Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 140: 61-68, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29861280

RESUMO

Nodularia spumigena is a nitrogen-fixing filamentous cyanobacteria in the Baltic Sea. Nodularin (NOD), the hepatotoxic peptide produced by this cyanobacterium, accumulates in the organisms from different trophic levels. In this paper, the effects of N. spumigena cell extract on the round goby (Neogobius melanostomus) was investigated under laboratory conditions. This benthic fish species feed on mussels in which nodularin accumulation was well documented. In current study a sharp increase in the NOD concentration in analyzed organs was observed after 24 h (PPIA) after 72 h of exposure (LC/MS). To determine the direction and strength of the changes induced in the fish by the toxin, several biochemical markers of exposure such as concentration of glutathione and activities of catalase, guaiacol peroxidase and glutathione S-transferase were used. In analyzed organs (liver, gills and muscle) of the round goby, the activity of these enzymes were suppressed. Higher GSH/protein amount and CAT and POD activity in gills than in liver reflects the importance of gills in NOD entering into analyzed fish body when exposed to toxin. The results indicate that the round goby (Neogobius melanostomus) exposed to extracts from N. spumigena cells triggered a defense system in a time-dependent manner. The obtained results contribute to a better understanding of fish response to the presence of compounds produced by N. spumigena.


Assuntos
Misturas Complexas/toxicidade , Toxinas Marinhas/toxicidade , Nodularia/fisiologia , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Brânquias , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Perciformes , Testes de Toxicidade
2.
Sci Rep ; 8(1): 5651, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618756

RESUMO

The cyanobacterium Nodularia spumigena is a species that frequently forms blooms in the Baltic Sea. Accumulation of the vital nutrient phosphorus (P) apparently plays an important role in the ability of this and other cyanobacteria to grow even when dissolved inorganic phosphorus is depleted. However, until now, this has not been studied in N. spumigena at the cellular level. Therefore, in this study, phosphorus incorporation and distribution in cyanobacterial filaments over time was examined by scanning electron microscopy in combination with energy dispersive X-ray analysis (SEM/EDX) and nanoscale secondary ion mass spectrometry (NanoSIMS). Immediately after phosphate addition to a phosphorus-depleted population, the phosphate concentration decreased in the water while intracellular polyphosphate accumulated. Microscopically, phosphorus in form of polyphosphate granules was stored preferentially in vegetative cells, whereas heterocysts remained low in intracellular phosphorus. This information is an essential step towards understanding the phosphorus dynamics of this species and demonstrates that the division of tasks between vegetative cells and heterocysts is not restricted to nitrogen fixation.


Assuntos
Fixação de Nitrogênio , Nodularia/metabolismo , Nodularia/fisiologia , Fósforo/metabolismo , Fotossíntese , Plâncton/microbiologia , Oceanos e Mares
3.
ISME J ; 9(10): 2139-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25689027

RESUMO

Massive blooms of toxic cyanobacteria frequently occur in the central Baltic Sea during the summer. In the surface scum, cyanobacterial cells are exposed to high light (HL) intensity, high oxygen partial pressure and other stresses. To mimic these conditions, cultures of Nodularia spumigena CCY9414, which is a strain isolated from a cyanobacterial summer bloom in the Baltic Sea, were incubated at a HL intensity of 1200 µmol photons m(-2) s(-1) or a combination of HL and increased oxygen partial pressure. Using differential RNA sequencing, we compared the global primary transcriptomes of control and stressed cells. The combination of oxidative and light stresses induced the expression of twofold more genes compared with HL stress alone. In addition to the induction of known stress-responsive genes, such as psbA, ocp and sodB, Nodularia cells activated the expression of genes coding for many previously unknown light- and oxidative stress-related proteins. In addition, the expression of non-protein-coding RNAs was found to be stimulated by these stresses. Among them was an antisense RNA to the phycocyanin-encoding mRNA cpcBAC and the trans-encoded regulator of photosystem I, PsrR1. The large genome capacity allowed Nodularia to harbor more copies of stress-relevant genes such as psbA and small chlorophyll-binding protein genes, combined with the coordinated induction of these and many additional genes for stress acclimation. Our data provide a first insight on how N. spumigena became adapted to conditions relevant for a cyanobacterial bloom in the Baltic Sea.


Assuntos
Luz , Nodularia/metabolismo , Estresse Oxidativo/fisiologia , Clorofila/metabolismo , Perfilação da Expressão Gênica , Nodularia/fisiologia , Nodularia/efeitos da radiação , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , RNA Bacteriano/metabolismo , Água do Mar/microbiologia
4.
PLoS One ; 8(3): e60224, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555932

RESUMO

Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems.


