Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 387(2): 225-247, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34859291

RESUMO

The fungiform papilla (FP) is a gustatory and somatosensory structure incorporating chorda tympani (CT) nerve fibers that innervate taste buds (TB) and also contain somatosensory endings for touch and temperature. Hedgehog (HH) pathway inhibition eliminates TB, but CT innervation remains in the FP. Importantly, after HH inhibition, CT neurophysiological responses to taste stimuli are eliminated, but tactile responses remain. To examine CT fibers that respond to tactile stimuli in the absence of TB, we used Phox2b-Cre; Rosa26LSL-TdTomato reporter mice to selectively label CT fibers with TdTomato. Normally CT fibers project in a compact bundle directly into TB, but after HH pathway inhibition, CT fibers reorganize and expand just under the FP epithelium where TB were. This widened expanse of CT fibers coexpresses Synapsin-1, ß-tubulin, S100, and neurofilaments. Further, GAP43 expression in these fibers suggests they are actively remodeling. Interestingly, CT fibers have complex terminals within the apical FP epithelium and in perigemmal locations in the FP apex. These extragemmal fibers remain after HH pathway inhibition. To identify tactile end organs in FP, we used a K20 antibody to label Merkel cells. In control mice, K20 was expressed in TB cells and at the base of epithelial ridges outside of FP. After HH pathway inhibition, K20 + cells remained in epithelial ridges but were eliminated in the apical FP without TB. These data suggest that the complex, extragemmal nerve endings within and disbursed under the apical FP are the mechanosensitive nerve endings of the CT that remain after HH pathway inhibition.


Assuntos
Proteínas Hedgehog , Papilas Gustativas , Animais , Nervo da Corda do Tímpano/metabolismo , Proteínas Hedgehog/metabolismo , Camundongos , Terminações Nervosas/metabolismo , Paladar/fisiologia , Papilas Gustativas/metabolismo , Língua
2.
Sci Rep ; 10(1): 22117, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335119

RESUMO

During development of the peripheral taste system, oral sensory neurons of the geniculate ganglion project via the chorda tympani nerve to innervate taste buds in fungiform papillae. Germline deletion of the p75 neurotrophin receptor causes dramatic axon guidance and branching deficits, leading to a loss of geniculate neurons. To determine whether the developmental functions of p75 in geniculate neurons are cell autonomous, we deleted p75 specifically in Phox2b + oral sensory neurons (Phox2b-Cre; p75fx/fx) or in neural crest-derived cells (P0-Cre; p75fx/fx) and examined geniculate neuron development. In germline p75-/- mice half of all geniculate neurons were lost. The proportion of Phox2b + neurons, as compared to Phox2b-pinna-projecting neurons, was not altered, indicating that both populations were affected similarly. Chorda tympani nerve recordings demonstrated that p75-/- mice exhibit profound deficits in responses to taste and tactile stimuli. In contrast to p75-/- mice, there was no loss of geniculate neurons in either Phox2b-Cre; p75fx/fx or P0-Cre; p75fx/fx mice. Electrophysiological analyses demonstrated that Phox2b-Cre; p75fx/fx mice had normal taste and oral tactile responses. There was a modest but significant loss of fungiform taste buds in Phox2b-Cre; p75fx/fx mice, although there was not a loss of chemosensory innervation of the remaining fungiform taste buds. Overall, these data suggest that the developmental functions of p75 are largely cell non-autonomous and require p75 expression in other cell types of the chorda tympani circuit.


