Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
Genes (Basel) ; 12(9)2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34573343

RESUMO

Sirtuins are key players for maintaining cellular homeostasis and are often deregulated in different human diseases. SIRT7 is the only member of mammalian sirtuins that principally resides in the nucleolus, a nuclear compartment involved in ribosomal biogenesis, senescence, and cellular stress responses. The ablation of SIRT7 induces global genomic instability, premature ageing, metabolic dysfunctions, and reduced stress tolerance, highlighting its critical role in counteracting ageing-associated processes. In this review, we describe the molecular mechanisms employed by SIRT7 to ensure cellular and organismal integrity with particular emphasis on SIRT7-dependent regulation of nucleolar functions.


Assuntos
Nucléolo Celular/fisiologia , Instabilidade Genômica , Sirtuínas/fisiologia , Estresse Fisiológico , Animais , Nucléolo Celular/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Humanos , Mamíferos , Ribossomos/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
2.
J Assist Reprod Genet ; 38(7): 1725-1736, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33811586

RESUMO

PURPOSE: To study the relationship between the migration speed of nucleolus precursor bodies (NPBs) in male and female pronuclei (mPN; fPN) and human embryo development during assisted reproduction. METHODS: The migration speed of 263 NPBs from 47 zygotes was quantitated, and embryonic development was observed until the blastocyst stage. The central coordinates of mPN, fPN, and NPBs were noted at multiple timepoints. Then, the distance traveled by the NPBs between two sequential images was measured, and migration speed was calculated. Additionally, we investigated the relationship between NPB migration speed and ploidy status (N = 33) or live birth/ongoing pregnancy (LB/OP) (N = 60) after assisted reproduction. RESULTS: The NPB migration speed in both mPN and fPN was significantly faster in the zygotes that developed into blastocysts (N = 25) than that in the zygotes that arrested (N = 22). The timing of blastulation was negatively correlated with NPB migration speed in the mPN. Faster NPB migration was significantly correlated with LB/OP. In multivariate logistic analysis, NPB migration speed in the mPN was the only morphokinetic parameter associated with LB/OP. In a receiver-operating characteristic curve analysis of LB/OP by the NPB migration speed in the mPN, the cut-off value was 4.56 µm/h. When this cut-off value was applied to blastocysts with preimplantation genetic testing for aneuploidy, 100% of the blastocysts faster than or equal to the cut-off value were euploid. CONCLUSION: The NPBs migrated faster in zygotes having the potential to develop into a blastocyst, and eventually into a baby. This predictor could be an attractive marker for non-invasive embryo selection.


Assuntos
Blastocisto/citologia , Nucléolo Celular/fisiologia , Imagem com Lapso de Tempo/métodos , Adulto , Blastocisto/fisiologia , Nucléolo Celular/ultraestrutura , Transferência Embrionária , Desenvolvimento Embrionário , Feminino , Humanos , Nascido Vivo , Masculino , Ploidias , Gravidez , Injeções de Esperma Intracitoplásmicas , Vitrificação , Zigoto
3.
Mol Biol Cell ; 32(9): 956-973, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33689394

RESUMO

Nucleoli are dynamic nuclear condensates in eukaryotic cells that originate through ribosome biogenesis at loci that harbor the ribosomal DNA. These loci are known as nucleolar organizer regions (NORs), and there are 10 in a human diploid genome. While there are 10 NORs, however, the number of nucleoli observed in cells is variable. Furthermore, changes in number are associated with disease, with increased numbers and size common in aggressive cancers. In the near-diploid human breast epithelial cell line, MCF10A, the most frequently observed number of nucleoli is two to three per cell. Here, to identify novel regulators of ribosome biogenesis we used high-throughput quantitative imaging of MCF10A cells to identify proteins that, when depleted, increase the percentage of nuclei with ≥5 nucleoli. Unexpectedly, this unique screening approach led to identification of proteins associated with the cell cycle. Functional analysis on a subset of hits further revealed not only proteins required for progression through the S and G2/M phase, but also proteins required explicitly for the regulation of RNA polymerase I transcription and protein synthesis. Thus, results from this screen for increased nucleolar number highlight the significance of the nucleolus in human cell cycle regulation, linking RNA polymerase I transcription to cell cycle progression.