Assuntos
Perfilação da Expressão Gênica/métodos , Genoma Bacteriano/genética , Nodularia/genética , Nodularia/fisiologia , Ecologia
5.
FEMS Microbiol Ecol ; 66(2): 230-42, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18754779

RESUMO

Biomass of N. spumigena is distributed within the dynamic photic zone that changes in both light quantity and quality. This study was designed to determine whether nutrient status can mitigate the negative impacts of experimental radiation treatments on the photosynthetic performance of N. spumigena. Cyanobacterial suspensions were exposed to radiation consisting of photosynthetically active radiation (PAR=400-700 nm), PAR+UV-A (=PA, 320-700 nm), and PAR+UV-A+UV-B (=PAB, 280-700 nm) under different nutrient media either replete with external dissolved nitrate (N) and orthophosphate (P; designated as +N/+P), replete with P only (-N/+P), or replete with N only (+N/-P). Under low PAR (75 micromol photons m(-2) s(-1)), nutrient status had no significant effect on the photosynthetic performance of N. spumigena in terms of rETRmax, alpha, and E(k). Nodularia spumigena was able to acclimate to high PAR (300 micromol photons m(-2) s(-1)), with a corresponding increase in rETRmax and E(k). The photosynthetic performance of N. spumigena cultured with supplemental nitrogen was more susceptible to experimental PAR irradiance. Under UVR, P-enrichment in the absence of additional external N (-N/+P) induced lower photoinhibition of photosynthesis compared with +N/-P cultures. However, the induction of NPQ may have provided PSII protection under P-deplete and PAR+UVR conditions. Because N. spumigena are able to fix nitrogen, access to available P can render them less susceptible to photoinhibition, effectively promoting blooms. Under a P-deficient condition, N. spumigena were more susceptible to radiation but were capable of photosynthetic recovery immediately after removal of radiation stress. In the presence of an internal P pool in the Baltic Sea, which may be seasonally available to the diazotrophic cyanobacteria, summer blooms of the resilient N. spumigena will persist.


Assuntos
Nitrogênio/metabolismo , Nodularia/fisiologia , Fósforo/metabolismo , Fotossíntese , Raios Ultravioleta , Clorofila/metabolismo , Meios de Cultura , Fixação de Nitrogênio , Nodularia/crescimento & desenvolvimento , Nodularia/isolamento & purificação , Nodularia/efeitos da radiação , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Água do Mar/química , Água do Mar/microbiologia
6.
Int J Syst Evol Microbiol ; 55(Pt 2): 555-568, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15774625

RESUMO

Diversity and ecological features of cyanobacteria of the genus Nodularia from benthic, periphytic and soil habitats are less well known than those of Nodularia from planktonic habitats. Novel benthic Nodularia strains were isolated from the Baltic Sea and their morphology, the presence of gas vacuoles, nodularin production, gliding, 16S rRNA gene sequences, rpoB, rbcLX and ndaF genes, and gvpA-IGS regions were examined, as well as short tandemly repeated repetitive sequence fingerprints. Strains were identified as Nodularia spumigena, Nodularia sphaerocarpa or Nodularia harveyana on the basis of the size and shape of the different types of cells and the presence or absence of gas vacuoles. The planktonic strains of N. spumigena mostly had gas vacuoles and produced nodularin, whereas the benthic strains of N. sphaerocarpa and N. harveyana lacked gas vacuoles and did not produce nodularin (except for strain PCC 7804). The benthic strains were also able to glide on surfaces. In the genetic analyses, the planktonic N. spumigena and benthic N. sphaerocarpa formed monophyletic clusters, but the clusters were very closely related. Benthic strains determined as N. harveyana formed the most diverse and distant group of strains. In addition to phylogenetic analyses, the lack of the gvpA-IGS region and ndaF in N. sphaerocarpa and N. harveyana distinguished these species from the planktonic N. spumigena. Therefore, ndaF can be considered as a potential diagnostic tool for detecting and quantifying Baltic Sea bloom-forming, nodularin-producing N. spumigena strains. The data confirm that only one morphologically and genetically distinct planktonic species of Nodularia, N. spumigena, and at least two benthic species, N. sphaerocarpa and N. harveyana, exist in the Baltic Sea.


Assuntos
Sedimentos Geológicos/microbiologia , Nodularia/classificação , Nodularia/genética , Água do Mar/microbiologia , Toxinas Bacterianas/metabolismo , DNA Bacteriano/análise , DNA Ribossômico/análise , Genes de RNAr , Dados de Sequência Molecular , Nodularia/fisiologia , Nodularia/ultraestrutura , Peptídeos Cíclicos/biossíntese , Fenótipo , Filogenia , Plâncton/classificação , Plâncton/genética , Proteínas/genética , RNA Ribossômico 16S/genética , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...