Assuntos
Gânglio Geniculado/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/metabolismo , Alelos , Animais , Biomarcadores , Nervo da Corda do Tímpano/metabolismo , Imunofluorescência , Genótipo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptores de Fator de Crescimento Neural/genética , Paladar/fisiologia , Tato
3.
Neuroreport ; 26(14): 856-61, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26302160

RESUMO

We reported differential expression of the transient receptor potential vanilloid 1 (TRPV1), the transient receptor potential ankyrin 1 (TRPA1), and the (TRPM8) in the geniculate ganglions (GGs) of naive rats. In medical practice, the chorda tympani nerve (CTN) is injured in some patients during middle-ear surgery, and results in tongue numbness and taste disorder. We investigated changes in the expression of these receptors in GGs after CTN injury. In naive-rat GGs, 11.4, 11.8, and 0.5% of neurons were found to express the TRPV1, the TRPA1, the TRPM8, respectively. At 3 days after CTN injury, 5.2 and 4.0% of activating transcription factor 3-immunoreactive neurons, considered as injured neurons, were found to express the TRPV1 and the TRPA1, respectively. Among activating transcription factor 3-immunonegative neurons, considered as uninjured neurons, 3.9 and 3.8% were found to express the TRPV1 and the TRPA1, respectively. The TRPM8 was not detected in GGs after CTN injury. We found decreased mRNA levels of the TRPV1 and the TRPA1 in all neurons, as well as in uninjured neurons of ipsilateral GGs after CTN injury. CTN injury changes the gene expression in GGs and may have effects on the tongue.


Assuntos
Nervo da Corda do Tímpano/lesões , Nervo da Corda do Tímpano/metabolismo , Traumatismos do Nervo Facial/metabolismo , Gânglio Geniculado/metabolismo , Neurônios/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Nervo da Corda do Tímpano/patologia , Modelos Animais de Doenças , Traumatismos do Nervo Facial/patologia , Gânglio Geniculado/patologia , Imuno-Histoquímica , Hibridização In Situ , Masculino , Neurônios/patologia , Ratos Sprague-Dawley
4.
Am J Physiol Regul Integr Comp Physiol ; 309(5): R552-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26157055

RESUMO

Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar.


Assuntos
Carboidratos/administração & dosagem , Insulina/sangue , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/efeitos dos fármacos , Edulcorantes/administração & dosagem , Paladar/efeitos dos fármacos , Administração Oral , Animais , Comportamento Animal/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Carboidratos/sangue , Nervo da Corda do Tímpano/efeitos dos fármacos , Nervo da Corda do Tímpano/metabolismo , Preferências Alimentares/efeitos dos fármacos , Frutose/administração & dosagem , Genótipo , Glucose/administração & dosagem , Teste de Tolerância a Glucose , Injeções , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sacarose/administração & dosagem , Fatores de Tempo
5.
PLoS One ; 10(6): e0127936, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039516

RESUMO

Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-ß-erythroidine, and CP-601932 (a partial agonist of the α3ß4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.


Assuntos
Acetilcolina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Nervo da Corda do Tímpano/metabolismo , Etanol/farmacologia , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Paladar/efeitos dos fármacos , Animais , Feminino , Camundongos , Camundongos Knockout , Ratos
6.
PLoS One ; 9(11): e112152, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386961

RESUMO

Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Serotonina/metabolismo , Transmissão Sináptica/fisiologia , Papilas Gustativas/metabolismo , Paladar/fisiologia , Animais , Nervo da Corda do Tímpano/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Percepção Gustatória
7.
PLoS One ; 9(5): e98049, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24839965

