Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.596
Filtrar
1.
Nat Commun ; 15(1): 4721, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830884

RESUMO

Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.


Assuntos
Regeneração Nervosa , Nervo Isquiático , Animais , Coelhos , Regeneração Nervosa/fisiologia , Regeneração Nervosa/efeitos dos fármacos , Nervo Isquiático/fisiologia , Nervo Facial/fisiologia , Nervos Periféricos/fisiologia , Masculino , Ratos , Silício/química , Ratos Sprague-Dawley , Estimulação Elétrica
2.
J Neural Eng ; 21(3)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38806036

RESUMO

Objective.Rapid switching of magnetic resonance imaging (MRI) gradient fields induces electric fields that can cause peripheral nerve stimulation (PNS) and so accurate characterization of PNS is required to maintain patient safety and comfort while maximizing MRI performance. The minimum magnetic gradient amplitude that causes stimulation, the PNS threshold, depends on intrinsic axon properties and the spatial and temporal properties of the induced electric field. The PNS strength-duration curve is widely used to characterize simulation thresholds for periodic waveforms and is parameterized by the chronaxie and rheobase. Safety limits to avoid unwanted PNS in MRI rely on a single chronaxie value to characterize the response of all nerves. However, experimental magnetostimulation peripheral nerve chronaxie values vary by an order of magnitude. Given the diverse range of chronaxies observed and the importance of this number in MRI safety models, we seek a deeper understanding of the mechanisms contributing to chronaxie variability.Approach.We use a coupled electromagnetic-neurodynamic PNS model to assess geometric sources of chronaxie variability. We study the impact of the position of the stimulating magnetic field coil relative to the body, along with the effect of local anatomical features and nerve trajectories on the driving function and the resulting chronaxie.Main results.We find realistic variation of local axon and tissue geometry can modulate a given axon's chronaxie by up to two-fold. Our results identify the temporal rate of charge redistribution as the underlying determinant of the chronaxie.Significance.This charge distribution is a function of both intrinsic axon properties and the spatial stimulus along the nerve; thus, examination of the local tissue topology, which shapes the electric fields, as well as the nerve trajectory, are critical for better understanding chronaxie variations and defining more biologically informed MRI safety guidelines.


Assuntos
Axônios , Imageamento por Ressonância Magnética , Nervos Periféricos , Axônios/fisiologia , Humanos , Nervos Periféricos/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Estimulação Elétrica/métodos , Campos Magnéticos , Simulação por Computador
3.
J Vis Exp ; (207)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767361

RESUMO

Schwann cells (SCs) are myelinating cells of the peripheral nervous system, playing a crucial role in peripheral nerve regeneration. Nanosecond Pulse Electric Field (nsPEF) is an emerging method applicable in nerve electrical stimulation that has been demonstrated to be effective in stimulating cell proliferation and other biological processes. Aiming to assess whether SCs undergo significant changes under nsPEF and help explore the potential for new peripheral nerve regeneration methods, cultured RSC96 cells were subjected to nsPEF stimulation at 5 kV and 10 kV, followed by continued cultivation for 3-4 days. Subsequently, some relevant factors expressed by SCs were assessed to demonstrate the successful stimulation, including the specific marker protein, neurotrophic factor, transcription factor, and myelination regulator. The representative results showed that nsPEF significantly enhanced the proliferation and migration of SCs and the ability to synthesize relevant factors that contribute positively to the regeneration of peripheral nerves. Simultaneously, lower expression of GFAP indicated the benign prognosis of peripheral nerve injuries. All these outcomes show that nsPEF has great potential as an efficient treatment method for peripheral nerve injuries by stimulating SCs.