Assuntos
Ciclo Celular/fisiologia , Nucléolo Celular/metabolismo , RNA Polimerase I/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/fisiologia , Núcleo Celular/metabolismo , DNA Ribossômico/genética , Humanos , Microscopia de Fluorescência/métodos , Região Organizadora do Nucléolo/metabolismo , Região Organizadora do Nucléolo/fisiologia , Biossíntese de Proteínas , Proteínas/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/fisiologia
4.
Folia Biol (Praha) ; 66(3): 111-115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33069190

RESUMO

Progenitor cells of the human erythroid and granulocytic cell lineages are characterized by the presence of several nucleoli. One of these nucleoli is larger and possesses more fibrillar centres than others. Such nucleolus is apparently dominant in respect of both size and main nucleolar function such as nucleolar-ribosomal RNA transcription. Such nucleolus is also visible in specimens using conventional visualization procedures, in contrast to smaller nucleoli. In the terminal differentiation nucleated stages of the erythroid and granulocytic development, dominant nucleoli apparently disappeared, since these cells mostly contained very small nucleoli of a similar size with one fibrillar centre. Thus, the easily visible dominant nucleoli appear to be useful markers of the progenitor cell state, such as proliferation, and differentiation potential.


Assuntos
Nucléolo Celular/fisiologia , Células Precursoras Eritroides/ultraestrutura , Células Precursoras de Granulócitos/ultraestrutura , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Nucléolo Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Granulócitos/ultraestrutura , Humanos , RNA Ribossômico/metabolismo
5.
Mech Ageing Dev ; 192: 111360, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32976914

RESUMO

Recently, mutations in the RNA polymerase III subunit A (POLR3A) have been described as the cause of the neonatal progeria or Wiedemann-Rautenstrauch syndrome (WRS). POLR3A has important roles in transcription regulation of small RNAs, including tRNA, 5S rRNA, and 7SK rRNA. We aim to describe the cellular and molecular features of WRS fibroblasts. Cultures of primary fibroblasts from one WRS patient [monoallelic POLR3A variant c.3772_3773delCT (p.Leu1258Glyfs*12)] and one control patient were cultured in vitro. The mutation caused a decrease in the expression of wildtype POLR3A mRNA and POLR3A protein and a sharp increase in mutant protein expression. In addition, there was an increase in the nuclear localization of the mutant protein. These changes were associated with an increase in the number and area of nucleoli and to a high increase in the expression of pP53 and pH2AX. All these changes were associated with premature senescence. The present observations add to our understanding of the differences between Hutchinson-Gilford progeria syndrome and WRS and opens new alternatives to study cell senesce and human aging.


Assuntos
Retardo do Crescimento Fetal , Fibroblastos , Progéria , RNA Polimerase III , Proteína Supressora de Tumor p53/metabolismo , Nucléolo Celular/fisiologia , Células Cultivadas , Senescência Celular/fisiologia , Dano ao DNA , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Fibroblastos/fisiologia , Fibroblastos/ultraestrutura , Expressão Gênica , Humanos , Mutação , Progéria/genética , Progéria/patologia , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA Ribossômico 5S/metabolismo
6.
Nature ; 585(7824): 298-302, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32669707

RESUMO

Proteins are manufactured by ribosomes-macromolecular complexes of protein and RNA molecules that are assembled within major nuclear compartments called nucleoli1,2. Existing models suggest that RNA polymerases I and III (Pol I and Pol III) are the only enzymes that directly mediate the expression of the ribosomal RNA (rRNA) components of ribosomes. Here we show, however, that RNA polymerase II (Pol II) inside human nucleoli operates near genes encoding rRNAs to drive their expression. Pol II, assisted by the neurodegeneration-associated enzyme senataxin, generates a shield comprising triplex nucleic acid structures known as R-loops at intergenic spacers flanking nucleolar rRNA genes. The shield prevents Pol I from producing sense intergenic noncoding RNAs (sincRNAs) that can disrupt nucleolar organization and rRNA expression. These disruptive sincRNAs can be unleashed by Pol II inhibition, senataxin loss, Ewing sarcoma or locus-associated R-loop repression through an experimental system involving the proteins RNaseH1, eGFP and dCas9 (which we refer to as 'red laser'). We reveal a nucleolar Pol-II-dependent mechanism that drives ribosome biogenesis, identify disease-associated disruption of nucleoli by noncoding RNAs, and establish locus-targeted R-loop modulation. Our findings revise theories of labour division between the major RNA polymerases, and identify nucleolar Pol II as a major factor in protein synthesis and nuclear organization, with potential implications for health and disease.


Assuntos
Nucléolo Celular/enzimologia , Nucléolo Celular/genética , DNA Ribossômico/genética , RNA Polimerase II/metabolismo , RNA não Traduzido/biossíntese , RNA não Traduzido/genética , Ribossomos/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/fisiologia , DNA Helicases/metabolismo , DNA Intergênico/genética , Humanos , Enzimas Multifuncionais/metabolismo , Biossíntese de Proteínas , Estruturas R-Loop , RNA Helicases/metabolismo , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase I/metabolismo , Ribonuclease H/metabolismo , Ribossomos/química , Ribossomos/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
7.
Anat Histol Embryol ; 49(6): 749-762, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32452082

RESUMO

The goldfish is a model organism showing great potential for research, particularly in comparative endocrinology concerning the neuroendocrine signalling and regulation of vertebrate reproduction. Furthermore, this teleost is increasingly stressed as a relevant alternative to more common fish model organisms, namely zebrafish. However, quality descriptions and illustrations of the complete goldfish gonadal histology are surprisingly scarce, but needed, to support research using this fish. Therefore, the main aim of this work is to describe in detail and adequately illustrate the goldfish oogenesis, from oogonia to late maturation, by applying routine stains (haematoxylin-eosin) and special procedures (periodic acid-Schiff and Goldner's trichrome). We hypothesized that the combined strategies would enable not only to observe the most general features but also to perceive some poorly described details of oocytes better. We describe the details of the following maturation stages: oogonia proliferation, chromatin-nucleolus, primary growth (one nucleolus step, multiple nucleoli step, perinucleolar step, cortical alveoli step) and secondary growth (early secondary growth step, late secondary growth step). Additionally, we report aspects of early and late follicular atresia. The study allowed comparisons with other species and showed that the Goldner's trichrome has the best discriminative power and should be the preferred stain, despite more time-consuming.


Assuntos
Carpa Dourada/anatomia & histologia , Folículo Ovariano/crescimento & desenvolvimento , Animais , Nucléolo Celular/fisiologia , Cromatina/fisiologia , Feminino , Atresia Folicular/fisiologia , Carpa Dourada/crescimento & desenvolvimento , Carpa Dourada/fisiologia , Modelos Animais , Oócitos/crescimento & desenvolvimento , Oócitos/fisiologia , Oogênese/fisiologia , Oogônios/crescimento & desenvolvimento , Oogônios/fisiologia , Folículo Ovariano/fisiologia , Coloração e Rotulagem
8.
Cells ; 9(3)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106410

RESUMO

The nucleolus is a prominent, membraneless compartment found within the nucleus of eukaryotic cells. It forms around ribosomal RNA (rRNA) genes, where it coordinates the transcription, processing, and packaging of rRNA to produce ribosomal subunits. Recent efforts to characterize the biophysical properties of the nucleolus have transformed our understanding of the assembly and organization of this dynamic compartment. Indeed, soluble macromolecules condense from the nucleoplasm to form nucleoli through a process called liquid-liquid phase separation. Individual nucleolar components rapidly exchange with the nucleoplasm and separate within the nucleolus itself to form distinct subcompartments. In addition to its essential role in ribosome biogenesis, the nucleolus regulates many aspects of cell physiology, including genome organization, stress responses, senescence and lifespan. Consequently, the nucleolus is implicated in several human diseases, such as Hutchinson-Gilford progeria syndrome, Diamond-Blackfan anemia, and various forms of cancer. This Special Issue highlights new insights into the physical and molecular mechanisms that control the architecture and diverse functions of the nucleolus, and how they break down in disease.


Assuntos
Nucléolo Celular/fisiologia , Humanos
10.
Genes (Basel) ; 10(12)2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835574

RESUMO

Both the pericentromere and the nucleolus have unique characteristics that distinguish them amongst the rest of genome. Looping of pericentromeric DNA, due to structural maintenance of chromosome (SMC) proteins condensin and cohesin, drives its ability to maintain tension during metaphase. Similar loops are formed via condensin and cohesin in nucleolar ribosomal DNA (rDNA). Condensin and cohesin are also concentrated in transfer RNA (tRNA) genes, genes which may be located within the pericentromere as well as tethered to the nucleolus. Replication fork stalling, as well as downstream consequences such as genomic recombination, are characteristic of both the pericentromere and rDNA. Furthermore, emerging evidence suggests that the pericentromere may function as a liquid-liquid phase separated domain, similar to the nucleolus. We therefore propose that the pericentromere and nucleolus, in part due to their enrichment of SMC proteins and others, contain similar domains that drive important cellular activities such as segregation, stability, and repair.


Assuntos
Nucléolo Celular/genética , Nucléolo Celular/fisiologia , Centrômero/fisiologia , Adenosina Trifosfatases , Proteínas de Ciclo Celular , Nucléolo Celular/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Cromossomos/fisiologia , Proteínas de Ligação a DNA , Mitose , Complexos Multiproteicos , Região Organizadora do Nucléolo/metabolismo , Região Organizadora do Nucléolo/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
12.
Trends Genet ; 35(10): 710-723, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31447250

RESUMO

The multicopy ribosomal DNA (rDNA) array gives origin to the nucleolus, a large nonmembrane-bound organelle that occupies a substantial volume within the cell nucleus. The rDNA/nucleolus has emerged as a coordinating hub in which seemingly disparate cellular functions converge, and from which a variety of cellular and organismal phenotypes emerge. However, the role of the nucleolus as a determinant and organizer of nuclear architecture and other epigenetic states of the genome is not well understood. We discuss the role of rDNA and the nucleolus in nuclear organization and function - from nucleolus-associated domains (NADs) to the regulation of imprinted loci and X chromosome inactivation, as well as rDNA contact maps that anchor and position the rDNA relative to the rest of the genome. The influence of the nucleolus on nuclear organization undoubtedly modulates diverse biological processes from metabolism to cell proliferation, genome-wide gene expression, maintenance of epigenetic states, and aging.


Assuntos
Nucléolo Celular/fisiologia , Núcleo Celular/fisiologia , DNA Ribossômico/genética , Animais , Nucléolo Celular/ultraestrutura , Núcleo Celular/ultraestrutura , DNA Ribossômico/metabolismo , Suscetibilidade a Doenças , Epigênese Genética , Regulação da Expressão Gênica , Humanos
13.
Exp Cell Res ; 383(2): 111587, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31454492

RESUMO

A typical nucleolus structure is shaped by three components. A meshwork of fine fibers forming the fibrillar center (FC) is surrounded by densely packed fibers forming the dense fibrillar component (DFC). Meanwhile, wrapping the FC and DFC is the granular component (GC). During the mitotic prophase, the nucleolus undergoes disassembling of its components. On the contrary, throughout the first meiotic prophase that occurs in the cells of the germ line, small nucleoli are assembled into one nucleolus by the end of the prophase. These nucleoli are transcriptionally active, suggesting that they are fully functional. Electron microscopy analysis has suggested that these nucleoli display their three main components but a typical organization has not been observed. Here, by immunolabeling and electron microscopy, we show that the nucleolus has its three main components. The GC is interlaced with the DFC and is not as well defined as previously thought during leptotene and zygotene stage.


Assuntos
Nucléolo Celular/ultraestrutura , Prófase/fisiologia , Espermatócitos/citologia , Espermatócitos/ultraestrutura , Animais , Nucléolo Celular/fisiologia , Masculino , Meiose/fisiologia , Microscopia Eletrônica , Ratos , Complexo Sinaptonêmico/ultraestrutura , Testículo/citologia , Testículo/ultraestrutura
14.
Cell Mol Life Sci ; 76(22): 4511-4524, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31338556

RESUMO

The nucleolus is a sub-nuclear body known primarily for its role in ribosome biogenesis. Increased number and/or size of nucleoli have historically been used by pathologists as a prognostic indicator of cancerous lesions. This increase in nucleolar number and/or size is classically attributed to the increased need for protein synthesis in cancer cells. However, evidences suggest that the nucleolus plays critical roles in many cellular functions in both normal cell biology and disease pathologies, including cancer. As new functions of the nucleolus are elucidated, there is mounting evidence to support the role of the nucleolus in regulating additional cellular functions, particularly response to cellular stressors, maintenance of genome stability, and DNA damage repair, as well as the regulation of gene expression and biogenesis of several ribonucleoproteins. This review highlights the central role of the nucleolus in carcinogenesis and cancer progression and discusses how cancer cells may become "addicted" to nucleolar functions.