RESUMO

The effects of small molecule ENaC activators N,N,N-trimethyl-2-((4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanoyl)oxy)ethanaminium iodide (Compound 1) and N-(2-hydroxyethyl)-4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanamide (Compound 2), were tested on the benzamil (Bz)-sensitive NaCl chorda tympani (CT) taste nerve response under open-circuit conditions and under ±60 mV applied lingual voltage-clamp, and compared with the effects of known physiological activators (8-CPT-cAMP, BAPTA-AM, and alkaline pH), and an inhibitor (ionomycin+Ca2+) of ENaC. The NaCl CT response was enhanced at -60 mV and suppressed at +60 mV. In every case the CT response (r) versus voltage (V) curve was linear. All ENaC activators increased the open-circuit response (ro) and the voltage sensitivity (κ, negative of the slope of the r versus V curve) and ionomycin+Ca2+ decreased ro and κ to zero. Compound 1 and Compound 2 expressed a sigmoidal-saturating function of concentration (0.25-1 mM) with a half-maximal response concentration (k) of 0.49 and 1.05 mM, respectively. Following treatment with 1 mM Compound 1, 8-CPT-cAMP, BAPTA-AM and pH 10.3, the Bz-sensitive NaCl CT response to 100 mM NaCl was enhanced and was equivalent to the Bz-sensitive CT response to 300 mM NaCl. Plots of κ versus ro in the absence and presence of the activators or the inhibitor were linear, suggesting that changes in the affinity of Na+ for ENaC under different conditions are fully compensated by changes in the apical membrane potential difference, and that the observed changes in the Bz-sensitive NaCl CT response arise exclusively from changes in the maximum CT response (rm). The results further suggest that the agonists enhance and ionomycin+Ca2+ decreases ENaC function by increasing or decreasing the rate of release of Na+ from its ENaC binding site to the receptor cell cytosol, respectively. Irrespective of agonist type, the Bz-sensitive NaCl CT response demonstrated a maximum response enhancement limit of about 75% over control value.


Assuntos
Nervo da Corda do Tímpano/metabolismo , Canais Epiteliais de Sódio/metabolismo , Indóis/farmacologia , Neurônios/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Cloreto de Sódio/farmacologia , Paladar/fisiologia , Animais , Nervo da Corda do Tímpano/citologia , Fluorescência , Concentração de Íons de Hidrogênio , Indóis/metabolismo , Ionomicina , Neurônios/metabolismo , Técnicas de Patch-Clamp , Compostos de Amônio Quaternário/metabolismo , Ratos , Cloreto de Sódio/metabolismo
8.
J Comp Neurol ; 522(7): 1565-96, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24151133

RESUMO

The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2 -IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN.


Assuntos
Tronco Encefálico/anatomia & histologia , Nervo da Corda do Tímpano/anatomia & histologia , Camundongos Endogâmicos C57BL/anatomia & histologia , Núcleo Solitário/anatomia & histologia , Animais , Atlas como Assunto , Axônios/metabolismo , Tronco Encefálico/metabolismo , Tamanho Celular , Nervo da Corda do Tímpano/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL/metabolismo , Microscopia Confocal , NADP/metabolismo , Vias Neurais/anatomia & histologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/citologia , Neurônios/metabolismo , Fotomicrografia , Receptores Purinérgicos P2X2/metabolismo , Núcleo Solitário/metabolismo
9.
Nutr Neurosci ; 16(2): 54-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23541367

RESUMO

OBJECTIVE: Little is known about whether mammals use gustatory sense to detect compounds produced from oxidized oil as a taste or only use olfactory sense to detect the compounds as aroma. The present study examined the effects of oxidized arachidonic acid (AA) ethyl ester and hexanal, one predominant compound in oxidized AA, on mouse taste perception of monosodium glutamate (MSG). METHOD: We examined the effects of oxidized ethyl AA and hexanal on chorda tympani (CT) nerve response to MSG using mouse electrophysiological technique. In addition, we evaluated the effects of aliphatic aldehydes and alcohol which are compounds structurally related to hexanal with carbon chain lengths or a functional group different from hexanal on taste perception of MSG using behavioral and electrophysiological studies. RESULT: The CT nerve responses to 10, 20, and 50 mM MSG with water extracts of oxidized ethyl AA was higher than that to MSG alone. A total of 1000 µM hexanal and pentanal enhanced mouse taste response to MSG, but 1000 µM propanal and 1-hexanol failed to increase the responses. DISCUSSION: The products of oxidized ethyl AA and hexanal would enhance the taste sensation of MSG, which suggests that CT nerve input should be important for projection to the behavioral responses. The carbon chain length and the functional group of hexanal would be key factors of the hexanal effect on mouse taste perception of MSG.


