Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 12(11)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228135

RESUMO

Serpentoviruses are an emerging group of nidoviruses known to cause respiratory disease in snakes and have been associated with disease in other non-avian reptile species (lizards and turtles). This study describes multiple episodes of respiratory disease-associated mortalities in a collection of juvenile veiled chameleons (Chamaeleo calyptratus). Histopathologic lesions included rhinitis and interstitial pneumonia with epithelial proliferation and abundant mucus. Metagenomic sequencing detected coinfection with two novel serpentoviruses and a novel orthoreovirus. Veiled chameleon serpentoviruses are most closely related to serpentoviruses identified in snakes, lizards, and turtles (approximately 40-50% nucleotide and amino acid identity of ORF1b). Veiled chameleon orthoreovirus is most closely related to reptilian orthoreoviruses identified in snakes (approximately 80-90% nucleotide and amino acid identity of the RNA-dependent RNA polymerase). A high prevalence of serpentovirus infection (>80%) was found in clinically healthy subadult and adult veiled chameleons, suggesting the potential for chronic subclinical carriers. Juvenile veiled chameleons typically exhibited a more rapid progression compared to subadults and adults, indicating a possible age association with morbidity and mortality. This is the first description of a serpentovirus infection in any chameleon species. A causal relationship between serpentovirus infection and respiratory disease in chameleons is suspected. The significance of orthoreovirus coinfection remains unknown.


Assuntos
Coinfecção/veterinária , Lagartos/virologia , Doenças Pulmonares Intersticiais/veterinária , Nidovirales/patogenicidade , Orthoreovirus/patogenicidade , Infecções por Reoviridae/veterinária , Animais , Animais de Zoológico/virologia , Coinfecção/virologia , Surtos de Doenças/veterinária , Feminino , Doenças Pulmonares Intersticiais/virologia , Masculino , Metagenômica , Nidovirales/genética , Orthoreovirus/genética , Prevalência
2.
PLoS One ; 13(10): e0205209, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356240

RESUMO

In mid-February 2015, a large number of deaths were observed in the sole extant population of an endangered species of freshwater snapping turtle, Myuchelys georgesi, in a coastal river in New South Wales, Australia. Mortalities continued for approximately 7 weeks and affected mostly adult animals. More than 400 dead or dying animals were observed and population surveys conducted after the outbreak had ceased indicated that only a very small proportion of the population had survived, severely threatening the viability of the wild population. At necropsy, animals were in poor body condition, had bilateral swollen eyelids and some animals had tan foci on the skin of the ventral thighs. Histological examination revealed peri-orbital, splenic and nephric inflammation and necrosis. A virus was isolated in cell culture from a range of tissues. Nucleic acid sequencing of the virus isolate has identified the entire genome and indicates that this is a novel nidovirus that has a low level of nucleotide similarity to recognised nidoviruses. Its closest relatives are nidoviruses that have recently been described in pythons and lizards, usually in association with respiratory disease. In contrast, in the affected turtles, the most significant pathological changes were in the kidneys. Real time PCR assays developed to detect this virus demonstrated very high virus loads in affected tissues. In situ hybridisation studies confirmed the presence of viral nucleic acid in tissues in association with pathological changes. Collectively these data suggest that this virus is the likely cause of the mortalities that now threaten the survival of this species. Bellinger River Virus is the name proposed for this new virus.


Assuntos
Espécies em Perigo de Extinção , Nidovirales/genética , Nidovirales/isolamento & purificação , Tartarugas/virologia , Animais , Austrália , Lagartos , Nidovirales/patogenicidade , Filogenia , RNA Viral , Rios
3.
Proc Natl Acad Sci U S A ; 114(42): E8895-E8904, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29073030

RESUMO

Members of the order Nidovirales express their structural protein ORFs from a nested set of 3' subgenomic mRNAs (sg mRNAs), and for most of these ORFs, a single genomic transcription regulatory sequence (TRS) was identified. Nine TRSs were previously reported for the arterivirus Simian hemorrhagic fever virus (SHFV). In the present study, which was facilitated by next-generation sequencing, 96 SHFV body TRSs were identified that were functional in both infected MA104 cells and macaque macrophages. The abundance of sg mRNAs produced from individual TRSs was consistent over time in the two different cell types. Most of the TRSs are located in the genomic 3' region, but some are in the 5' ORF1a/1b region and provide alternative sources of nonstructural proteins. Multiple functional TRSs were identified for the majority of the SHFV 3' ORFs, and four previously identified TRSs were found not to be the predominant ones used. A third of the TRSs generated sg mRNAs with variant leader-body junction sequences. Sg mRNAs encoding E', GP2, or ORF5a as their 5' ORF as well as sg mRNAs encoding six previously unreported alternative frame ORFs or 14 previously unreported C-terminal ORFs of known proteins were also identified. Mutation of the start codon of two C-terminal ORFs in an infectious clone reduced virus yield. Mass spectrometry detected one previously unreported protein and suggested translation of some of the C-terminal ORFs. The results reveal the complexity of the transcriptional regulatory mechanism and expanded coding capacity for SHFV, which may also be characteristic of other nidoviruses.


