Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
1.
Fa Yi Xue Za Zhi ; 40(3): 227-236, 2024 Jun 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39166303

RESUMO

OBJECTIVES: To screen biomarkers for forensic identification of acute myocardial infarction (AMI) by non-targeted metabolomic studies on changes of urine metabolites in rats with AMI. METHODS: The rat models of the sham surgery group, AMI group and hyperlipidemia + acute myocardial infarction (HAMI) group were established. Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the changes of urine metabolic spectrometry in AMI rats. Principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis were used to screen differential metabolites. The MetaboAnalyst database was used to analyze the metabolic pathway enrichment and access the predictive ability of differential metabolites. RESULTS: A total of 40 and 61 differential metabolites associated with AMI and HAMI were screened, respectively. Among them, 22 metabolites were common in both rat models. These small metabolites were mainly concentrated in the niacin and nicotinamide metabolic pathways. Within the 95% confidence interval, the area under the curve (AUC) values of receiver operator characteristic curve for N8-acetylspermidine, 3-methylhistamine, and thymine were greater than 0.95. CONCLUSIONS: N8-acetylspermidine, 3-methylhistamine, and thymine can be used as potential biomarkers for AMI diagnosis, and abnormal metabolism in niacin and nicotinamide may be the main causes of AMI. This study can provide reference for the mechanism and causes of AMI identification.


Assuntos
Biomarcadores , Modelos Animais de Doenças , Metabolômica , Infarto do Miocárdio , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/urina , Ratos , Metabolômica/métodos , Masculino , Biomarcadores/urina , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Ratos Sprague-Dawley , Análise de Componente Principal , Análise Discriminante , Espectrometria de Massas/métodos , Niacina/metabolismo , Niacina/urina , Hiperlipidemias/metabolismo , Niacinamida/urina , Niacinamida/metabolismo , Niacinamida/análogos & derivados , Redes e Vias Metabólicas , Curva ROC , Análise dos Mínimos Quadrados , Medicina Legal/métodos , Metaboloma
2.
Anal Chem ; 96(36): 14499-14507, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39183562

RESUMO

Metabolic abnormalities play a pivotal role in various pathological conditions, necessitating the quantification of specific metabolites for diagnosis. While mass spectrometry remains the primary method for metabolite measurement, its limited throughput underscores the need for biosensors capable of rapid detection. Previously, we reported that pillar[6]arene with 12 carboxylate groups (P6AC) forms host-guest complexes with 1-methylnicotinamide (1-MNA), which is produced in vivo by nicotinamide N-methyltransferase (NNMT). P6AC acts as a biosensor by measuring the fluorescence quenching caused by photoinduced electron transfer upon 1-MNA binding. However, the low sensitivity of P6AC makes it impractical for detecting 1-MNA in unpurified biological samples. In this study, we found that P6A with 12 sulfonate groups (P6AS) is a specific and potent supramolecular host for 1-MNA interactions even in biological samples. The 1-MNA binding affinity of P6AS in water was found to be (5.68 ± 1.02) × 106 M-1, which is approximately 700-fold higher than that of P6AC. Moreover, the 1-MNA detection limit of P6AS was determined to be 2.84 × 10-7 M, which is substantially lower than that of P6AC. Direct addition of P6AS to culture medium was sufficient to quantify 1-MNA produced by cancer cells. Furthermore, this sensor was able to specifically detect 1-MNA even in unpurified human urine. P6AS therefore enables rapid and high-throughput quantification of 1-MNA, and further improvement of our strategy will contribute to the establishment of high-throughput screening of NNMT inhibitors, diagnosis of liver diseases, and imaging of human cancer cells in vivo.


Assuntos
Técnicas Biossensoriais , Humanos , Técnicas Biossensoriais/métodos , Niacina/metabolismo , Niacina/química , Nicotinamida N-Metiltransferase/metabolismo , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Calixarenos/química , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Niacinamida/urina , Ensaios de Triagem em Larga Escala
3.
Biotechnol J ; 19(8): e2400311, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39167557