Assuntos
Aldeídos/farmacologia , Ácido Araquidônico/farmacologia , Glutamato de Sódio/metabolismo , Percepção Gustatória/efeitos dos fármacos , Percepção Gustatória/fisiologia , Aldeídos/metabolismo , Animais , Nervo da Corda do Tímpano/efeitos dos fármacos , Nervo da Corda do Tímpano/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Olfato/efeitos dos fármacos , Olfato/fisiologia
10.
J Neurophysiol ; 109(4): 1078-90, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23221408

RESUMO

Effects of N-geranyl cyclopropyl-carboxamide (NGCC) and four structurally related compounds (N-cyclopropyl E2,Z6-nonadienamide, N-geranyl isobutanamide, N-geranyl 2-methylbutanamide, and allyl N-geranyl carbamate) were evaluated on the chorda tympani (CT) nerve response to NaCl and monosodium glutamate (MSG) in rats and wild-type (WT) and TRPV1 knockout (KO) mice and on human salty and umami taste intensity. NGCC enhanced the rat CT response to 100 mM NaCl + 5 µM benzamil (Bz; an epithelial Na(+) channel blocker) between 1 and 2.5 µM and inhibited it above 5 µM. N-(3-methoxyphenyl)-4-chlorocinnamid (SB-366791, a TRPV1t blocker) inhibited the NaCl+Bz CT response in the absence and presence of NGCC. Unlike the WT mice, no NaCl+Bz CT response was observed in TRPV1 KO mice in the absence or presence of NGCC. NGCC enhanced human salt taste intensity of fish soup stock containing 60 mM NaCl at 5 and 10 µM and decreased it at 25 µM. Rat CT responses to NaCl+Bz and human salt sensory perception were not affected by the above four structurally related compounds. Above 10 µM, NGCC increased the CT response to MSG+Bz+SB-366791 and maximally enhanced the response between 40 and 60 µM. Increasing taste cell Ca(2+) inhibited the NGCC-induced increase but not the inosine monophosphate-induced increase in glutamate response. Addition of 45 µM NGCC to chicken broth containing 60 mM sodium enhanced the human umami taste intensity. Thus, depending upon its concentration, NGCC modulates salt taste by interacting with the putative TRPV1t-dependent salt taste receptor and umami taste by interacting with a Ca(2+)-dependent transduction pathway.


Assuntos
Amidas/farmacologia , Nervo da Corda do Tímpano/fisiologia , Monoterpenos/farmacologia , Canais de Cátion TRPV/genética , Paladar/efeitos dos fármacos , Terpenos/farmacologia , Adulto , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Cálcio/metabolismo , Nervo da Corda do Tímpano/efeitos dos fármacos , Nervo da Corda do Tímpano/metabolismo , Potenciais Evocados , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Condução Nervosa , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Cloreto de Sódio/farmacologia , Glutamato de Sódio/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Paladar/fisiologia , Língua/inervação , Língua/fisiologia
11.
Chem Senses ; 36(4): 389-403, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21339339

RESUMO

To investigate if chorda tympani (CT) taste nerve responses to strong (HCl) and weak (CO(2) and acetic acid) acidic stimuli are dependent upon NADPH oxidase-linked and cAMP-sensitive proton conductances in taste cell membranes, CT responses were monitored in rats, wild-type (WT) mice, and gp91(phox) knockout (KO) mice in the absence and presence of blockers (Zn(2+) and diethyl pyrocarbonate [DEPC]) or activators (8-(4-chlorophenylthio)-cAMP; 8-CPT-cAMP) of proton channels and activators of the NADPH oxidase enzyme (phorbol 12-myristate 13-acetate [PMA], H(2)O(2), and nitrazepam). Zn(2+) and DEPC inhibited and 8-CPT-cAMP, PMA, H(2)O(2), and nitrazepam enhanced the tonic CT responses to HCl without altering responses to CO(2) and acetic acid. In KO mice, the tonic HCl CT response was reduced by 64% relative to WT mice. The residual CT response was insensitive to H(2)O(2) but was blocked by Zn(2+). Its magnitude was further enhanced by 8-CPT-cAMP treatment, and the enhancement was blocked by 8-CPT-adenosine-3'-5'-cyclic monophospho-rothioate, a protein kinase A (PKA) inhibitor. Under voltage-clamp conditions, before cAMP treatment, rat tonic HCl CT responses demonstrated voltage-dependence only at ±90 mV, suggesting the presence of H(+) channels with voltage-dependent conductances. After cAMP treatment, the tonic HCl CT response had a quasi-linear dependence on voltage, suggesting that the cAMP-dependent part of the HCl CT response has a quasi-linear voltage dependence between +60 and -60 mV, only becoming sigmoidal when approaching +90 and -90 mV. The results suggest that CT responses to HCl involve 2 proton entry pathways, an NADPH oxidase-dependent proton channel, and a cAMP-PKA sensitive proton channel.


