is normally expressed in the mature trigeminal sensory system of the rat. Skin and oral mucosa are characterized by continuous remodeling that may also involve the sensory nervous apparatus. Continuous neural remodeling, regeneration and sprouting may be the reason for the observed expression of GAP-43.


Assuntos
Lábio/inervação , Plasticidade Neuronal/fisiologia , Animais , Derme/inervação , Epiderme/inervação , Feminino , Proteína GAP-43/análise , Imuno-Histoquímica , Células de Merkel/química , Modelos Neurológicos , Mucosa Bucal/inervação , Regeneração Nervosa , Ratos , Ratos Wistar , Plexo Submucoso/química , Nervo Trigêmeo/química , Nervo Trigêmeo/fisiologia
20.
J Comp Neurol ; 411(3): 524-34, 1999 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-10413784

RESUMO

The neuropeptide galanin (Gal) is found throughout the central nervous system. Of particular interest is the fact that Gal is present within the majority of noradrenergic locus coeruleus (LC) neurons. However, very few, if any, Gal-immunoreactive fibers have been identified in many of the major efferent targets of LC, including sensory neocortex and dorsal thalamus. The goal of the present study was to examine the Gal fiber innervation of the rodent trigeminal somatosensory system and its connection to the LC. Our results show that at least two different morphological profiles of Gal-immunoreactive fibers are present within relay nuclei along the ascending trigeminal pathway. Numerous small caliber Gal-immunoreactive fibers with bouton-like swellings were noted within the barrel cortex, the ventroposterior medial (VPM) nucleus, the posterior medial (POm) nucleus, the zona incerta (ZI), the reticular nucleus (nRT) of the thalamus, and the principal (PrV) and spinal (SpV) nuclei of the trigeminal complex. Immunoreactive fibers were prevalent in, but not restricted to, layer I of the barrel cortex. Within the somatosensory thalamus, the density of Gal-immunoreactive fibers was higher in POm than in VPM. Laminae I and II of SpV and the nRT and ZI also contained dense, large-diameter Gal-immunoreactive fibers. These large-diameter Gal-immunoreactive fibers did not co-contain dopamine beta-hydroxylase (DBH). In contrast, virtually every small-caliber Gal-immunoreactive fiber colocalized with DBH. To determine whether Gal-immunoreactive fibers originated from LC, we combined immunohistochemical procedures with fluorescent tracing techniques. After retrograde tracer injections into several trigeminal relay nuclei, we observed that approximately 50% of the labeled LC neuronal population was immunoreactive for Gal. Our results suggest an extensive Gal-immunoreactive fiber innervation of the rodent trigeminal system, much of which may originate from LC neurons in the brainstem.


Assuntos
Galanina/análise , Proteínas do Tecido Nervoso/análise , Tálamo/química , Nervo Trigêmeo/química , Núcleos do Trigêmeo/química , Vias Aferentes/química , Vias Aferentes/ultraestrutura , Animais , Dopamina beta-Hidroxilase/análise , Feminino , Microscopia de Fluorescência , Ratos , Sinapses/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...