RESUMO

In the previous study, the culture medium was treated with nicotinamide adenine dinucleotide (NAD+) under the hypothesis that NAD+ regeneration is a major factor causing excessive lactate accumulation in Chinese hamster ovary (CHO) cells. The NAD+ treatment improved metabolism by not only reducing the Warburg effect but also enhancing oxidative phosphorylation, leading to enhanced antibody production. Building on this, four NAD+ precursors - nicotinamide mononucleotide (NMN), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide (NAM) - were tested to elevate intracellular NAD+ levels more economically. First, the ability of CHO cells to utilize both the salvage and Preiss-Handler pathways for NAD+ biosynthesis was verified, and then the effect of NAD+ precursors on CHO cell cultures was evaluated. These precursors increased intracellular NAD+ levels by up to 70.6% compared to the non-treated group. Culture analysis confirmed that all the precursors induced metabolic changes and that NMN, NA, and NR improved productivity akin to NAD+ treatment, with comparable integral viable cell density. Despite the positive effects such as the increase in the specific productivity and changes in cellular glucose metabolism, none of the precursors surpassed direct NAD+ treatment in antibody titer, presumably due to the reduction in nucleoside availability, as evidenced by the decrease in ATP levels in the NAD+ precursor-treated groups. These results underscore the complexity of cellular metabolism as well as the necessity for further investigation to optimize NAD+ precursor treatment strategies, potentially with the supplementation of nucleoside precursors. Our findings suggest a feasible approach for improving CHO cell culture performances by using NAD+ precursors as medium and feed components for the biopharmaceutical production.


Assuntos
Cricetulus , NAD , Niacinamida , Células CHO , Animais , NAD/metabolismo , Niacinamida/metabolismo , Niacinamida/análogos & derivados , Meios de Cultura/química , Meios de Cultura/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Niacina/metabolismo , Compostos de Piridínio/metabolismo , Cricetinae , Técnicas de Cultura de Células/métodos , Anticorpos Monoclonais/metabolismo , Glucose/metabolismo
4.
Food Res Int ; 188: 114309, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823823

RESUMO

Previous studies have demonstrated that Ligilactobacillus salivarius CCFM 1266 exhibits anti-inflammatory properties and the capability to synthesize niacin. This study aimed to investigate the fermentative abilities of L. salivarius CCFM 1266 in fermented milk. Metabonomic analysis revealed that fermentation by L. salivarius CCFM 1266 altered volatile flavor compounds and metabolite profiles, including heptanal, nonanal, and increased niacin production. Genomic investigations confirmed that L. salivarius CCFM 1266 possess essential genes for the metabolism of fructose and mannose, affirming its proficiency in utilizing fructooligosaccharides and mannan oligosaccharides. The addition of fructooligosaccharides and mannan oligosaccharides during the fermentation process significantly facilitated the proliferation of L. salivarius CCFM 1266 in fermented milk, with growth exceeding 107 colony-forming units (CFU)/mL. This intervention not only augmented the microbial density but also modified the metabolite composition of fermented milk, resulting in an elevated presence of advantageous flavor compounds such as nonanal, 2,3-pentanedione, and 3-methyl-2-butanone. However, its influence on improving the texture of fermented milk was observed to be minimal. Co-fermentation of L. salivarius CCFM 1266 with commercial fermentation starters indicated that L. salivarius CCFM 1266 was compatible, similarly altering metabolite composition and increasing niacin content in fermented milk. In summary, the findings suggest that L. salivarius CCFM 1266 holds substantial promise as an adjunctive fermentation starter, capable of enhancing the nutritional diversity of fermented milk products.


Assuntos
Produtos Fermentados do Leite , Fermentação , Ligilactobacillus salivarius , Metabolômica , Metabolômica/métodos , Ligilactobacillus salivarius/metabolismo , Produtos Fermentados do Leite/microbiologia , Niacina/metabolismo , Microbiologia de Alimentos , Laticínios/microbiologia , Paladar , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Animais
5.
Nat Commun ; 15(1): 5364, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918366

RESUMO

A surprisingly clear picture of the allosteric mechanism connecting G protein-coupled receptor agonists with G protein binding-and back - is revealed by a puzzle of thirty novel 3D structures of the hydroxycarboxylic acid receptor 2 (HCAR2) in complex with eight different orthosteric and a single allosteric agonist. HCAR2 is a sensor of ß-hydroxybutyrate, niacin and certain anti-inflammatory drugs. Surprisingly, agonists with and without on-target side effects bound very similarly and in a completely occluded orthosteric binding site. Thus, despite the many structures we are still left with a pertinent need to understand the molecular dynamics of this and similar systems.


Assuntos
Proteínas de Ligação ao GTP , Ligação Proteica , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/agonistas , Proteínas de Ligação ao GTP/metabolismo , Sítios de Ligação , Niacina/metabolismo , Niacina/química , Regulação Alostérica , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/metabolismo , Simulação de Dinâmica Molecular
6.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38637306