Assuntos
Ácidos/metabolismo , Nervo da Corda do Tímpano/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , NADP/metabolismo , Bombas de Próton/metabolismo , Paladar , Animais , Dietil Pirocarbonato/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Imunológicos/genética , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/metabolismo , Zinco/farmacologia
12.
Chem Senses ; 36(4): 375-88, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21257734

RESUMO

The relationship between acidic pH, taste cell pH(i), and chorda tympani (CT) nerve responses was investigated before and after incorporating the K(+)-H(+) exchanger, nigericin, in the apical membrane of taste cells. CT responses were recorded in anesthetized rats in vivo, and changes in pH(i) were monitored in polarized fungiform taste cells in vitro. Under control conditions, stimulating the tongue with 0.15 M potassium phosphate (KP) or 0.15 M sodium phosphate (NaP) buffers of pHs between 8.0 and 4.6, KP or NaP buffers did not elicit a CT response. Post-nigericin (500 × 10(-6) M), KP buffers, but not NaP buffers, induced CT responses at pHs ≤ 6.6. The effect of nigericin was reversed by the topical lingual application of carbonyl cyanide 3-chloro-phenylhydrazone, a protonophore. Post-nigericin (150 × 10(-6) M), KP buffers induced a greater decrease in taste cell pH(i) relative to NaP buffers and to NaP and KP buffers under control conditions. A decrease in pH(i) to about 6.9 induced by KP buffers was sufficient to elicit a CT response. The results suggest that facilitating apical H(+) entry via nigericin decreases taste cell pH(i) and demonstrates directly a strong correlation between pH(i) and the magnitude of the CT response.


Assuntos
Ácidos/metabolismo , Nervo da Corda do Tímpano/metabolismo , Ionóforos/farmacologia , Nigericina/farmacologia , Papilas Gustativas/efeitos dos fármacos , Paladar/efeitos dos fármacos , Animais , Feminino , Hidrazonas/farmacologia , Concentração de Íons de Hidrogênio , Ratos , Ratos Sprague-Dawley , Papilas Gustativas/metabolismo
13.
Am J Physiol Regul Integr Comp Physiol ; 297(4): R1162-70, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19692663

RESUMO

Paradoxically, bilateral transection of the chorda tympani nerve (CTX) raises the taste discrimination threshold for the free fatty acid, linoleic acid (LA), yet the chorda tympani nerve (CT) is unresponsive to lingual application of LA alone. LA may require a background of saliva to activate taste cells, since CTX decreases saliva production through denervation of the submaxillary and sublingual salivary glands. To assess the role of saliva, we measured LA taste discrimination thresholds for animals whose submaxillary and sublingual salivary glands were removed and also recorded CT responses to LA mixed in artificial saliva. Partial desalivation shifted LA discrimination thresholds from between 5.5 and 11 microM to between 11 and 22 microM. However, this effect was not as pronounced as previously seen with CTX animals. Surprisingly, the CT was unresponsive to LA mixed with artificial saliva, suggesting that artificial saliva may lack components necessary for LA taste. Additionally, fats may primarily enhance other tastes. We previously reported that LA increases CT responses to monosodium glutamate (MSG). Thus we also recorded CT whole nerve responses to taste mixtures of LA and sodium chloride (NaCl), sucrose (SUC), citric acid (CA), or quinine hydrochloride (QHCl) in anesthetized rats. We found that LA increased CT responses to NaCl but did not alter CT responses to SUC, CA, and QHCl. Thus CT recordings either lack the sensitivity to detect small changes to SUC, CA, and QHCl or LA may affect CT responses to MSG and NaCl only, perhaps by specifically modulating gustatory processing of Na(+).