Assuntos
Nidovirales/genética , Nidovirales/patogenicidade , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Ribonucleico , Animais , Northern Blotting , Chlorocebus aethiops , Códon de Iniciação , Genoma Viral , Macaca , Mutação , Infecções por Nidovirales/genética , Fases de Leitura Aberta , RNA Viral , Proteínas Virais/análise , Proteínas Estruturais Virais/genética
6.
Virology ; 390(1): 79-88, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19487006

RESUMO

Yellow head virus (YHV) is a highly virulent pathogen of Penaeus monodon shrimp. It is one of six known genotypes in the yellow head complex of nidoviruses which also includes mildly pathogenic gill-associated virus (GAV, genotype 2) and four other genotypes (genotypes 3-6) that have been detected only in healthy shrimp. In this study, comparative phylogenetic analyses conducted on replicase- (ORF1b) and glycoprotein- (ORF3) gene amplicons identified 10 putative natural recombinants amongst 28 viruses representing all six genotypes from across the Indo-Pacific region. The approximately 4.6 kb genomic region spanning the two amplicons was sequenced for three putative recombinant viruses from Vietnam (genotype 3/5), the Philippines (genotype 5/2) and Indonesia (genotype 3/2). SimPlot analysis using these and representative parental virus sequences confirmed that each was a recombinant genotype and identified a recombination hotspot in a region just upstream of the ORF1b C-terminus. Maximum-likelihood breakpoint analysis predicted identical crossover positions in the Vietnamese and Indonesian recombinants, and a crossover position 12 nt upstream in the Philippine recombinant. Homologous genetic recombination in the same genome region was also demonstrated in recombinants generated experimentally in shrimp co-infected with YHV and GAV. The high frequency with which natural recombinants were identified indicates that genetic exchange amongst genotypes is occurring commonly in Asia and playing a significant role in expanding the genetic diversity in the yellow head complex. This is the first evidence of genetic recombination in viruses infecting crustaceans and has significant implications for the pathogenesis of infection and diagnosis of these newly emerging invertebrate pathogens.


Assuntos
Nidovirales/genética , Nidovirales/patogenicidade , Penaeidae/virologia , Recombinação Genética , Animais , DNA Viral/genética , Genótipo , Modelos Genéticos , Nidovirales/classificação , Fases de Leitura Aberta , Filogenia , Reação em Cadeia da Polimerase , Virulência/genética
7.
Virology ; 385(1): 161-8, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19073334

RESUMO

RT-PCR using a commercial kit for yellow head virus (YHV) detection in growth-retarded shrimp yielded an unusual 777 bp amplicon instead of expected amplicons of 277 bp for YHV type-1 (YHV-1) or 406 bp for YHV type-2 (YHV-2). Cloning and sequencing (GenBank EU170438) revealed approximately 80% identity to non-structural (NS) ORF1b sequences of both YHV-1 (GenBank AA083987) and YHV-2 (GenBank AF227196), indicating an atypical YHV type (A-YHV) phylogenetically equidistant from both types. An RT-PCR test specifically designed for A-YHV revealed that it was uncommon and that its occurrence in shrimp culture ponds did not correlate with growth retardation or mortality. By immunohistochemistry with YHV-specific monoclonal antibodies, the A-YHV gave positive reactions for envelope protein gp64 and capsid protein p20, but not for envelope protein gp116, even though gp116 and gp64 originate from a polyprotein of ORF3. Lack of gp116 immunoreactivity correlated with a large ORF3 deletion (GenBank EU123854) in the region of the protein targeted by an MAb against gp116. Transmission electron microscopy of A-YHV-infected shrimp revealed only unenveloped pre-virions. During manuscript revision, information received revealed that typing of YHV isolates based on sequences of ORF1b and ORF3 had yielded several geographical types, including one virulent type (YHV-1b) with an ORF3 deletion sequence that matched the sequence of A-YHV. Using these sequences and an additional A-YHV sequence (EU853170) from the ORF1b typing region, A-YHV potentially represents a recombinant between type 1b and type 5. SDS-PAGE and Western blot analysis revealed that type 1b produced a gp116 deletion protein that did not bind with the MAb or polyclonal Ab to normal gp116. Overall, the information suggested that lack of A-YHV virulence was associated with the NS gene sequence linked to ORF1b rather than the deletion in ORF3.