RESUMO

Anaerobic alcoholic fermentation, particularly in high-sugar environments, presents metabolic challenges for yeasts. Crabtree-positive yeasts, including Saccharomyces cerevisiae, prefer fermentation even in the presence of oxygen. These yeasts rely on internal NAD+ recycling and extracellular assimilation of its precursor, nicotinic acid (vitamin B3), rather than de novo NAD+ production. Surprisingly, nicotinic acid assimilation is poorly characterized, even in S. cerevisiae. This study elucidated the timing of nicotinic acid uptake during grape juice-like fermentation and its impact on NAD(H) levels, the NAD+/NADH ratio, and metabolites produced. Complete uptake of extracellular nicotinic acid occurred premid-exponential phase, thereafter small amounts of vitamin B3 were exported back into the medium. Suboptimal levels of nicotinic acid were correlated with slower fermentation and reduced biomass, disrupting redox balance and impeding NAD+ regeneration, thereby affecting metabolite production. Metabolic outcomes varied with nicotinic acid concentrations, linking NAD+ availability to fermentation efficiency. A model was proposed encompassing rapid nicotinic acid uptake, accumulation during cell proliferation, and recycling with limited vitamin B3 export. This research enhances the understanding of nicotinic acid uptake dynamics during grape juice-like fermentation. These insights contribute to advancing yeast metabolism research and have profound implications for the enhancement of biotechnological practices and the wine-making industry.


Assuntos
Fermentação , NAD , Niacina , Oxirredução , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Niacina/metabolismo , NAD/metabolismo , Etanol/metabolismo , Coenzimas/metabolismo
7.
Food Chem ; 451: 139426, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670026

RESUMO

Energy metabolism exerts profound impacts on flesh quality. Niacin can be transformed into nicotinamide adenine dinucleotide (NAD), which is indispensable to energy metabolism. To investigate whether niacin deficiency could affect energy metabolism and flesh quality, six diets with graded levels of 0.49, 9.30, 21.30, 33.30, 45.30 and 57.30 mg/kg niacin were fed to grass carp (Ctenopharyngodon idella) for 63 days. The results showed that niacin deficiency declined flesh quality by changing amino acid and fatty acid profiles, decreasing shear force, increasing cooking loss and accelerating pH decline. The accelerated pH decline might be associated with enhanced glycolysis as evident by increased hexokinase (HK), pyruvate kinase (PK) and lactic dehydrogenase (LDH) activities, and mitochondrial dysfunction as evident by destroyed mitochondrial morphology, impaired respiratory chain complex I and antioxidant ability. Based on PWG and cooking loss, the niacin requirements for sub-adult grass carp were 31.95 mg/kg and 29.66 mg/kg diet, respectively.


Assuntos
Carpas , Glicólise , Mitocôndrias , Niacina , Animais , Carpas/metabolismo , Niacina/metabolismo , Niacina/deficiência , Mitocôndrias/metabolismo , Ração Animal/análise , Homeostase , Culinária , Carne/análise
8.
Cancer Sci ; 115(7): 2473-2485, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679799

RESUMO

Inflammatory bowel disease (IBD) is one of the intractable diseases. Nutritional components associated with IBD have been identified, and it is known that excessive methionine intake exacerbates inflammation, and that tryptophan metabolism is involved in inflammation. Analysis of the gut microbiota has also progressed, where Lactobacillus regulate immune cells in the intestine and suppress inflammation. However, whether the methionine and tryptophan metabolic pathways affect the growth of intestinal Lactobacillus is unknown. Here we show how transient methionine, tryptophan, and niacin deficiency affects the host and gut microbiota in mouse models of colitis (induced by dextran sodium sulfate) fed a methionine-deficient diet (1K), tryptophan and niacin-deficient diet (2K), or methionine, tryptophan, and niacin-deficient diet (3K). These diets induced body weight decrease and 16S rRNA analysis of mouse feces revealed the alterations in the gut microbiota, leading to a dramatic increase in the proportion of Lactobacillus in mice. Intestinal RNA sequencing data confirmed that the expression of several serine proteases and fat-metabolizing enzymes were elevated in mice fed with methionine, tryptophan, and niacin (MTN) deficient diet. In addition, one-carbon metabolism and peroxisome proliferator-activated receptor (PPAR) pathway activation were also induced with MTN deficiency. Furthermore, changes in the expression of various immune-related cytokines were observed. These results indicate that methionine, tryptophan, and niacin metabolisms are important for the composition of intestinal bacteria and host immunity. Taken together, MTN deficiencies may serve as a Great Reset of gut microbiota and host gene expression to return to good health.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Metionina , Niacina , Triptofano , Animais , Metionina/deficiência , Metionina/metabolismo , Niacina/metabolismo , Niacina/deficiência , Camundongos , Triptofano/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Proteólise , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Colite/metabolismo , Colite/microbiologia , Colite/induzido quimicamente , Colite/imunologia , Lactobacillus/metabolismo
9.
J Sci Food Agric ; 104(11): 6844-6854, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38578648