Assuntos
Comportamento Animal , Nervo da Corda do Tímpano/metabolismo , Ácido Linoleico/metabolismo , Saliva/metabolismo , Glândulas Salivares/metabolismo , Papilas Gustativas/metabolismo , Percepção Gustatória , Paladar , Língua/inervação , Animais , Comportamento Animal/efeitos dos fármacos , Nervo da Corda do Tímpano/efeitos dos fármacos , Nervo da Corda do Tímpano/cirurgia , Ácido Cítrico/farmacologia , Denervação , Discriminação Psicológica , Relação Dose-Resposta a Droga , Ácido Linoleico/administração & dosagem , Masculino , Quinina/farmacologia , Ratos , Ratos Sprague-Dawley , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/inervação , Cloreto de Sódio/farmacologia , Sacarose/farmacologia , Paladar/efeitos dos fármacos , Papilas Gustativas/efeitos dos fármacos , Percepção Gustatória/efeitos dos fármacos , Limiar Gustativo
14.
Am J Physiol Regul Integr Comp Physiol ; 297(4): R1103-10, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19675282

RESUMO

Dietary sodium restriction coupled with axotomy of the rat chorda tympani nerve (CTX) results in selectively attenuated taste responses to sodium salts in the contralateral, intact chorda tympani nerve. Converging evidence indicates that sodium deficiency also diminishes the activated macrophage response to injury on both the sectioned and contralateral, intact sides of the tongue. Because a sodium-restricted diet causes a robust increase in circulating aldosterone, we tested the hypothesis that changes in neurophysiological and immune responses contralateral to the CTX could be mimicked by aldosterone administration instead of the low-sodium diet. Taste responses in rats with CTX and supplemental aldosterone for 4-6 days were similar to rats with CTX and dietary sodium restriction. Responses to sodium salts were as much as 50% lower compared with sham-operated and vehicle-supplemented rats. The group-related functional differences were eliminated with lingual application of amiloride, suggesting that a major transduction pathway affected was through epithelial sodium channels. Consistent with the functional results, few macrophages were observed on either side of the tongue in rats with CTX and aldosterone. In contrast, macrophages were elevated on both sides of the tongue in rats with CTX and the vehicle. These results show that sodium deficiency or administration of aldosterone suppresses the immune response to neural injury, resulting in attenuation of peripheral gustatory function. They also show a potential key link among downstream consequences of sodium imbalance, taste function, and immune activity.


Assuntos
Aldosterona/metabolismo , Comportamento Animal , Nervo da Corda do Tímpano/metabolismo , Macrófagos/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Percepção Gustatória , Paladar , Língua/inervação , Administração Oral , Aldosterona/administração & dosagem , Amilorida/administração & dosagem , Animais , Axotomia , Comportamento Animal/efeitos dos fármacos , Nervo da Corda do Tímpano/efeitos dos fármacos , Nervo da Corda do Tímpano/cirurgia , Dieta Hipossódica , Relação Dose-Resposta a Droga , Potenciais Evocados , Feminino , Furosemida/administração & dosagem , Bombas de Infusão Implantáveis , Injeções Intraperitoneais , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Modelos Animais , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/administração & dosagem , Cloreto de Sódio na Dieta/administração & dosagem , Inibidores de Simportadores de Cloreto de Sódio e Potássio/administração & dosagem , Percepção Gustatória/efeitos dos fármacos , Fatores de Tempo , Língua/imunologia
15.
J Comp Neurol ; 512(3): 384-98, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19006182