Assuntos
Deleção de Genes , Nidovirales/genética , Nidovirales/patogenicidade , Penaeidae/virologia , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Nidovirales/fisiologia , Penaeidae/imunologia , Penaeidae/ultraestrutura , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética
8.
Dis Aquat Organ ; 63(1): 85-8, 2005 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-15759804

RESUMO

Yellow head virus (YHV) is an invertebrate nidovirus that has caused mass mortality of cultured Penaeus monodon in Asia. In this study, we investigated whether mouse polyclonal antiserum raised against the YHV gp116 or gp64 structural glycoproteins could neutralize YHV infectivity as determined using an in vitro quantal assay in primary cultures of lymphoid organ cells. Anti-gp116 antiserum showed virus-neutralizing activity whereas anti-gp64 antiserum failed to inhibit infection. The results suggest that gpl16 antiserum blocks binding of virions to cellular receptors to facilitate YHV entry into lymphoid organ cells.


Assuntos
Glicoproteínas/imunologia , Soros Imunes/imunologia , Nidovirales/imunologia , Penaeidae/virologia , Proteínas do Envelope Viral/imunologia , Animais , Aquicultura , Immunoblotting , Linfócitos/imunologia , Linfócitos/virologia , Nidovirales/patogenicidade , Penaeidae/imunologia , Tailândia
9.
J Biol Chem ; 280(8): 6933-41, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15507445

RESUMO

Many viruses achieve reversible attachment to sialic acid (Sia) by encoding envelope glycoproteins with receptor-binding and receptor-destroying activities. Toroviruses and group 2 coronaviruses bind to O-acetylated Sias, presumably via their spike proteins (S), whereas other glycoproteins, the hemagglutinin-esterases (HE), destroy Sia receptors by de-O-acetylation. Here, we present a comprehensive study of these enzymes. Sialate-9-O-acetylesterases specific for 5-N-acetyl-9-O-acetylneuraminic acid, described for bovine and human coronaviruses, also occur in equine coronaviruses and in porcine toroviruses. Bovine toroviruses, however, express novel sialate-9-O-acetylesterases, which prefer the di-O-acetylated substrate 5-N-acetyl-7(8),9-di-O-acetylneuraminic acid. Whereas most rodent coronaviruses express sialate-4-O-acetylesterases, the HE of murine coronavirus DVIM cleaves 9-O-acetylated Sias. Under the premise that HE specificity reflects receptor usage, we propose that two types of Sias serve as initial attachment factors for coronaviruses in mice. There are striking parallels between orthomyxo- and nidovirus biology. Reminiscent of antigenic shifts in orthomyxoviruses, rodent coronaviruses exchanged S and HE sequences through recombination to extents not appreciated before. As for orthomyxovirus reassortants, the fitness of nidovirus recombinant offspring probably depends both on antigenic properties and on compatibility of receptor-binding and receptor-destroying activities.


Assuntos
Acetiltransferases/fisiologia , Evolução Molecular , Nidovirales/enzimologia , Animais , Sequência de Bases , Coronaviridae/enzimologia , Coronaviridae/genética , Coronaviridae/patogenicidade , Hemaglutininas Virais/fisiologia , Humanos , Dados de Sequência Molecular , Nidovirales/genética , Nidovirales/patogenicidade , Receptores Virais/metabolismo , Especificidade da Espécie , Especificidade por Substrato , Torovirus/enzimologia , Torovirus/genética , Torovirus/patogenicidade , Proteínas Virais de Fusão/fisiologia
10.
Dis Aquat Organ ; 59(3): 195-203, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15264715

RESUMO

Gill-associated virus (GAV) of the black tiger prawn Penaeus monodon has been implicated as a cause of periodic production losses in Australia since 1996. We report here the development of a real-time quantitative RT-PCR (qRT-PCR) for GAV. A dilution series of in vitro transcribed RNA was used to determine the sensitivity limit of the qRT-PCR and as a standard for GAV quantification. A linear relationship between cycle threshold (Ct) values and input RNA was obtained over a wide concentration range between 4.86 x 10(9) and 0.5 template copies per reaction, the latter being the test detection limit. The qRT-PCR was used to follow the progression of GAV levels in a group of 15 adult male P. monodon with chronic GAV infections that were super-infected by intramuscular injection of an inoculum containing high levels of GAV. By Day 9 post-injection, cumulative mortalities reached 100% (15/15) in the GAV-injected prawns and 40% (2/5) in placebo-injected prawns. Spermatophores were collected at the beginning, and together with other tissues, at the end of the trial. Prawns were also bled at regular intervals to collect circulating haemocytes. The qRT-PCR revealed that GAV loads increased significantly in haemocytes collected from both the control and super-infected prawns (p = 0.010). This increase was significantly higher in the super-infected prawns (p = 0.047). The rapid increase in GAV levels in super-infected P. monodon was expected. However, the increase in the control prawns was not, and indicates that repetitive bleeding and handling stress can stimulate GAV proliferation in chronically infected P. monodon.


Assuntos
Brânquias/virologia , Nidovirales/patogenicidade , Penaeidae/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Aquicultura , Primers do DNA , DNA Complementar/genética , Hemócitos/virologia , Masculino , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...