RESUMO

BACKGROUND: In the kynurenine pathway, it is reported that the essential amino acid tryptophan forms nicotinic acid (NA, vitamin B3) in biological systems. This pathway is part of the de novo pathway to perform nicotinamide adenine dinucleotide (NAD+) biosynthesis. Additionally, biosynthesis of NAD+ via the Preiss-Handler pathway involves NA and its analogue nicotinamide, both designated as niacin. Previous attempts were successful in converting myosmine (MYO) by organic synthesis to NA, and the assumption was that the alkaloid MYO, which is taken in from food, can be converted into NA by biological oxidation. RESULT: Incubation of HepG2 cells with MYO yielded NA. Moreover, a significant increase of NAD+ compared with the control has been found. CONCLUSION: Hence, MYO could be assumed to be the hitherto unknown origin of an alternative NA biosynthesis additionally influencing NAD+ biosynthesis positively. This novel MYO pathway may open new perspectives to improve knowledge and relevance of NA and NAD+ biosynthesis and bioactivation in cells and, moreover, in food staples, food, and diet. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Alcaloides , NAD , Humanos , NAD/metabolismo , Células Hep G2 , Alcaloides/metabolismo , Alcaloides/biossíntese , Niacina/metabolismo , Niacinamida/metabolismo
10.
Physiol Rep ; 12(8): e16019, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627220

RESUMO

Inactivity can lead to muscle atrophy and capillary regression in skeletal muscle. Niacin (NA), known for inducing hypermetabolism, may help prevent this capillary regression. In this study involving adult female Sprague-Dawley rats, the animals were randomly assigned to one of four groups: control (CON), hindlimb unloading (HU), NA, and HU with NA supplementation (HU + NA). For a period of 2 weeks, the rats in the HU and HU + NA groups underwent HU, while those in the NA and HU + NA groups received NA (750 mg/kg) twice daily through oral administration. The results demonstrated that HU lowered capillary number, luminal diameter, and capillary volume, as well as decreased succinate dehydrogenase activity, slow fiber composition, and PGC-1α expression within the soleus muscle. However, NA supplementation prevented these alterations in capillary structure due to unloading by stimulating PGC-1α factors and inhibiting mitochondrial dysfunction. Therefore, NA supplementation could serve as a potential therapeutic approach for preserving the capillary network and mitochondrial metabolism of muscle fibers during periods of inactivity.


Assuntos
Niacina , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Niacina/farmacologia , Niacina/metabolismo , Niacina/uso terapêutico , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Suplementos Nutricionais , Elevação dos Membros Posteriores/métodos
11.
J Nutr Sci Vitaminol (Tokyo) ; 70(1): 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417847

RESUMO

Niacin is involved in many biological reactions relating energy metabolism, redox reactions, DNA repair and longevity. Since niacin deficiency has been reported in alcoholic patients, and niacin coenzyme NAD is used as substrate to dehydrogenate ethanol in the liver, ethanol consumption can be a factor to impair niacin nutritional status. We have recently established the niacin insufficient model mice using kynurenine 3-monooxygenase knock out (KMO-/-) mice with niacin-limited diet, which lack the de novo NAD synthesis pathway from tryptophan. To evaluate the effects of chronic ethanol intake on niacin nutritional status, 4 wk old KMO-/- mice were fed 4 or 30 mg/kg nicotinic acid containing diets with or without 15% ethanol for 35 d. The mice fed 4 mg/kg nicotinic acid diet with ethanol showed lower body weight gain and niacin nutritional markers such as liver and blood NAD, and urine nicotinamide metabolites than the mice without ethanol. These animals did not show any difference in the NAD synthesis, NAD salvage and nicotinamide catabolic pathways. Chronic ethanol intake failed to affect any indices in the mice fed the 30 mg/kg nicotinic acid diet. When the diet was exchanged the 4 mg/kg for 30 mg/kg nicotinic acid diet to the mice showed chronic ethanol-induced growth retardation, their body weight rapidly increased. These results show that chronic ethanol intake impairs niacin nutritional status in the niacin insufficient mice, and enough niacin intake can prevent this impairment. Our findings also suggest that chronic ethanol intake increases niacin requirement by increase of NAD consumption.


