Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 750
Filtrar
1.
CNS Neurosci Ther ; 30(6): e14795, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867401

RESUMO

AIM: Recent studies have extensively investigated hypothermia as a therapeutic approach for mitigating neural damage. Despite this, bibliometric analyses specifically focusing on this area remain scarce. Consequently, this study aims to comprehensively outline the historical framework of research and to pinpoint future research directions and trends. METHODS: Articles spanning from 2003 to 2023, relevant to both "neuroprotection" and "hypothermia", were sourced from the Web of Science Core Collection. The CiteSpace software facilitated a comprehensive evaluation and analysis of these publications. This analysis included examining the annual productivity, collaboration among nations, institutions, and authors, as well as the network of co-cited references, authors and journals, and the co-occurrence of keywords, and their respective clusters and trends, all of which were visualized. RESULTS: This study included 2103 articles on the neuroprotection effects of hypothermia, noting a consistent increase in publications since 1992. The United States, the University of California System, and Ji Xunming emerged as the most productive nation, institution, and author, respectively. Analysis of the top 10 co-cited publications revealed that seven articles focused on the effects of hypothermia in infants with hypoxic-ischemic encephalopathy, while three studies addressed cardiac arrest. Shankaran S and the journal Stroke were the most frequently co-cited author and journal, respectively. Keyword cluster analysis identified ischemic stroke as the primary focus of hypothermia therapy historically, with cardiac arrest and neonatal hypoxic-ischemic encephalopathy emerging as current research foci. CONCLUSIONS: Recent studies on the neuroprotective effects of hypothermia in cardiac arrest and neonatal hypoxic-ischemic encephalopathy suggest that hypothermia may mitigate neural damage associated with these conditions. However, the application of hypothermia in the treatment of ischemic stroke remains confined to animal models and in vitro studies, with a notable absence of evidence from multicenter randomized controlled trials (RCTs). Further research is required to address this gap.


Assuntos
Bibliometria , Hipotermia Induzida , Neuroproteção , Hipotermia Induzida/tendências , Hipotermia Induzida/métodos , Humanos , Neuroproteção/fisiologia , Animais , Hipóxia-Isquemia Encefálica/terapia
2.
JAMA Neurol ; 81(6): 603-610, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38709502

RESUMO

Importance: Out-of-hospital cardiac arrest survival rates have markedly risen in the last decades, but neurological outcome only improved marginally. Despite research on more than 20 neuroprotective strategies involving patients in comas after cardiac arrest, none have demonstrated unequivocal evidence of efficacy; however, treatment with acyl-ghrelin has shown improved functional and histological brain recovery in experimental models of cardiac arrest and was safe in a wide variety of human study populations. Objective: To determine safety and potential efficacy of intravenous acyl-ghrelin to improve neurological outcome in patients in a coma after cardiac arrest. Design, Setting, and Participants: A phase 2, double-blind, placebo-controlled, multicenter, randomized clinical trial, Ghrelin Treatment of Comatose Patients After Cardiac Arrest: A Clinical Trial to Promote Cerebral Recovery (GRECO), was conducted between January 18, 2019, and October 17, 2022. Adult patients 18 years or older who were in a comatose state after cardiac arrest were assessed for eligibility; patients were from 3 intensive care units in the Netherlands. Expected death within 48 hours or unfeasibility of treatment initiation within 12 hours were exclusion criteria. Interventions: Patients were randomized to receive intravenous acyl-ghrelin, 600 µg (intervention group), or placebo (control group) within 12 hours after cardiac arrest, continued for 7 days, twice daily, in addition to standard care. Main Outcomes and Measures: Primary outcome was the score on the Cerebral Performance Categories (CPC) scale at 6 months. Safety outcomes included any serious adverse events. Secondary outcomes were mortality and neuron-specific enolase (NSE) levels on days 1 and 3. Results: A total of 783 adult patients in a coma after cardiac arrest were assessed for eligibility, and 160 patients (median [IQR] age, 68 [57-75] years; 120 male [75%]) were enrolled. A total of 81 patients (51%) were assigned to the intervention group, and 79 (49%) were assigned to the control group. The common odds ratio (OR) for any CPC improvement in the intervention group was 1.78 (95% CI, 0.98-3.22; P = .06). This was consistent over all CPC categories. Mean (SD) NSE levels on day 1 after cardiac arrest were significantly lower in the intervention group (34 [6] µg/L vs 56 [13] µg/L; P = .04) and on day 3 (28 [6] µg/L vs 52 [14] µg/L; P = .08). Serious adverse events were comparable in incidence and type between the groups. Mortality was 37% (30 of 81) in the intervention group vs 51% (40 of 79) in the control group (absolute risk reduction, 14%; 95% CI, -2% to 29%; P = .08). Conclusions and Relevance: In patients in a coma after cardiac arrest, intravenous treatment with acyl-ghrelin was safe and potentially effective to improve neurological outcome. Phase 3 trials are needed for conclusive evidence. Trial Registration: Clinicaltrialsregister.eu: EUCTR2018-000005-23-NL.