RESUMO

Vertebrate taste buds undergo continual cell turnover. To understand how the gustatory progenitor cells in the stratified lingual epithelium migrate and differentiate into different types of mature taste cells, we sought to identify genes that were selectively expressed in taste cells at different maturation stages. Here we report the expression of the voltage-gated potassium channel KCNQ1 in mammalian taste buds of mouse, rat, and human. Immunohistochemistry and nuclear staining showed that nearly all rodent and human taste cells express this channel. Double immunostaining with antibodies against type II and III taste cell markers validated the presence of KCNQ1 in these two types of cells. Co-localization studies with cytokeratin 14 indicated that KCNQ1 is also expressed in type IV basal precursor cells. Null mutation of the kcnq1 gene in mouse, however, did not alter the gross structure of taste buds or the expression of taste signaling molecules. Behavioral assays showed that the mutant mice display reduced preference to some umami substances, but not to any other taste compounds tested. Gustatory nerve recordings, however, were unable to detect any significant change in the integrated nerve responses of the mutant mice to umami stimuli. These results suggest that although it is expressed in nearly all taste bud cells, the function of KCNQ1 is not required for gross taste bud development or peripheral taste transduction pathways, and the reduced preference of kcnq1-null mice in the behavioral assays may be attributable to the deficiency in the central nervous system or other organs.


Assuntos
Preferências Alimentares/fisiologia , Canal de Potássio KCNQ1/metabolismo , Mutação , Papilas Gustativas/metabolismo , Percepção Gustatória/fisiologia , Paladar/fisiologia , Animais , Nervo da Corda do Tímpano/metabolismo , Humanos , Canal de Potássio KCNQ1/genética , Camundongos , Camundongos Knockout , Ratos , Papilas Gustativas/citologia
16.
Brain Res ; 1129(1): 142-6, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17156752

RESUMO

The anterior part of the tongue was examined in wild type and dystonia musculorum mice to assess the effect of dystonin loss on fungiform papillae. In the mutant mouse, the density of fungiform papillae and their taste buds was severely decreased when compared to wild type littermates (papilla, 67% reduction; taste bud, 77% reduction). The mutation also reduced the size of these papillae (17% reduction) and taste buds (29% reduction). In addition, immunohistochemical analysis demonstrated that the dystonin mutation reduced the number of PGP 9.5 and calbindin D28k-containing nerve fibers in fungiform papillae. These data together suggest that dystonin is required for the innervation and development of fungiform papillae and taste buds.


Assuntos
Proteínas de Transporte/genética , Proteínas do Citoesqueleto/genética , Proteínas do Tecido Nervoso/genética , Papilas Gustativas/anormalidades , Papilas Gustativas/metabolismo , Distúrbios do Paladar/metabolismo , Língua/anormalidades , Língua/metabolismo , Animais , Calbindina 1 , Calbindinas , Nervo da Corda do Tímpano/anormalidades , Nervo da Corda do Tímpano/metabolismo , Nervo da Corda do Tímpano/fisiopatologia , Modelos Animais de Doenças , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/fisiopatologia , Distonina , Gânglio Geniculado/anormalidades , Gânglio Geniculado/metabolismo , Gânglio Geniculado/fisiopatologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Mutação/genética , Proteína G de Ligação ao Cálcio S100/metabolismo , Células Receptoras Sensoriais/anormalidades , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiopatologia , Papilas Gustativas/fisiopatologia , Distúrbios do Paladar/genética , Distúrbios do Paladar/fisiopatologia , Língua/fisiopatologia , Ubiquitina Tiolesterase/metabolismo
17.
Neurosci Lett ; 413(3): 187-90, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17174471