Assuntos
Alcoolismo , Niacina , Humanos , Camundongos , Animais , Niacina/metabolismo , Estado Nutricional , NAD/metabolismo , Niacinamida , Peso Corporal
12.
J Pediatr Urol ; 20(2): 281.e1-281.e7, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38212166

RESUMO

INTRODUCTION: The testicular ischemia-reperfusion (I/R) injury is characterized by the excessive aggregation of un-scavenged reactive oxygen species, leading to the heightened levels of oxidative stress. This phenomenon plays a pivotal role in the pathophysiology of testicular torsion damage. OBJECTIVE: The current study aimed to detect the prophylactic and therapeutic effects of niacin on testicular I/R injury. STUDY DESIGN: Twenty-four healthy adult male Sprague Dawley rats were randomly allocated into three groups as follows: (1) sham group, (2) torsion/detorsion (T/D) group, and (3) treatment group which received 200 mg/kg niacin along with testicular T/D. Torsion/detorsion was induced by 2 h of torsion followed by 10 days of reperfusion period. In the treatment group, niacin was injected 30 min before the reperfusion period intraperitoneally and continued for 10 days by oral gavage. RESULTS: T/D was associated with marked decreases in terms of sperm count, viability, and kinematic parameters versus the sham group (P < 0.05), which niacin significantly reverted the kinematic parameters (P < 0.05). I/R injury caused a significant increase in the number of abnormal epididymal sperms compared to the sham group (P < 0.05). Niacin decreased the epididymal sperm abnormality significantly compared to the T/D group (P < 0.05). Tissue abnormalities in T/D group, such as edema, hyperemia, inflammation, and necrosis were completely visible histopathologically, while the histological changes in the niacin-treated group were better than those in the T/D group. Regarding the pathological parametric evaluations, I/R injury significantly reduced the mean testicular biopsy score (MTBS), germinal epithelial cell thickness (GECT), and mean seminiferous tubular diameter (MSTD), and increased the tubular hypoplasia/atrophy (THA) compared to the sham group (P < 0.05), which niacin treatment significantly improved the MTBS and GECT compared to the T/D group (P < 0.05). T/D significantly increased the oxidative stress index (OSI) and lipid peroxidation (MDA) (P < 0.05). Niacin significantly reduced the OSI and MDA levels compared to the T/D group (P < 0.05). DISCUSSION: The current study found that niacin has preventive/therapeutic effects against the elevation of oxidative stress markers and depletion of antioxidants during I/R injury. Following administration of niacin, a reduction in histologic injury was observed in rats. In our study, we showed the antioxidant properties of niacin and its capacity to protect against I/R damage. CONCLUSION: The findings of the present investigation revealed that niacin, as an antioxidant agent, can suppress the oxidative stress induced by testicular I/R injury, and can be used as a supplementary agent in the treatment of those undergoing testicular torsion surgery.


Assuntos
Niacina , Traumatismo por Reperfusão , Torção do Cordão Espermático , Masculino , Ratos , Animais , Humanos , Testículo/patologia , Torção do Cordão Espermático/complicações , Torção do Cordão Espermático/tratamento farmacológico , Torção do Cordão Espermático/patologia , Niacina/farmacologia , Niacina/uso terapêutico , Niacina/metabolismo , Antioxidantes/uso terapêutico , Ratos Sprague-Dawley , Sêmen , Traumatismo por Reperfusão/prevenção & controle , Estresse Oxidativo , Isquemia , Malondialdeído/metabolismo
13.
J Immunol ; 212(5): 771-784, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197634

RESUMO

Short-chain fatty acids (SCFAs) are produced by the intestinal microbiota during the fermentation of dietary fibers as secondary metabolites. Several recent studies reported that SCFAs modulate the development and function of immune-related cells. However, the molecular mechanisms by which SCFAs regulate mast cells (MCs) remain unclear. In the current study, we analyzed the function and gene expression of mouse MCs in the presence of SCFAs in vitro and in vivo. We found that the oral administration of valerate or butyrate ameliorated passive systemic anaphylaxis and passive cutaneous anaphylaxis in mice. The majority of SCFAs, particularly propionate, butyrate, valerate, and isovalerate, suppressed the IgE-mediated degranulation of bone marrow-derived MCs, which were eliminated by the Gi protein inhibitor pertussis toxin and by the knockdown of Gpr109a. A treatment with the HDAC inhibitor trichostatin A also suppressed IgE-mediated MC activation and reduced the surface expression level of FcεRI on MCs. Acetylsalicylic acid and indomethacin attenuated the suppressive effects of SCFAs on degranulation. The degranulation degree was significantly reduced by PGE2 but not by PGD2. Furthermore, SCFAs enhanced PGE2 release from stimulated MCs. The SCFA-mediated amelioration of anaphylaxis was exacerbated by COX inhibitors and an EP3 antagonist, but not by an EP4 antagonist. The administration of niacin, a ligand of GPR109A, alleviated the symptoms of passive cutaneous anaphylaxis, which was inhibited by cyclooxygenase inhibitors and the EP3 antagonist. We conclude that SCFAs suppress IgE-mediated activation of MCs in vivo and in vitro involving GPR109A, PGE2, and epigenetic regulation.