Assuntos
Coma , Grelina , Fármacos Neuroprotetores , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Grelina/uso terapêutico , Método Duplo-Cego , Idoso , Coma/etiologia , Fármacos Neuroprotetores/uso terapêutico , Neuroproteção/fisiologia , Parada Cardíaca/complicações , Parada Cardíaca Extra-Hospitalar/complicações
3.
Prog Neurobiol ; 237: 102612, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642602

RESUMO

Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.


Assuntos
Precursor de Proteína beta-Amiloide , Giro Denteado , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos , Convulsões , Animais , Giro Denteado/metabolismo , Camundongos , Convulsões/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Neuroproteção/fisiologia , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Humanos
4.
Exp Neurol ; 377: 114784, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642665

RESUMO

Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects. Considering that chemokine receptors increase dramatically after SCI, viral macrophage inflammatory protein II (vMIP-II) is a broad-spectrum chemokine receptor binding peptide, and lysosomal associated membrane protein 2b (Lamp2b) is the key membrane component of Exos, we speculated that vMIP-II-Lamp2b gene-modified M2 macrophage-derived Exos (vMIP-II-Lamp2b-M2-Exo) not only have anti-inflammatory properties, but also can target the injured area by vMIP-II. In this study, using a murine contusive SCI model, we revealed that vMIP-II-Lamp2b-M2-Exo could target the chemokine receptors which highly expressed in the injured spinal cords, inhibit some key chemokine receptor signaling pathways (such as MAPK and Akt), further inhibit proinflammatory factors (such as IL-1ß, IL-6, IL-17, IL-18, TNF-α, and iNOS), and promote anti-inflammatory factors (such as IL-4 and Arg1) productions, and the transformation of microglia/macrophages from M1 into M2. Moreover, the improved histological and functional recoveries were also found. Collectively, our results suggest that vMIP-II-Lamp2b-M2-Exo may provide neuroprotection by targeting the injured spinal cord, inhibiting some chemokine signals, reducing proinflammatory factor production and modulating microglia/macrophage polarization.


Assuntos
Exossomos , Macrófagos , Camundongos Endogâmicos C57BL , Microglia , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/genética , Exossomos/metabolismo , Exossomos/transplante , Camundongos , Macrófagos/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Feminino , Neuroproteção/fisiologia , Transdução de Sinais/efeitos dos fármacos , Quimiocinas/metabolismo
5.
Brain Res Bull ; 212: 110964, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670471

RESUMO

Ischemic stroke (IS), primarily caused by cerebrovascular obstruction, results in severe neurological deficits and has emerged as a leading cause of death and disability worldwide. Recently, there has been increasing exploration of the neuroprotective properties of the inert gas argon. Argon has exhibited impressive neuroprotection in many in vivo and ex vivo experiments without signs of adverse effects, coupled with the advantages of being inexpensive and easily available. However, the efficient administration strategy and underlying mechanisms of neuroprotection by argon in IS are still unclear. This review summarizes current research on the neuroprotective effects of argon in IS with the goal to provide effective guidance for argon application and to elucidate the potential mechanisms of argon neuroprotection. Early and appropriate argon administration at as high a concentration as possible offers favorable neuroprotection in IS. Argon inhalation has been shown to provide some long-term protection benefits. Argon provides the anti-oxidative stress, anti-inflammatory and anti-apoptotic cytoprotective effects mainly around Toll-like receptor 2/4 (TLR2/4), mediated by extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor kappa-B (NF-ĸB) and B-cell leukemia/lymphoma 2 (Bcl-2). Therefore, argon holds significant promise as a novel clinical neuroprotective gas agent for ischemic stroke after further researches to identify the optimal application strategy and elucidate the underlying mechanism.


Assuntos
Argônio , AVC Isquêmico , Fármacos Neuroprotetores , Argônio/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Humanos , AVC Isquêmico/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
6.
ACS Chem Neurosci ; 15(11): 2223-2232, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38634698

RESUMO

Neuronal death resulting from ischemic stroke is the primary cause of adult mortality and disability, and effective neuroprotective agents for poststroke intervention are still lacking. Remote ischemic postconditioning (RIPostC) has demonstrated significant protective effects against ischemia in various organs; however, the specific mechanisms are not fully understood. This study investigated the potential neuroprotective mechanisms of RIPostC in the context of ischemic stroke. Using a rat model of middle cerebral artery occlusion, we found that RIPostC mitigated neurological damage, improved movement in the open-field test, and protected against neuronal apoptosis. In terms of energy metabolism, RIPostC enhanced ATP levels, suppressed lactate content, and increased the production of ketone bodies (KBs). In the ferroptosis assay, RIPostC protected against lipoperoxidation, reversed the reduction of glutathione peroxidase 4 (GPX4), and mitigated the excessive expression of long-chain acyl-CoA synthetase family member 4 (ACSL4). In oxygen-glucose deprivation/reoxygenation-treated HT22 cells, KBs maintained GPX4 levels, suppressed ACSL4 expression, and preserved the mitochondrial cristae number. However, the effect of KBs on the expression of GPX4, ACSL4, and the number of mitochondrial cristae was blocked by erastin. Moreover, both RIPostC and KBs reduced total iron and ferrous ion content by repressing iron transporters both in vitro and in vivo. In conclusion, KBs-induced mitigation of ferroptosis could represent a new therapeutic mechanism for RIPostC in treating stroke.


Assuntos
Coenzima A Ligases , Ferroptose , Infarto da Artéria Cerebral Média , Pós-Condicionamento Isquêmico , Corpos Cetônicos , Neuroproteção , Ferroptose/fisiologia , Animais , Ratos , Pós-Condicionamento Isquêmico/métodos , Corpos Cetônicos/metabolismo , Masculino , Coenzima A Ligases/metabolismo , Neuroproteção/fisiologia , Ratos Sprague-Dawley , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , AVC Isquêmico/metabolismo , Acidente Vascular Cerebral/metabolismo , Neurônios/metabolismo
7.
JAMA Neurol ; 81(5): 553-554, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526471

RESUMO

This cohort study calculates clinical trial sample sizes powered by visual pathway outcomes of acute optic neuritis in neuroprotection research.


Assuntos
Neuroproteção , Humanos , Tamanho da Amostra , Neuroproteção/fisiologia , Vias Visuais
8.
Nat Neurosci ; 27(5): 901-912, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514857

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination of the central nervous system (CNS). Autologous hematopoietic cell transplantation (HCT) shows promising benefits for relapsing-remitting MS in open-label clinical studies, but the cellular mechanisms underlying its therapeutic effects remain unclear. Using single-nucleus RNA sequencing, we identify a reactive myeloid cell state in chronic experimental autoimmune encephalitis (EAE) associated with neuroprotection and immune suppression. HCT in EAE mice results in an increase of the neuroprotective myeloid state, improvement of neurological deficits, reduced number of demyelinated lesions, decreased number of effector T cells and amelioration of reactive astrogliosis. Enhancing myeloid cell incorporation after a modified HCT further improved these neuroprotective effects. These data suggest that myeloid cell manipulation or replacement may be an effective therapeutic strategy for chronic inflammatory conditions of the CNS.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Células Mieloides , Animais , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/patologia , Camundongos , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Neuroproteção/fisiologia
9.
Brain Res ; 1833: 148884, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527712

RESUMO

Cerebral small vessel disease (cSVD) is a common neurological finding characterized by abnormalities of the small blood vessels in the brain. Previous research has established a strong connection between cSVD and stroke, as well as neurodegenerative disorders, notably Alzheimer's disease (AD) and other dementias. As the search for effective interventions continues, physical activity (PA) has emerged as a potential preventative and therapeutic avenue. This review synthesizes the human and animal literature on the influence of PA on cSVD, highlighting the importance of determining optimal exercise protocols, considering aspects such as intensity, duration, timing, and exercise type. Furthermore, the necessity of widening the age bracket in research samples is discussed, ensuring a holistic understanding of the interventions across varying pathological stages of the disease. The review also suggests the potential of exploring diverse biomarkers and risk profiles associated with clinically significant outcomes. Moreover, we review findings demonstrating the beneficial effects of PA in various rodent models of cSVD, which have uncovered numerous mechanisms of neuroprotection, including increases in neuroplasticity and integrity of the vasculature and white matter; decreases in inflammation, oxidative stress, and mitochondrial dysfunction; and alterations in amyloid processing and neurotransmitter signaling. In conclusion, this review highlights the potential of physical activity as a preventive strategy for addressing cSVD, offering insights into the need for refining exercise parameters, diversifying research populations, and exploring novel biomarkers, while shedding light on the intricate mechanisms through which exercise confers neuroprotection in both humans and animal models.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Exercício Físico , Neuroproteção , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Humanos , Exercício Físico/fisiologia , Animais , Neuroproteção/fisiologia , Encéfalo/fisiopatologia , Encéfalo/patologia
10.
J Physiol ; 602(6): 1175-1197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431908

RESUMO

Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Selênio , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Ratos , Animais , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Neuroproteção/fisiologia , Proteína 2 Associada à Membrana da Vesícula , Selenoproteína P , Oxigênio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Glucose/metabolismo , Proteínas Qa-SNARE
11.
Methods Mol Biol ; 2761: 337-354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427249

RESUMO

The gradual loss of neurons' structure and function in the central nervous system is known as neurodegeneration. It is a defining feature of several incapacitating illnesses, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The buildup of amyloid beta (Aß) protein in the brain is one of the several variables linked to neurodegeneration. We shall delve into the fascinating realm of Aß in this chapter and examine its role in the etiology of neurodegenerative illnesses. Insights into the processes through which Aß exerts its toxicity are crucial for the creation of therapeutic approaches to treat these life-threatening diseases. Despite the presence of multiple obstacles, recent research shows promise for the development of some new anti-Aß therapies that will help millions of people suffering from neurodegeneration. In this chapter, we discuss the role of Aß in contributing to neurotoxicity and several anti-Aß therapies for neuroprotection.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Peptídeos beta-Amiloides/metabolismo , Neuroproteção/fisiologia , Doença de Alzheimer/metabolismo , Doença de Parkinson/terapia
13.
Neurosci Lett ; 823: 137662, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38286398

RESUMO

Numerous micro-RNAs (miRNAs) affect neurodevelopment and neuroprotection, but potential roles of many miRNAs in regulating these processes are still unknown. Here, we used the retinal ganglion cell (RGC) central nervous system (CNS) projection neuron and optic nerve crush (ONC) injury model, to optimize a mature miRNA arm-specific quantification method for characterizing the developmental regulation of miR-1247-5p in RGCs, investigated whether injury affects its expression, and tested whether upregulating miR-1247-5p-mimic in RGCs promotes neuroprotection and axon regeneration. We found that, miR-1247-5p is developmentally-downregulated in RGCs, and is further downregulated after ONC. Importantly, RGC-specific upregulation of miR-1247-5p promoted neuroprotection and axon regeneration after injury in vivo. To gain insight into the underlying mechanisms, we analyzed by bulk-mRNA-seq embryonic and adult RGCs, along with adult RGCs transduced by miR-1247-5p-expressing viral vector, and identified developmentally-regulated cilial and mitochondrial biological processes, which were reinstated to their embryonic levels in adult RGCs by upregulation of miR-1247-5p. Since axon growth is also a developmentally-regulated process, in which mitochondrial dynamics play important roles, it is possible that miR-1247-5p promoted neuroprotection and axon regeneration through regulating mitochondrial functions.


Assuntos
MicroRNAs , Traumatismos do Nervo Óptico , Humanos , Neuroproteção/fisiologia , Axônios/metabolismo , Regulação para Cima , Regeneração Nervosa/genética , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
14.
Cells ; 12(24)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132117

RESUMO

Glaucoma, a leading cause of irreversible blindness globally, primarily affects retinal ganglion cells (RGCs). This review dives into the anatomy of RGC subtypes, covering the different underlying theoretical mechanisms that lead to RGC susceptibility in glaucoma, including mechanical, vascular, excitotoxicity, and neurotrophic factor deficiency, as well as oxidative stress and inflammation. Furthermore, we examined numerous imaging methods and functional assessments to gain insight into RGC health. Finally, we investigated the current possible neuroprotective targets for RGCs that could help with future glaucoma research and management.


Assuntos
Glaucoma , Células Ganglionares da Retina , Humanos , Neuroproteção/fisiologia
15.
Cells ; 12(19)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37830626

RESUMO

Axonal degeneration resulting from optic nerve damage can lead to the progressive death of retinal ganglion cells (RGCs), culminating in irreversible vision loss. We contrasted two methods for inducing optic nerve damage: optic nerve compression (ONCo) and optic nerve crush (ONCr). These were assessed for their respective merits in simulating traumatic optic neuropathies and neurodegeneration. We also administered neural progenitor cells (NPCs) into the subtenon space to validate their potential in mitigating optic nerve damage. Our findings indicate that both ONCo and ONCr successfully induced optic nerve damage, as shown by increases in ischemia and expression of genes linked to neuronal regeneration. Post NPC injection, recovery in the expression of neuronal regeneration-related genes was more pronounced in the ONCo model than in the ONCr model, while inflammation-related gene expression saw a better recovery in ONCr. In addition, the proteomic analysis of R28 cells in hypoxic conditions identified Vps35 and Syntaxin12 genes. Vps35 preserved the mitochondrial function in ONCo, while Syntaxin12 appeared to restrain inflammation via the Wnt/ß-catenin signaling pathway in ONCr. NPCs managed to restore damaged RGCs by elevating neuroprotection factors and controlling inflammation through mitochondrial homeostasis and Wnt/ß-catenin signaling in hypoxia-injured R28 cells and in both animal models. Our results suggest that ischemic injury and crush injury cause optic nerve damage via different mechanisms, which can be effectively simulated using ONCo and ONCr, respectively. Moreover, cell-based therapies such as NPCs may offer promising avenues for treating various optic neuropathies, including ischemic and crush injuries.


Assuntos
Traumatismos do Nervo Óptico , Animais , Axônios/metabolismo , Inflamação/metabolismo , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Neuroproteção/genética , Neuroproteção/fisiologia , Traumatismos do Nervo Óptico/genética , Proteômica , Células Ganglionares da Retina/metabolismo , Células-Tronco/metabolismo , Ratos
16.
Methods Mol Biol ; 2708: 99-106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37558963

RESUMO

Optic nerve crush injury is a useful model for studying the response of central nervous system neurons (CNS) to injury. A particular focus of this model has been to elucidate therapeutic factors in promoting neuroprotection and axon regeneration after injury. Here we describe a step-by-step protocol in accessing the optic nerve and creating a crush injury. This can be used to create a reproducible model to study the response of retinal ganglion cells (RGC), the main projection neurons of the eye, to injury.


Assuntos
Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Neuroproteção/fisiologia , Roedores , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Nervo Óptico , Compressão Nervosa , Sobrevivência Celular , Modelos Animais de Doenças
17.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768299

RESUMO

For the past several years, fundamental research on Sigma-1R (S1R) protein has unveiled its necessity for maintaining proper cellular homeostasis through modulation of calcium and lipid exchange between the endoplasmic reticulum (ER) and mitochondria, ER-stress response, and many other mechanisms. Most of these processes, such as ER-stress response and autophagy, have been associated with neuroprotective roles. In fact, improving these mechanisms using S1R agonists was beneficial in several brain disorders including neurodegenerative diseases. In this review, we will examine S1R subcellular localization and describe S1R-associated biological activity within these specific compartments, i.e., the Mitochondrion-Associated ER Membrane (MAM), ER-Lipid Droplet (ER-LD) interface, ER-Plasma Membreane (ER-PM) interface, and the Nuclear Envelope (NE). We also discussed how the dysregulation of these pathways contributes to neurodegenerative diseases, while highlighting the cellular mechanisms and key binding partners engaged in these processes.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Doenças Neurodegenerativas , Neuroproteção , Receptores sigma , Humanos , Autofagia/genética , Autofagia/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neuroproteção/genética , Neuroproteção/fisiologia , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Receptores sigma/genética , Receptores sigma/metabolismo , Receptor Sigma-1
18.
Vision Res ; 206: 108196, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36812679

RESUMO

Glaucoma is a group of diseases typically characterized by the degeneration of the optic nerve and is one of the world's leading causes of blindness. Although there is no cure for glaucoma, reducing intraocular pressure is an approved treatment to delay optic nerve degeneration and retinal ganglion cell (RGC) death in most patients. Recent clinical trials have evaluated the safety and efficacy of gene therapy vectors for the treatment of inherited retinal degenerations (IRDs), and the results are promising, generating enthusiasm for the treatment of other retinal diseases. While there have been no reports on successful clinical trials for gene therapy-based neuroprotective treatment of glaucoma, and only a few studies assessing the efficacy of gene therapy vectors for the treatment of Leber hereditary optic neuropathy (LHON), the potential for neuroprotective treatment of glaucoma and other diseases affecting RGCs is still widely recognized. Here, we review recent progress and cover current limitations pertaining to targeting RGCs with adeno-associated virus-based gene therapy for the treatment of glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Humanos , Animais , Neuroproteção/fisiologia , Dependovirus/genética , Glaucoma/terapia , Glaucoma/genética , Terapia Genética , Modelos Animais de Doenças
19.
Transl Stroke Res ; 14(5): 790-801, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214939

RESUMO

Neuron-specific conventional protein kinase C (cPKC)γ mediates cerebral hypoxic preconditioning (HPC). In parallel, autophagy plays a prosurvival role in ischemic preconditioning (IPC) against ischemic stroke. However, the effect of cPKCγ on autophagy in IPC still remains to be addressed. In this study, adult and postnatal 1-day-old C57BL/6 J wild-type (cPKCγ+/+) and knockout (cPKCγ-/-) mice were used to establish in vivo and in vitro IPC models. The results showed that IPC pretreatment alleviated neuronal damage caused by lethal ischemia, which could be suppressed by autophagy inhibitor 3-MA or bafilomycin A1. Meanwhile, cPKCγ knockout blocked IPC-induced neuroprotection, accompanied by significant increase of LC3-I to LC3-II conversion and Beclin 1 protein level, and a significant decrease in p62 protein level. Immunofluorescent staining results showed a decrease of LC3 puncta numbers in IPC-treated cPKCγ+/+ neurons with fatal ischemia, which was reversed in cPKCγ-/- neurons. In addition, cPKCγ-modulated phosphorylation of mTOR at Ser 2448 and ULK1 at Ser 555, rather than p-Thr-172 AMPK, was detected in IPC-pretreated neurons upon lethal ischemic exposure. The present data demonstrated that cPKCγ-modulated autophagy via the mTOR-ULK1 pathway likely modulated IPC-induced neuroprotection.


Assuntos
Isquemia Encefálica , Precondicionamento Isquêmico , AVC Isquêmico , Camundongos , Animais , Isquemia Encefálica/metabolismo , Neuroproteção/fisiologia , Camundongos Endogâmicos C57BL , Isquemia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Autofagia
20.
Cell Death Dis ; 13(7): 613, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840554

RESUMO

Insulin-like growth factor I (IGF-1) is a neurotrophic factor and is the ligand for insulin-like growth factor 1 receptor (IGF-1R). Reduced expression of IGF-1 has been reported to cause deafness, mental retardation, postnatal growth failure, and microcephaly. IGF-1R is expressed in the retina and photoreceptor neurons; however, its functional role is not known. Global IGF-1 KO mice have age-related vision loss. We determined that conditional deletion of IGF-1R in photoreceptors and pan-retinal cells produces age-related visual function loss and retinal degeneration. Retinal pigment epithelial cell-secreted IGF-1 may be a source for IGF-1R activation in the retina. Altered retinal, fatty acid, and phosphoinositide metabolism are observed in photoreceptor and retinal cells lacking IGF-1R. Our results suggest that the IGF-1R pathway is indispensable for photoreceptor survival, and activation of IGF-1R may be an essential element of photoreceptor and retinal neuroprotection.


Assuntos
Fator de Crescimento Insulin-Like I , Células Fotorreceptoras de Vertebrados , Degeneração Retiniana , Animais , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Neurônios/metabolismo , Neuroproteção/genética , Neuroproteção/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...