Assuntos
Regeneração Nervosa , Células de Schwann , Células de Schwann/citologia , Células de Schwann/fisiologia , Regeneração Nervosa/fisiologia , Animais , Ratos , Nervos Periféricos/fisiologia , Nervos Periféricos/citologia , Proliferação de Células/fisiologia , Estimulação Elétrica/métodos , Traumatismos dos Nervos Periféricos/terapia
4.
Clin Neurophysiol ; 163: 255-262, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704307

RESUMO

One hundred years ago, Erlanger and Gasser demonstrated that conduction velocity is correlated with the diameter of a peripheral nerve axon. Later, they also demonstrated that the functional role of the axon is related to its diameter: touch is signalled by large-diameter axons, whereas pain and temperature are signalled by small-diameter axons. Certain discoveries in recent decades prompt a modification of this canonical classification. Here, we review the evidence for unmyelinated (C) fibres signalling touch at a slow conduction velocity and likely contributing to affective aspects of tactile information. We also review the evidence for large-diameter Aß afferents signalling pain at ultrafast conduction velocity and likely contributing to the rapid nociceptive withdrawal reflex. These discoveries imply that conduction velocity is not as clear-cut an indication of the functional role of the axon as previously thought. We finally suggest that a future taxonomy of the peripheral afferent nervous system might be based on the combination of the axons molecular expression and electrophysiological response properties.


Assuntos
Condução Nervosa , Nervos Periféricos , Humanos , Animais , Nervos Periféricos/fisiopatologia , Nervos Periféricos/fisiologia , Condução Nervosa/fisiologia , Tato/fisiologia , Dor/fisiopatologia , Dor/classificação , Fibras Nervosas Amielínicas/fisiologia , Axônios/fisiologia
5.
Biomed Pharmacother ; 175: 116645, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729050

RESUMO

Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Células de Schwann , Células de Schwann/fisiologia , Humanos , Animais , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Nervos Periféricos/fisiologia
6.
Eur J Med Res ; 29(1): 264, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698476

RESUMO

BACKGROUND: The fundamental prerequisite for prognostically favorable postoperative results of peripheral nerve repair is stable neurorrhaphy without interruption and gap formation. METHODS: This study evaluates 60 neurorrhaphies on femoral chicken nerves in terms of the procedure and the biomechanical properties. Sutured neurorrhaphies (n = 15) served as control and three sutureless adhesive-based nerve repair techniques: Fibrin glue (n = 15), Histoacryl glue (n = 15), and the novel polyurethane adhesive VIVO (n = 15). Tensile and elongation tests of neurorrhaphies were performed on a tensile testing machine at a displacement rate of 20 mm/min until failure. The maximum tensile force and elongation were recorded. RESULTS: All adhesive-based neurorrhaphies were significant faster in preparation compared to sutured anastomoses (p < 0.001). Neurorrhaphies by sutured (102.8 [cN]; p < 0.001), Histoacryl (91.5 [cN]; p < 0.001) and VIVO (45.47 [cN]; p < 0.05) withstood significant higher longitudinal tensile forces compared to fibrin glue (10.55 [cN]). VIVO, with △L/L0 of 6.96 [%], showed significantly higher elongation (p < 0.001) compared to neurorrhaphy using fibrin glue. CONCLUSION: Within the limitations of an in vitro study the adhesive-based neurorrhaphy technique with VIVO and Histoacryl have the biomechanical potential to offer alternatives to sutured neuroanastomosis because of their stability, and faster handling. Further in vivo studies are required to evaluate functional outcomes and confirm safety.


Assuntos
Anastomose Cirúrgica , Galinhas , Resistência à Tração , Animais , Anastomose Cirúrgica/métodos , Fenômenos Biomecânicos , Adesivos Teciduais/farmacologia , Adesivo Tecidual de Fibrina/farmacologia , Nervos Periféricos/cirurgia , Nervos Periféricos/fisiologia , Adesivos , Procedimentos Neurocirúrgicos/métodos
7.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557950