Assuntos
Anafilaxia , Niacina , Camundongos , Animais , Anafilaxia/tratamento farmacológico , Anafilaxia/metabolismo , Niacina/farmacologia , Niacina/metabolismo , Dinoprostona/metabolismo , Butiratos/farmacologia , Butiratos/metabolismo , Valeratos/metabolismo , Mastócitos/metabolismo , Epigênese Genética , Imunoglobulina E/metabolismo , Degranulação Celular
14.
Brain Res ; 1824: 148686, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008243

RESUMO

Alzheimer's disease (AD) is a multifactorial,neurodegenerative disorder linked withextracellular amyloid beta (Aß) plaques deposition and formation of intracellular neurofibrillary tangles (NFTs). Currently, no effective therapies are available to cure AD. Neuroinflammation isa well-known hallmark in the onset and advancement of AD and triggering receptor expressed on myeloid cells-2 (TREM-2), a microglial gene, is responsible for regulating inflammatory responses and clearance of cellular debris. Loss of TREM-2functionincreases neuroinflammation associated expression of pro-inflammatory markersthus resultingin reduced clearance of Aß that further aid in disease progression.Therefore, targeting neuroinflammation is a good therapeutic approach for AD. This study aimed to determine the neuroprotective effect of nicotinic acid (NA) in vitro model of AD-like pathology induced in F-98 cell line using Phytohemagglutinin (PHA). MTT assay was employed for checking the cell viability as well as the proliferation of the cells following treatment with NA. PHA at the concentration of 10 µg/mL produces maximum plaques. The neuroprotective effect of NA was next evaluated against PHA-induced plaques and it was observed that NA reverses the damages induced by PHA i.e., by inhibiting the clustering of the cells and replacing the damaged cells with the new ones. Further, NA also increased the expression of TREM-2/DAP-12 with parallel decreased in the expression of IL-1ß, TNF-α and iNOS. It also successfully altered disease associated ADAM-10 and BACE-1 compared to PHA control. These findings suggest that NA might be considered as a good therapeutic candidate for the treatment of neurodegenerative disorders like AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Niacina , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fito-Hemaglutininas/metabolismo , Fito-Hemaglutininas/farmacologia , Fito-Hemaglutininas/uso terapêutico , Microglia/metabolismo , Niacina/metabolismo , Niacina/farmacologia , Niacina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doenças Neuroinflamatórias
15.
Nat Commun ; 14(1): 8095, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092728

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) plays a major role in NAD biosynthesis in many cancers and is an attractive potential cancer target. However, factors dictating therapeutic efficacy of NAMPT inhibitors (NAMPTi) are unclear. We report that neuroendocrine phenotypes predict lung and prostate carcinoma vulnerability to NAMPTi, and that NAMPTi therapy against those cancers is enhanced by dietary modification. Neuroendocrine differentiation of tumor cells is associated with down-regulation of genes relevant to quinolinate phosphoribosyltransferase-dependent de novo NAD synthesis, promoting NAMPTi susceptibility in vitro. We also report that circulating nicotinic acid riboside (NAR), a non-canonical niacin absent in culture media, antagonizes NAMPTi efficacy as it fuels NAMPT-independent but nicotinamide riboside kinase 1-dependent NAD synthesis in tumors. In mouse transplantation models, depleting blood NAR by nutritional or genetic manipulations is synthetic lethal to tumors when combined with NAMPTi. Our findings provide a rationale for simultaneous targeting of NAR metabolism and NAMPT therapeutically in neuroendocrine carcinoma.


Assuntos
Carcinoma Neuroendócrino , Niacina , Masculino , Camundongos , Animais , Nicotinamida Fosforribosiltransferase/metabolismo , Niacina/farmacologia , Niacina/metabolismo , NAD/metabolismo , Citocinas/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Linhagem Celular Tumoral
16.
J Nutr Sci Vitaminol (Tokyo) ; 69(5): 305-313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37940571

RESUMO

Niacin is involved in many biological reactions relating energy metabolism, redox reactions, DNA repair and longevity, and low NAD levels with aging and feeding high fat diets develop and progress age-related diseases. Although recent findings suggest the requirement of niacin insufficient animal model to further study, appropriate animal models have not been established yet because niacin is biosynthesized from tryptophan via tryptophan-nicotinamide pathway. To establish model mice to evaluate niacin nutritional status, we used kynurenine 3-monooxygenase knock out (KMO-/-) mice which lack NAD biosynthesis pathway from tryptophan. To determine the niacin requirement and assess niacin nutritional markers, 4 wk old KMO-/- mice were fed 2-30 mg/kg nicotinic acid containing diets for 28 d. More than 4 mg/kg but not less than 3 mg/kg nicotinic acid containing diets induced maximum growth, and niacin nutritional markers in the blood, liver and urine increased with increase of dietary nicotinic acid. These results showed that several niacin nutritional markers reflect niacin nutritional status, niacin nutritional status can be controlled by dietary nicotinic acid, and niacin requirement for maximum growth is 4 mg/kg nicotinic acid diets in the KMO-/- mice. This animal model useful to investigate pathophysiology and mechanism of niacin deficiency, clarify the relationships between niacin nutritional status and age-related and lifestyle diseases, and evaluate factors affecting niacin nutritional status.