RESUMO

Macrophages are recruited to both sides of the tongue following unilateral chorda tympani (CT) nerve injury. The mechanisms responsible for recruiting these macrophages to the peripheral taste system are unknown. Neural degeneration in other systems leads to the upregulation of small molecules that function as chemoattractant cytokines, or chemokines. The chemokines monocyte chemoattractant protein (MCP)-1 and macrophage inflammatory protein (MIP)-1alpha are important regulators of macrophage recruitment to sites of infection and injury. We hypothesized that CT nerve sectioning leads to a bilateral upregulation of MCP-1 and MIP-1alpha. We examined lingual protein levels of MCP-1 and MIP-1alpha by enzyme-linked immunosorbent assays (ELISA)s at several time points after unilateral CT section in rats. MCP-1 was significantly upregulated on the intact side of the tongue at 12 h after sectioning, and on the injured side at 24-48 h post-injury. However, MIP-1alpha expression did not significantly change following CT nerve sectioning. These data indicate that chemokines are differentially regulated following neural injury, and that MCP-1 may contribute to the bilateral macrophage response to neural injury. Furthermore, the increase in MCP-1 occurs even in uninjured, distant sites, and may be upstream from the deficits in neural responses from the contralateral CT after sectioning.


Assuntos
Quimiocina CCL2/metabolismo , Nervo da Corda do Tímpano/metabolismo , Traumatismos do Sistema Nervoso/patologia , Regulação para Cima/fisiologia , Análise de Variância , Animais , Quimiocina CCL3 , Quimiocina CCL4 , Nervo da Corda do Tímpano/lesões , Nervo da Corda do Tímpano/fisiopatologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Proteínas Inflamatórias de Macrófagos/metabolismo , Ratos , Ratos Sprague-Dawley , Sódio na Dieta/farmacologia , Fatores de Tempo , Traumatismos do Sistema Nervoso/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
Science ; 310(5753): 1495-9, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16322458

RESUMO

Taste receptor cells detect chemicals in the oral cavity and transmit this information to taste nerves, but the neurotransmitter(s) have not been identified. We report that adenosine 5'-triphosphate (ATP) is the key neurotransmitter in this system. Genetic elimination of ionotropic purinergic receptors (P2X2 and P2X3) eliminates taste responses in the taste nerves, although the nerves remain responsive to touch, temperature, and menthol. Similarly, P2X-knockout mice show greatly reduced behavioral responses to sweeteners, glutamate, and bitter substances. Finally, stimulation of taste buds in vitro evokes release of ATP. Thus, ATP fulfils the criteria for a neurotransmitter linking taste buds to the nervous system.


Assuntos
Trifosfato de Adenosina/metabolismo , Nervo da Corda do Tímpano/metabolismo , Nervo Glossofaríngeo/metabolismo , Transdução de Sinais , Papilas Gustativas/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurotransmissores/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3 , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo
19.
Dev Neurosci ; 27(5): 288-98, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16137986

RESUMO

We investigated which neurotrophic factors may contribute to the divergence of two peripheral nerves emanating from the geniculate ganglion. We compared receptor mRNA profiles of the neurons that supply the nerves, and also the growth of their neurites in response to neurotrophic factors in culture. Three mRNAs, Gfra2, TrkA, and TrkC, were differentially expressed. Only one ligand, Neurturin, promoted substantially different nerve regrowth from the nerves, and therefore may contribute to nerve divergence. Three receptor mRNAs were expressed in 100% of the neurons: TrkB, TrkB.T2 (kinase-lacking isoform), and NCAM-140. Ligands for these Trks and FRalpha-1 promoted more outgrowth than ligands for the other receptors. NT-3 and BDNF synergistically promoted outgrowth. Finally, receptors are coexpressed at random rates, arguing against the existence of neuronal subtypes defined by a combinatorial code of these receptors.


Assuntos
Gânglio Geniculado/metabolismo , Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Receptores de Fator de Crescimento Neural/biossíntese , Animais , Proliferação de Células , Nervo da Corda do Tímpano/citologia , Nervo da Corda do Tímpano/metabolismo , Gânglio Geniculado/citologia , Técnicas In Vitro , Camundongos , Neurônios/citologia , Reação em Cadeia da Polimerase , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...