RESUMO

Surgical procedures, including nerve reconstruction and end-organ muscle reinnervation, have become more prominent in the prosthetic field over the past decade. Primarily developed to increase the functionality of prosthetic limbs, these surgical procedures have also been found to reduce postamputation neuropathic pain. Today, some of these procedures are performed more frequently for the management and prevention of postamputation pain than for prosthetic fitting, indicating a significant need for effective solutions to postamputation pain. One notable emerging procedure in this context is the Regenerative Peripheral Nerve Interface (RPNI). RPNI surgery involves an operative approach that entails splitting the nerve end longitudinally into its main fascicles and implanting these fascicles within free denervated and devascularized muscle grafts. The RPNI procedure takes a proactive stance in addressing freshly cut nerve endings, facilitating painful neuroma prevention and treatment by enabling the nerve to regenerate and innervate an end organ, i.e., the free muscle graft. Retrospective studies have shown RPNI's effectiveness in alleviating postamputation pain and preventing the formation of painful neuromas. The increasing frequency of utilization of this approach has also given rise to variations in the technique. This article aims to provide a step-by-step description of the RPNI procedure, which will serve as the standardized procedure employed in an international, randomized controlled trial (ClinicalTrials.gov, NCT05009394). In this trial, RPNI is compared to two other surgical procedures for postamputation pain management, specifically, Targeted Muscle Reinnervation (TMR) and neuroma excision coupled with intra-muscular transposition and burying.


Assuntos
Neuralgia , Neuroma , Humanos , Amputação Cirúrgica , Neuroma/cirurgia , Nervos Periféricos/cirurgia , Nervos Periféricos/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos
8.
J Nanobiotechnology ; 22(1): 194, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643117

RESUMO

Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.


Assuntos
Regeneração Nervosa , Nervos Periféricos , Regeneração Nervosa/fisiologia , Nervos Periféricos/fisiologia , Neuritos/fisiologia , Axônios/fisiologia , Neurônios
9.
Artigo em Chinês | MEDLINE | ID: mdl-38686479

RESUMO

This study reviews the latest progress on the research of electrical stimulation(ES) in peripheral nerve regeneration, summarizes the parameters in preclinical experiments and discusses the effect on nerve regeneration. A detailed description is given in the study of conditioning electrical stimulation and nerve conduit scaffolding technology combined with ES, which have been hotly researched in recent years.


Assuntos
Estimulação Elétrica , Regeneração Nervosa , Nervos Periféricos , Estimulação Elétrica/métodos , Nervos Periféricos/fisiologia , Animais , Traumatismos dos Nervos Periféricos/terapia , Humanos , Alicerces Teciduais , Terapia por Estimulação Elétrica/métodos
10.
Ann Plast Surg ; 92(4): 432-436, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527350

RESUMO

PURPOSE: Combined targeted muscle reinnervation with regenerative peripheral nerve interfaces ("TMRpni") is a recently described nerve management strategy that leverages beneficial elements of targeted muscle reinnervation (TMR) and regenerative peripheral nerve interface (RPNI) techniques. This study aimed to evaluate the effect of TMRpni on long-term opioid consumption after amputation. We hypothesize that TMRpni decreases chronic opioid consumption in amputees. METHODS: This is a retrospective cohort study of all patients who underwent TMRpni between 2019 and 2021. These patients were age-matched at a 1:1 ratio with a control group of patients who underwent amputation without TMRpni. Statistical analysis was performed using SPSS Version 28.0. RESULTS: Thirty-one age-matched pairs of patients in the TMRpni and control groups were included. At 30 days after surgery, there was no significant difference in number of patients who required an additional refill of their opioid prescriptions (45% vs 55%, P = 0.45) or patients who continued to actively use opioids (36% vs 42%, P = 0.60). However, at 90 days after surgery, there was a significantly lower number of patients from the TMRpni group who reported continued opioid use compared with the control group (10% vs 32%, P = 0.03). CONCLUSIONS: This study demonstrates that TMRpni may translate to decreased rates of chronic opiate use. Continued study is indicated to optimize TMRpni techniques and patient selection and to determine its long-term efficacy.


Assuntos
Amputados , Humanos , Estudos de Casos e Controles , Estudos Retrospectivos , Analgésicos Opioides/uso terapêutico , Nervos Periféricos/cirurgia , Nervos Periféricos/fisiologia , Músculos , Músculo Esquelético/inervação
11.
Clin Neurophysiol ; 162: 2-8, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547586

RESUMO

OBJECTIVE: Tetanic stimulation of a peripheral nerve prior to transcranial electrical stimulation (TES) may enhance motor evoked potential (MEP) amplitudes. The purpose of this study was to investigate the post-tetanic MEP (p-MEP) technique in improving MEP amplitudes. METHODS: Conventional TES MEPs (c-MEP) and p-MEPs with left upper limb stimulation (p-MEPUL) or left lower limb stimulation (p-MEPLL) were performed in 26 patients. Bilateral hand and foot MEP amplitudes obtained with each protocol were compared. Subgroup comparisons were performed for myelopathy and peripheral neuropathy patients. Within-subject amplitude differences between c-MEP and each p-MEP technique were compared using a Wilcoxon test. RESULTS: The mean age of the patients was 52.7 years (range, 12-79 years). Overall, p-MEPUL resulted in MEP improvement in 25 of 26 (96%) patients, and p-MEPLL improved MEPs in 19 of 26 (73%) patients. The increase in MEP amplitudes were statistically significant in all muscle groups except left foot. Similar improvements were seen in the myelopathy group; in the neuropathy group, p-MEPUL produced similar results, but p-MEPLL did not. CONCLUSIONS: The p-MEP technique can improve MEP amplitudes, including in patients with myelopathy. In patients with peripheral neuropathy, the results were mixed. SIGNIFICANCE: Tetanic stimulation can enhance intraoperative MEP amplitudes.


Assuntos
Potencial Evocado Motor , Nervos Periféricos , Humanos , Pessoa de Meia-Idade , Potencial Evocado Motor/fisiologia , Masculino , Adulto , Feminino , Idoso , Adolescente , Adulto Jovem , Criança , Nervos Periféricos/fisiologia , Nervos Periféricos/fisiopatologia , Estimulação Elétrica/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Doenças do Sistema Nervoso Periférico/fisiopatologia , Doenças do Sistema Nervoso Periférico/terapia
12.
Sci Rep ; 14(1): 2795, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307915

RESUMO

Electrical stimulation of the peripheral nervous system (PNS) is becoming increasingly important for the therapeutic treatment of numerous disorders. Thus, as peripheral nerves are increasingly the target of electrical stimulation, it is critical to determine how, and when, electrical stimulation results in anatomical changes in neural tissue. We introduce here a convolutional neural network and support vector machines for cell segmentation and analysis of histological samples of the sciatic nerve of rats stimulated with varying current intensities. We describe the methodologies and present results that highlight the validity of the approach: machine learning enabled highly efficient nerve measurement collection, while multivariate analysis revealed notable changes to nerves' anatomy, even when subjected to levels of stimulation thought to be safe according to the Shannon current limits.


Assuntos
Nervos Periféricos , Nervo Isquiático , Ratos , Animais , Nervos Periféricos/fisiologia , Nervo Isquiático/patologia , Estimulação Elétrica/métodos , Aprendizado de Máquina
13.
Biomacromolecules ; 25(3): 1509-1526, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38376392

RESUMO

The multifaceted process of nerve regeneration following damage remains a significant clinical issue, due to the lack of a favorable regenerative microenvironment and insufficient endogenous biochemical signaling. However, the current nerve grafts have limitations in functionality, as they require a greater capacity to effectively regulate the intricate microenvironment associated with nerve regeneration. In this regard, we proposed the construction of a functional artificial scaffold based on a "two-pronged" approach. The whole system was developed by encapsulating Tazarotene within nanomicelles formed through self-assembly of reactive oxygen species (ROS)-responsive amphiphilic triblock copolymer, all of which were further loaded into a thermosensitive injectable hydrogel. Notably, the hydrogel exhibits obvious temperature sensitivity at a concentration of 6 wt %, and the nanoparticles possess concentration-dependent H2O2-response capability with a controlled release profile in 48 h. The combined strategy promoted the repair of injured peripheral nerves, attributed to the dual role of the materials, which mainly involved providing structural support, modulating the immune microenvironment, and enhancing angiogenesis. Overall, this study opens up intriguing prospects in tissue engineering.


Assuntos
Sistemas de Liberação de Medicamentos , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Engenharia Tecidual , Hidrogéis/farmacologia , Hidrogéis/química , Nervos Periféricos/fisiologia , Regeneração Nervosa
14.
J Neural Eng ; 21(2)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408386

RESUMO

Objective.This study aims to develop and validate a sophisticated fork-shaped neural interface (FNI) designed for peripheral nerves, focusing on achieving high spatial resolution, functional selectivity, and improved charge storage capacities. The objective is to create a neurointerface capable of precise neuroanatomical analysis, neural signal recording, and stimulation.Approach.Our approach involves the design and implementation of the FNI, which integrates 32 multichannel working electrodes featuring enhanced charge storage capacities and low impedance. An insertion guide holder is incorporated to refine neuronal selectivity. The study employs meticulous electrode placement, bipolar electrical stimulation, and comprehensive analysis of induced neural responses to verify the FNI's capabilities. Stability over an eight-week period is a crucial aspect, ensuring the reliability and durability of the neural interface.Main results.The FNI demonstrated remarkable efficacy in neuroanatomical analysis, exhibiting accurate positioning of motor nerves and successfully inducing various movements. Stable impedance values were maintained over the eight-week period, affirming the durability of the FNI. Additionally, the neural interface proved effective in recording sensory signals from different hind limb areas. The advanced charge storage capacities and low impedance contribute to the FNI's robust performance, establishing its potential for prolonged use.Significance.This research represents a significant advancement in neural interface technology, offering a versatile tool with broad applications in neuroscience and neuroengineering. The FNI's ability to capture both motor and sensory neural activity positions it as a comprehensive solution for neuroanatomical studies. Moreover, the precise neuromodulation potential of the FNI holds promise for applications in advanced bionic prosthetic control and therapeutic interventions. The study's findings contribute to the evolving field of neuroengineering, paving the way for enhanced understanding and manipulation of peripheral neural functions.


Assuntos
Nervos Periféricos , Ratos , Animais , Reprodutibilidade dos Testes , Eletrodos Implantados , Nervos Periféricos/fisiologia , Estimulação Elétrica
15.
Artigo em Inglês | MEDLINE | ID: mdl-38199866

RESUMO

Peripheral nerves exist in a stable state in adulthood providing a rapid bidirectional signaling system to control tissue structure and function. However, following injury, peripheral nerves can regenerate much more effectively than those of the central nervous system (CNS). This multicellular process is coordinated by peripheral glia, in particular Schwann cells, which have multiple roles in stimulating and nurturing the regrowth of damaged axons back to their targets. Aside from the repair of damaged nerves themselves, nerve regenerative processes have been linked to the repair of other tissues and de novo innervation appears important in establishing an environment conducive for the development and spread of tumors. In contrast, defects in these processes are linked to neuropathies, aging, and pain. In this review, we focus on the role of peripheral glia, especially Schwann cells, in multiple aspects of nerve regeneration and discuss how these findings may be relevant for pathologies associated with these processes.


Assuntos
Regeneração Nervosa , Células de Schwann , Células de Schwann/fisiologia , Regeneração Nervosa/fisiologia , Humanos , Animais , Nervos Periféricos/fisiologia , Axônios/fisiologia
16.
J Vis Exp ; (203)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38284518

RESUMO

Peripheral nerves undergo physiological and non-physiological stretch during development, normal joint movement, injury, and more recently while undergoing surgical repair. Understanding the biomechanical response of peripheral nerves to stretch is critical to the understanding of their response to different loading conditions and thus, to optimizing treatment strategies and surgical interventions. This protocol describes in detail the calibration process of the stereo-imaging camera system via direct linear transformation and the tracking of the three-dimensional in-situ tissue displacement of peripheral nerves during stretch, obtained from three-dimensional coordinates of the video files captured by the calibrated stereo-imaging camera system. From the obtained three-dimensional coordinates, the nerve length, change in the nerve length, and percent strain with respect to time can be calculated for a stretched peripheral nerve. Using a stereo-imaging camera system provides a non-invasive method for capturing three-dimensional displacements of peripheral nerves when stretched. Direct linear transformation enables three-dimensional reconstructions of peripheral nerve length during stretch to measure strain. Currently, no methodology exists to study the in-situ strain of stretched peripheral nerves using a stereo-imaging camera system calibrated via direct linear transformation. Capturing the in-situ strain of peripheral nerves when stretched can not only aid clinicians in understanding underlying injury mechanisms of nerve damage when overstretched but also help optimize treatment strategies that rely on stretch-induced interventions. The methodology described in the paper has the potential to enhance our understanding of peripheral nerve biomechanics in response to stretch to improve patient outcomes in the field of nerve injury management and rehabilitation.


Assuntos
Traumatismos dos Nervos Periféricos , Nervos Periféricos , Humanos , Nervos Periféricos/fisiologia , Fenômenos Biomecânicos , Resistência à Tração , Movimento
17.
Adv Mater ; 36(16): e2307810, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277680

RESUMO

The need for the development of soft materials capable of stably adhering to nerve tissues without any suturing followed by additional damages is at the fore at a time when success in postoperative recovery depends largely on the surgical experience and/or specialized microsuturing skills of the surgeon. Despite fully recognizing such prerequisite conditions, designing the materials with robust adhesion to wet nerves as well as acute/chronic anti-inflammation remains to be resolved. Herein, a sticky and strain-gradient artificial epineurium (SSGAE) that overcomes the most critically challenging aspect for realizing sutureless repair of severely injured nerves is presented. In this regard, the SSGAE with a skin-inspired hierarchical structure entailing strain-gradient layers, anisotropic Janus layers including hydrophobic top and hydrophilic bottom surfaces, and synergistic self-healing capabilities enables immediate and stable neurorrhaphy in both rodent and nonhuman primate models, indicating that the bioinspired materials strategy significantly contributes to translational medicine for effective peripheral nerve repair.


Assuntos
Nervos Periféricos , Roedores , Animais , Nervos Periféricos/fisiologia , Nervos Periféricos/cirurgia , Primatas , Regeneração Nervosa
18.
Neuron ; 112(2): 209-229.e11, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972594

RESUMO

Organ injury stimulates the formation of new capillaries to restore blood supply raising questions about the potential contribution of neoangiogenic vessel architecture to the healing process. Using single-cell mapping, we resolved the properties of endothelial cells that organize a polarized scaffold at the repair site of lesioned peripheral nerves. Transient reactivation of an embryonic guidance program is required to orient neovessels across the wound. Manipulation of this structured angiogenic response through genetic and pharmacological targeting of Plexin-D1/VEGF pathways within an early window of repair has long-term impact on configuration of the nerve stroma. Neovessels direct nerve-resident mesenchymal cells to mold a provisionary fibrotic scar by assembling an orderly system of stable barrier compartments that channel regenerating nerve fibers and shield them from the persistently leaky vasculature. Thus, guided and balanced repair angiogenesis enables the construction of a "bridge" microenvironment conducive for axon regrowth and homeostasis of the regenerated tissue.


Assuntos
Angiogênese , Células Endoteliais , Células Endoteliais/metabolismo , Nervos Periféricos/fisiologia , Neovascularização Fisiológica , Axônios , Regeneração Nervosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...