Assuntos
Niacina , Camundongos , Animais , Niacina/metabolismo , Estado Nutricional , Triptofano/metabolismo , NAD/metabolismo , Niacinamida
17.
Clin Nutr ; 42(11): 2138-2150, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774650

RESUMO

BACKGROUND & AIM: When considered separately, long-term immediate-release niacin and fatty meals enriched in monounsaturated fatty acids (MUFA) decrease postprandial triglycerides, but their effects on postprandial inflammation, which is common in individuals with metabolic syndrome, are less known. Moreover, successful combination is lacking and its impact on acute disorders of the innate immune cells in the metabolic syndrome remains unclear. Here, we aimed to establish the effects from combination with niacin of different fats [butter, enriched in saturated fatty acids (SFA), olive oil, enriched in MUFA, and olive oil supplemented with eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] on plasma inflammatory markers and circulating monocyte subsets, activation and priming at the postprandial period in individuals with metabolic syndrome. METHODS: A random-order within-subject crossover experiment was performed, in which 16 individuals with metabolic syndrome and 16 age-matched healthy volunteers took 2 g immediate-release niacin together with the corresponding fatty meal or a meal with no fat as control. In total, 128 postprandial curves were analysed. We sampled hourly over 6 h for plasma concentrations of soluble inflammatory markers and triglycerides. Circulating monocyte subsets (CD14/CD16 balance), activation (CCL2/CCR2 axis) and priming (M1/M2-like phenotype) at the time of postprandial hypertriglyceridemic peak were also addressed. RESULTS: Dietary SFA (combined with niacin) promote postprandial excursions of circulating IL-6, IL-1ß, TNF-α and CD14/CCR2-rich monocytes with a pro-inflammatory M1-like phenotype, particularly in individuals with metabolic syndrome. In contrast, dietary MUFA (combined with niacin) postprandially increased circulating CD16-rich monocytes with an anti-inflammatory M2-like phenotype. Omega-3 PUFA did not add to the effects of MUFA. CONCLUSION: The co-administration of a single-dose of immediate-release niacin with a fatty meal rich in MUFA, in contrast to SFA, suppresses postprandial inflammation at the levels of both secretory profile and monocyte response in individuals with metabolic syndrome. These findings highlight a potential role of combining niacin and dietary MUFA for the homeostatic control of inflammation and the innate immune system, identifying a new search direction for the management of disorders associated with the metabolic syndrome.


Assuntos
Síndrome Metabólica , Niacina , Masculino , Humanos , Ácidos Graxos Monoinsaturados/farmacologia , Monócitos/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Gorduras na Dieta/metabolismo , Niacina/metabolismo , Azeite de Oliva , Período Pós-Prandial , Ácidos Graxos/metabolismo , Triglicerídeos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Refeições
18.
J Nutr Health Aging ; 27(9): 709-718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37754210

RESUMO

BACKGROUND AND AIMS: Age-related loss of skeletal muscle mass and strength begins at 40 years of age, and limited evidence suggests that niacin supplementation increases levels of nicotinamide adenine dinucleotide in mouse muscle tissue. In addition, skeletal muscle has a key role in the body's processing of glucose. Therefore, this study aimed to investigate the relationship between dietary niacin and skeletal muscle mass, strength, and glucose homeostasis in people aged 40 years and older. METHODS: This study was an American population-based cross-sectional analysis using data from the National Health and Nutrition Examination Survey (NHANES). Considering that some outcomes are only measured in specific survey cycles and subsamples, we established three data sets: a grip strength dataset (2011-2014, n=3772), a body mass components dataset (2011-2018, n=3279), and a glucose homeostasis dataset (1999-2018, n=9189). Dietary niacin and covariates were measured in all survey cycles. Linear regression or logistic regression models that adjusted for several main covariates, such as physical activity and diet, was used to evaluate the relationship between dietary niacin and grip strength, total lean mass, appendicular lean mass, total fat, trunk fat, total bone mineral content, homeostasis model assessment of insulin resistance (HOMA-IR), fasting blood glycose, fasting insulin and sarcopenia risk. Subgroup analyses, a trend test, an interaction test, and a restricted cubic spline were used for further exploration. RESULTS: Higher dietary niacin intake was significantly correlated with higher grip strength (ß 0.275, 95% confidence intervals [CI] 0.192-0.357), higher total lean mass (ß 0.060, 95% CI 0.045-0.074), higher appendicular lean mass (ß 0.025, 95% CI 0.018-0.033), and higher total bone mineral content (ß 0.005, 95% CI 0.004-0.007). By contrast, higher dietary niacin intake was significantly associated with lower total fat (ß -0.061, 95% CI -0.076 to -0.046), lower trunk fat (ß -0.041, 95% CI -0.050 to -0.032) and lower sarcopenia risk (OR 0.460, 95% CI 0.233 to 0.907). In addition, dietary niacin significantly reduced HOMA-IR, fasting blood glucose (in participants without diabetes), and fasting insulin (p <0.05). CONCLUSION: Niacin is associated with improved body composition (characterized by increased muscle mass and decreased fat content) and improved glucose homeostasis in dietary doses. Dietary niacin supplementation is a feasible way to alleviate age-related muscular loss.


