Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 154(7): 074306, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33607883

RESUMO

A comprehensive investigation of low-energy electron attachment and electron ionization of the nimorazole radiosensitizer used in cancer radiation therapy is reported by means of a gas-phase crossed beam experiment in an electron energy range from 0 eV to 70 eV. Regarding negative ion formation, we discuss the formation of fifteen fragment anions in the electron energy range of 0 eV-10 eV, where the most intense signal is assigned to the nitrogen dioxide anion NO2 -. The other fragment anions have been assigned to form predominantly from a common temporary negative ion state close to 3 eV of the nitroimidazole moiety, while the morpholine moiety seems to act only as a spectator in the dissociative electron attachment event to nimorazole. Quantum chemical calculations have been performed to help interpreting the experimental data with thermochemical thresholds, electron affinities, and geometries of some of the neutral molecules. As far as positive ion formation is concerned, the mass spectrum at the electron energy of 70 eV shows a weakly abundant parent ion and C5H10NO+ as the most abundant fragment cation. We report appearance energy (AE) measurements for six cations. For the intact nimorazole molecular cation, the AE of 8.16 ± 0.05 eV was obtained, which is near the presently calculated adiabatic ionization energy.


Assuntos
Elétrons , Nimorazol/química , Radiossensibilizantes/química , Modelos Moleculares , Conformação Molecular , Temperatura
2.
Eur J Pharm Biopharm ; 161: 29-36, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33567313

RESUMO

Glioblastoma multiforme is the most aggressive and lethal form of brain tumour due to the high degree of cancer cells infiltration into surrounding brain tissue. No form of monotherapy can guarantee satisfactory patient outcomes and is only of palliative importance. To find a potential option of glioblastoma treatment the bioresorbable, layer nonwoven mats for controlled temozolomide and nimorazole release were obtained by classical and coaxial electrospinning. Optimization of fibre structure that enables delayed and controlled drug release was performed. The studied bioresorbable polymers were poly(L-lactide-co-ε-caprolactone) and poly(L-lactide-co-glycolide-co-trimethylene carbonate). The physicochemical properties of polymers were determined as well as drug release profiles of nonwoven mats. A combination of coaxial electrospinning and electrospray technique provided three-phased release profiles of temozolomide and nimorazole: the slow release of very low drug doses followed by accelerated release and saturation phase. Results form the basis for further investigation since both studied polymers possess a great potential as nimorazole and temozolomide delivery systems in the form of layered nonwoven implants.


Assuntos
Implantes Absorvíveis , Portadores de Fármacos/química , Nimorazol/administração & dosagem , Temozolomida/administração & dosagem , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/química , Neoplasias Encefálicas/tratamento farmacológico , Química Farmacêutica , Preparações de Ação Retardada , Dioxanos/química , Liberação Controlada de Fármacos , Glioblastoma/tratamento farmacológico , Nimorazol/química , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polímeros/química , Radiossensibilizantes/administração & dosagem , Radiossensibilizantes/química , Temozolomida/química
3.
Nat Commun ; 10(1): 2388, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160602

RESUMO

While matter is irradiated with highly-energetic particles, it may become chemically modified. Thereby, the reactions of free low-energy electrons (LEEs) formed as secondary particles play an important role. It is unknown to what degree and by which mechanism LEEs contribute to the action of electron-affinic radiosensitisers applied in radiotherapy of hypoxic tumours. Here we show that LEEs effectively cause the reduction of the radiosensitiser nimorazole via associative electron attachment with the cross-section exceeding most of known molecules. This supports the hypothesis that nimorazole is selectively cytotoxic to tumour cells due to reduction of the molecule as prerequisite for accumulation in the cell. In contrast, dissociative electron attachment, commonly believed to be the source of chemical activity of LEEs, represents only a minor reaction channel which is further suppressed upon hydration. Our results show that LEEs may strongly contribute to the radiosensitising effect of nimorazole via associative electron attachment.


Assuntos
Quimiorradioterapia , Elétrons , Neoplasias/terapia , Nimorazol/química , Radiossensibilizantes/química , Humanos , Nimorazol/uso terapêutico , Oxirredução , Radiossensibilizantes/uso terapêutico
4.
J Phys Chem A ; 119(39): 9986-95, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26344652

RESUMO

Soft X-ray photoelectron spectroscopy has been used to investigate the radiosensitizer nimorazole and related model compounds. We report the valence and C, N, and O 1s photoemission spectra and K-edge NEXAFS spectra of gas-phase nimorazole, 1-methyl-5-nitroimidazole, and 4(5)-nitroimidazole in combination with theoretical calculations. The valence band and core level spectra are in agreement with theory. We determine the equilibrium populations of the two tautomers in 4(5)-nitroimidazole and find a ratio of 1:0.7 at 390 K. The NEXAFS spectra of the studied nitroimidazoles show excellent agreement with spectra of compounds available in the literature that exhibit a similar chemical environment. By comparing 1-methyl-5-nitroimidazole (single tautomer) with 4(5)-nitroimidazole, we are able to disentangle the photoemission and photoabsorption spectra and identify features due to each single tautomer.


Assuntos
Modelos Teóricos , Nimorazol/química , Espectroscopia Fotoeletrônica/métodos , Radiossensibilizantes/química , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...