Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 38(10): 2160-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23943522

RESUMO

Cell body size and succinate dehydrogenase activity of motoneurons in the dorsolateral region of the ventral horn in the lumbar and cervical segments of the mouse spinal cord were assessed after long-term exposure to microgravity and compared with those of ground-based controls. Mice were housed in a mouse drawer system on the International Space Station for 13 weeks. The mice were transported to the International Space Station by the Space Shuttle Discovery and returned to Earth by the Space Shuttle Atlantis. No changes in the cell body size of motoneurons were observed in either segment after exposure to microgravity, but succinate dehydrogenase activity of small-sized (<300 µm(2)) gamma and medium-sized (300-700 µm(2)) alpha motoneurons, which have higher succinate dehydrogenase activity than large-sized (>700 µm(2)) alpha motoneurons, in both segments was lower than that of ground-based controls. We concluded that exposure to microgravity for longer than 3 months induced decreased succinate dehydrogenase activity of both gamma and slow-type alpha motoneurons. In particular, the decreased succinate dehydrogenase activity of gamma motoneurons was observed only after long-term exposure to microgravity.


Assuntos
Neurônios Motores/enzimologia , Medula Espinal/enzimologia , Succinato Desidrogenase/metabolismo , Ausência de Peso , Animais , Masculino , Camundongos , Neurônios Motores gama/enzimologia , Plasticidade Neuronal , Ausência de Peso/efeitos adversos
2.
J Neurosci ; 33(24): 9913-9, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23761886

RESUMO

The Na(+)/K(+) ATPase (NKA) is an essential membrane protein underlying the membrane potential in excitable cells. Transmembrane ion transport is performed by the catalytic α subunits (α1-4). The predominant subunits in neurons are α1 and α3, which have different affinities for Na(+) and K(+), impacting on transport kinetics. The exchange rate of Na(+)/K(+) markedly influences the activity of the neurons expressing them. We have investigated the distribution and function of the main isoforms of the α subunit expressed in the mouse spinal cord. NKAα1 immunoreactivity (IR) displayed restricted labeling, mainly confined to large ventral horn neurons and ependymal cells. NKAα3 IR was more widespread in the spinal cord, again being observed in large ventral horn neurons, but also in smaller interneurons throughout the dorsal and ventral horns. Within the ventral horn, the α1 and α3 isoforms were mutually exclusive, with the α3 isoform in smaller neurons displaying markers of γ-motoneurons and α1 in α-motoneurons. The α3 isoform was also observed within muscle spindle afferent neurons in dorsal root ganglia with a higher proportion at cervical versus lumbar regions. We confirmed the differential expression of α subunits in motoneurons electrophysiologically in neonatal slices of mouse spinal cord. γ-Motoneurons were excited by bath application of low concentrations of ouabain that selectively inhibit NKAα3 while α-motoneurons were insensitive to these low concentrations. The selective expression of NKAα3 in γ-motoneurons and muscle spindle afferents, which may affect excitability of these neurons, has implications in motor control and disease states associated with NKAα3 dysfunction.


Assuntos
Células do Corno Anterior/enzimologia , Neurônios Motores gama/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Células do Corno Anterior/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/enzimologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores gama/efeitos dos fármacos , Ouabaína/farmacologia , Oxidiazóis/farmacologia , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Antagonistas da Serotonina/farmacologia , Medula Espinal/citologia , Medula Espinal/enzimologia , Triptaminas/farmacologia
3.
Neuroscience ; 68(3): 813-22, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8577376

RESUMO

The spatial distribution, soma size and oxidative enzyme activity of gamma and alpha motoneurons innervating muscle fibres in the deep (away from the surface of the muscle) and superficial (close to the surface of the muscle) portions of the tibialis anterior in normal rats were determined. The deep portion had a higher percentage of high oxidative fibres than the superficial portion of the muscle. Motoneurons were labelled by retrograde neuronal transport of fluorescent tracers: Fast Blue and Nuclear Yellow were injected into the deep portion and Nuclear Yellow into the superficial portion of the muscle. Therefore, motoneurons innervating the deep portion were identified by both a blue fluorescent cytoplasm and a golden-yellow fluorescent nucleus, while motoneurons innervating the superficial portion were identified by only a golden-yellow fluorescent nucleus. After staining for succinate dehydrogenase activity on the same section used for the identification of the motoneurons, soma size and succinate dehydrogenase activity of the motoneurons were measured. The gamma and alpha motoneurons innervating both the deep and superficial portions were located primarily at L4 and were intermingled within the same region of the dorsolateral portion of the ventral horn in the spinal cord. Mean soma size was similar for either gamma or alpha motoneurons in the two portions of the muscle. The alpha motoneurons innervating the superficial portion had a lower mean succinate dehydrogenase activity than those innervating the deep portion of the muscle. An inverse relationship between soma size and succinate dehydrogenase activity of alpha, but not gamma, motoneurons innervating both the deep and superficial portions was observed. Based on three-dimensional reconstructions within the spinal cord, there were no apparent differences in the spatial distribution of the motoneurons, either gamma or alpha, associated with the deep and superficial compartments of the muscle. The data provide evidence for an interdependence in the oxidative capacity between a motoneuron and its target muscle fibres in two subpopulations of motoneurons from the same motor pool, i.e. the same muscle.


Assuntos
Neurônios Motores/enzimologia , Neurônios Motores/ultraestrutura , Músculo Esquelético/enzimologia , Músculo Esquelético/inervação , Succinato Desidrogenase/metabolismo , Animais , Tamanho Celular , Corantes Fluorescentes , Histocitoquímica , Peroxidase do Rábano Silvestre , Masculino , Neurônios Motores gama/enzimologia , Neurônios Motores gama/ultraestrutura , Fibras Musculares Esqueléticas/enzimologia , Ratos , Ratos Wistar , Medula Espinal/citologia , Medula Espinal/enzimologia
4.
Neuroscience ; 13(1): 189-206, 1984 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-6436730

RESUMO

Some of the myelinated axons in rat peripheral nerves possess marked axoplasmic carbonic anhydrase activity [Riley, Ellis and Bain (1982) J. Histochem. Cytochem. 30, 1275-1288; Riley and Lang (1984) J. Hand Surg. 9A, 112-120]. A mixture of reactive and nonreactive neurons was a general observation in cervical, thoracic and lumbar ganglia. Nonmyelinated axons in lumbar dorsal roots were nonreactive; this was consistent with the lack of carbonic anhydrase in small sensory neurons. The carbonic anhydrase cytochemical method marked the larger afferent or sensory neurons and distinguished them from the smaller sensory neurons which were devoid of carbonic anhydrase activity. Nonmyelinated axons in the lumbar ventral roots were also nonreactive. Examination of muscle spindle innervation revealed staining of the primary sensory and gamma motor endings. This was strongly suggestive that some of the reactive sensory neurons were primary afferents and a portion of the reactive ventral root axons were gamma motor. The reactive central processes of spinal neurons sent collaterals into the grey matter of the spinal cord, entered the dorsal funiculi, and terminated in synaptic glomeruli in the cuneate and gracilis nuclei. Oligodendroglial cells appeared to be the only intrinsic cellular elements of the brain stem and spinal cord that exhibited high carbonic anhydrase activity. Both oligodendroglial and Schwann cells exhibited intense carbonic anhydrase activity in thin pockets of cytoplasm internal to compact myelin. The subcellular distribution of reaction product within sensory neurons and oligodendroglial cells agreed with biochemical reports of cytosol and membrane-bound forms of carbonic anhydrase. A general staining of the cytoplasm was suggestive of soluble carbonic anhydrase fixed in situ by the glutaraldehyde. Clumps of reaction product on the cytoplasmic surface of the endoplasmic reticulum possibly represented membrane-bound enzyme. Most of the membrane-bound carbonic anhydrase was associated with the internal membranes rather than the axolemma or limiting plasma membrane of the axon. In contrast to biochemical reports, a small fraction of neuronal mitochondria exhibited staining in the intracristal spaces. We suggest that the association of carbonic anhydrase with endoplasmic reticulum and mitochondria implicates the enzyme in regulating intracellular calcium because both organelles are known to sequester calcium.


Assuntos
Anidrases Carbônicas/metabolismo , Nervos Periféricos/enzimologia , Medula Espinal/enzimologia , Animais , Gânglios Espinais/enzimologia , Masculino , Microscopia Eletrônica , Neurônios Motores/enzimologia , Neurônios Motores gama/enzimologia , Neurônios Aferentes/enzimologia , Oligodendroglia/enzimologia , Ratos , Ratos Endogâmicos , Frações Subcelulares/enzimologia
5.
Histochemistry ; 74(2): 183-97, 1982.
Artigo em Inglês | MEDLINE | ID: mdl-6217172

RESUMO

Muscle spindles were studied histochemically in serial transverse sections of specimens of the cat tenuissimus muscle. The nuclear chain intrafusal muscle fibers were separated into three subtypes, called long, intermediate and typical. The long chain and intermediate chain fibers tended to assume a particular position within the axial bundle of intrafusal fibers. The fibers were usually located in that layer of chain fibers that was positioned farthest away from the bag2 fiber. Furthermore, they were usually situated adjacent to the bag1 fiber throughout much of the extent of the spindle pole. Some long chain and intermediate chain fibers had several fiber nuclei abreast at the equator rather than a single row of central nuclei, as in most nuclear chain fibers. The relative position of intrafusal fibers within the cat spindle may reflect their order of formation during development, with the fibers retaining, to a variable degree, their association with the bag2 fiber which acted as template. Thus, the axial position of long chain and intermediate chain fibers suggests that they are among the first nuclear chain fibers to form. This may play a role in the known preferential innervation of these chain fibers by skeleto-fusimotor axons.


Assuntos
Neurônios Motores gama/ultraestrutura , Neurônios Motores/ultraestrutura , Fusos Musculares/ultraestrutura , Adenosina Trifosfatases/análise , Animais , Gatos , Feminino , Histocitoquímica , Neurônios Motores gama/enzimologia , NADH Tetrazólio Redutase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...