Assuntos
Niacina , Sarcopenia , Animais , Camundongos , Humanos , Adulto , Pessoa de Meia-Idade , Sarcopenia/prevenção & controle , Sarcopenia/complicações , Inquéritos Nutricionais , Niacina/metabolismo , Estudos Transversais , Força Muscular , Composição Corporal/fisiologia , Músculo Esquelético/patologia , Insulina , Força da Mão/fisiologia , Dieta , Glucose/metabolismo , Homeostase
19.
PLoS One ; 18(8): e0289409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535643

RESUMO

The objective of our study was to assess the effect of rumen-protected niacin supplementation on the transcriptome of liver tissue in growing Angus × Simmental steers and heifers through RNA-seq analysis. Consequently, we wanted to assess the known role of niacin in the physiological processes of vasodilation, detoxification, and immune function in beef hepatic tissue. Normal weaned calves (~8 months old) were provided either a control diet or a diet supplemented with rumen-protected niacin (6 g/hd/d) for a 30-day period, followed by a liver biopsy. We observed a significant list of changes at the transcriptome level due to rumen-protected niacin supplementation. Several metabolic pathways revealed potential positive effects to the animal's liver metabolism due to administration of rumen-protected niacin; for example, a decrease in lipolysis, apoptosis, inflammatory responses, atherosclerosis, oxidative stress, fibrosis, and vasodilation-related pathways. Therefore, results from our study showed that the liver transcriptional machinery switched several metabolic pathways to a condition that could potentially benefit the health status of animals supplemented with rumen-protected niacin. In conclusion, based on the results of our study, we can suggest the utilization of rumen-protected niacin supplementation as a nutritional strategy could improve the health status of growing beef cattle in different beef production stages, such as backgrounding operations or new arrivals to a feedlot.


Assuntos
Niacina , Bovinos , Animais , Feminino , Niacina/farmacologia , Niacina/metabolismo , Rúmen/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Fígado , Ração Animal/análise
20.
Front Immunol ; 14: 1215329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465689

RESUMO

Hericium erinaceus, berberine, and quercetin are effective in experimental colitis. It is unknown whether they can ameliorate inflammatory bowel diseases in humans. This ex vivo study aimed to evaluate the anti-inflammatory potential of a nutraceutical compound of HBQ-Complex® (H. erinaceus, berberine, and quercetin), biotin, and niacin in inflammatory bowel disease patients. Tissue specimens were obtained either from Normal-Appearing Mucosa (NAM) or from Inflamed Mucosa (IM) in 20 patients with inflammatory bowel disease. mRNA and protein expression of COX-2, IL-10, and TNF-α were determined in NAM and IM biopsy samples (T0). IM samples were then incubated in HBQ-Complex® (with the addition of niacin and biotin), and COX-2, IL-10, and TNF-α tissue levels were evaluated at 120 minutes (T1) and 180 minutes (T2). Incubation with this compound resulted in a progressive decrease in gene and protein COX-2 and TNF-α expression at T1/T2 in the IM. IL-10 showed an opposite trend, with a progressive increase of mRNA and protein expression over the same time window. HBQ-Complex® (with the addition of niacin and biotin) decreased the expression of proinflammatory cytokines at the mRNA and protein levels in IBD tissue. On the contrary, mRNA and protein expression of the anti-inflammatory cytokine IL-10 showed a progressive increase.


Assuntos
Antineoplásicos , Berberina , Doenças Inflamatórias Intestinais , Niacina , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vitaminas/metabolismo , Flavonoides , Niacina/metabolismo , Biotina/metabolismo , Quercetina/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Mucosa Intestinal/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Citocinas/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA