Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 13(1): 19, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051001

RESUMO

Synaptic proteins play an important role for the regulation of synaptic plasticity. Numerous studies have identified and revealed individual synaptic protein functions using protein overexpression or deletion. In neuropathic pain nociceptive stimuli conveyed from the periphery repetitively stimulate neurons in the central nerve system, brain and spinal cord. Neuronal activities change the turnover (synthesis and degradation) rate of synaptic proteins. Thus, the analysis of synaptic protein turnover rather than just expression level change is critical for studying the role of synaptic proteins in synaptic plasticity. Here, we analyzed synaptosomal proteome in the anterior cingulate cortex (ACC) to identify protein turnover rate changes caused by peripheral nerve injury. Whereas PKCγ levels were not altered, we found that the protein's turnover rate decreased after peripheral nerve injury. Our results suggest that postsynaptic PKCγ synthesized by neuronal activities in the ACC is translocated to the postsynaptic membrane with an extended half-life.


Assuntos
Giro do Cíngulo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Traumatismos dos Nervos Periféricos/metabolismo , Proteína Quinase C/metabolismo , Proteômica , Animais , Hipocampo/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Nervo Fibular/lesões , Neuropatias Fibulares/metabolismo , Neuropatias Fibulares/fisiopatologia , Transporte Proteico , Proteólise
2.
Neuroimage ; 91: 344-52, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24462776

RESUMO

Persistent pain is a central characteristic of neuropathic pain conditions in humans. Knowing whether rodent models of neuropathic pain produce persistent pain is therefore crucial to their translational applicability. We investigated the spared nerve injury (SNI) model of neuropathic pain and the formalin pain model in rats using positron emission tomography (PET) with the metabolic tracer [18F]fluorodeoxyglucose (FDG) to determine if there is ongoing brain activity suggestive of persistent pain. For the formalin model, under brief anesthesia we injected one hindpaw with 5% formalin and the FDG tracer into a tail vein. We then allowed the animals to awaken and observed pain behavior for 30min during the FDG uptake period. The rat was then anesthetized and placed in the scanner for static image acquisition, which took place between minutes 45 and 75 post-tracer injection. A single reference rat brain magnetic resonance image (MRI) was used to align the PET images with the Paxinos and Watson rat brain atlas. Increased glucose metabolism was observed in the somatosensory region associated with the injection site (S1 hindlimb contralateral), S1 jaw/upper lip and cingulate cortex. Decreases were observed in the prelimbic cortex and hippocampus. Second, SNI rats were scanned 3weeks post-surgery using the same scanning paradigm, and region-of-interest analyses revealed increased metabolic activity in the contralateral S1 hindlimb. Finally, a second cohort of SNI rats was scanned while anesthetized during the tracer uptake period, and the S1 hindlimb increase was not observed. Increased brain activity in the somatosensory cortex of SNI rats resembled the activity produced with the injection of formalin, suggesting that the SNI model may produce persistent pain. The lack of increased activity in S1 hindlimb with general anesthetic demonstrates that this effect can be blocked, as well as highlights the importance of investigating brain activity in awake and behaving rodents.


Assuntos
Química Encefálica/fisiologia , Encéfalo/diagnóstico por imagem , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Animais , Comportamento Animal/fisiologia , Dor Crônica/diagnóstico por imagem , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador , Ligadura , Masculino , Neuralgia/diagnóstico por imagem , Medição da Dor , Neuropatias Fibulares/diagnóstico por imagem , Neuropatias Fibulares/metabolismo , Neuropatias Fibulares/fisiopatologia , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley , Neuropatia Tibial/diagnóstico por imagem , Neuropatia Tibial/metabolismo , Neuropatia Tibial/fisiopatologia
3.
J Neurotrauma ; 25(10): 1247-56, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18986226

RESUMO

To date, the use of autograft tissue remains the "gold standard" technique for repairing transected peripheral nerves. However, the recovery is suboptimal, and neuroactive molecules are required. In the current study, we focused our attention on vitamin D, an FDA-approved molecule whose neuroprotective and neurotrophic actions are increasingly recognized. We assessed the therapeutic potential of ergocalciferol--the plant-derived form of vitamin D, named vitamin D2--in a rat model of peripheral nerve injury and repair. The left peroneal nerve was cut out on a length of 10 mm and immediately autografted in an inverted position. After surgery, animals were treated with ergocalciferol (100 IU/kg/day) and compared to untreated animals. Functional recovery of hindlimb was measured weekly, during 10 weeks post-surgery, using a walking track apparatus and a numerical camcorder. At the end of this period, motor and sensitive responses of the regenerated axons were calculated and histological analysis was performed. We observed that vitamin D2 significantly (i) increased axogenesis and axon diameter; (ii) improved the responses of sensory neurons to metabolites such as KCl and lactic acid; and (iii) induced a fast-to-slow fiber type transition of the Tibialis anterior muscle. In addition, functional recovery was not impaired by vitamin D supplementation. Altogether, these data indicate that vitamin D potentiates axon regeneration. Pharmacological studies with various concentrations of the two forms of vitamin D (ergocalciferol vs. cholecalciferol) are now required before recommending this molecule as a potential supplemental therapeutic approach following nerve injury.


Assuntos
Axônios/efeitos dos fármacos , Ergocalciferóis/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos , Nervos Periféricos/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Animais , Axônios/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Eletrofisiologia , Ergocalciferóis/uso terapêutico , Masculino , Regeneração Nervosa/fisiologia , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nervos Periféricos/fisiopatologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Neuropatias Fibulares/tratamento farmacológico , Neuropatias Fibulares/metabolismo , Neuropatias Fibulares/fisiopatologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...