Assuntos
Nucléolo Celular/fisiologia , Neoplasias/patologia , Animais , Carcinogênese/patologia , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Progressão da Doença , Instabilidade Genômica/fisiologia , Humanos
15.
Physiol Res ; 68(4): 633-638, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31177792

RESUMO

The present study was undertaken to estimate the approximate size of nuclear regions occupied by nucleolar bodies during the cell differentiation and maturation. The differentiation and maturation of human leukemic granulocytic cells in patients suffering from the chronic phase of the chronic granulocytic leukemia (CML) represented a convenient model for such study because of the large number of cells for the diameter measurements at the single cell level. Early and advanced differentiation or maturation stages of these cells are well defined and nucleolar bodies and nuclear outlines are easily seen by simple cytochemical methods for the visualization of RNA and silver stained proteins in smear preparations. During the cell differentiation and maturation, the estimated size of the nuclear region occupied by nucleolar bodies decreased in both untreated and treated patients with the anti-leukemic therapy. However, the size reduction of nucleolar bodies in differentiated and mature cells was larger than that of the nucleus. In addition, the results also indicated that the nuclear region occupied by nucleolar bodies was characteristic for each differentiation and maturation stage of the granulocytic cell lineage and was not substantially influenced by the anti-leukemic therapy of CML patients.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Nucléolo Celular/fisiologia , Granulócitos/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Humanos
16.
Int J Dev Biol ; 63(3-4-5): 105-112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058290

RESUMO

Mammalian oocytes/zygotes contain atypical nucleoli that are composed exclusively of a dense fibrillar material. It has been commonly accepted that these nucleoli serve as a repository of components that are used later on, as the embryo develops, for the construction of typical tripartite nucleoli. Indeed, when nucleoli were removed from immature oocytes (enucleolation) and these oocytes were then matured, fertilized or parthenogenetically activated, development of the produced embryos ceased after one or two cleavages with no detectable nucleoli in nuclei. This indicated that zygotic nucleoli originate exclusively from oocytes, i.e. are maternally inherited. Recently published results, however, do not support this developmental biology dogma and demonstrate that maternal nucleoli in one-cell stage embryos are necessary only during a very short time period after fertilization when they serve as a major heterochromatin organizing structures. Nevertheless, it still remains to be determined, which other functions/roles the atypical oocyte/zygote nucleoli eventually have.


Assuntos
Nucléolo Celular/fisiologia , Heterocromatina/fisiologia , Oócitos/fisiologia , Zigoto/fisiologia , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Fertilização , Humanos , Herança Materna , Camundongos , Nucleoplasminas/genética , Oócitos/ultraestrutura , Fatores de Tempo
17.
J Plant Res ; 132(3): 395-403, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30847615

RESUMO

The nucleolus, where components of the ribosome are constructed, is known to play an important role in various stress responses in animals. However, little is known about the role of the plant nucleolus under environmental stresses such as heat and chilling stress. In this study, we analyzed nucleolus morphology by determining the distribution of newly synthesized rRNAs with an analog of uridine, 5-ethynyl uridine (EU). When EU was incorporated into the root of the Arabidopsis thaliana, EU signals were strongly localized in the nucleolus. The results of the short-term incorporation of EU implied that there is no compartmentation among the processes of transcription, processing, and construction of rRNAs. Nevertheless, under heat and chilling stress, EU was not incorporated into the center of the nucleolus. Morphological analyses using whole rRNA staining and differential interference contrast observations revealed speckled and round structures in the center of the nucleolus under heat and chilling stress, respectively.


Assuntos
Nucléolo Celular/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Resposta ao Choque Frio , Resposta ao Choque Térmico , Uridina/análogos & derivados , Uridina/metabolismo
18.
Cell Rep ; 26(13): 3643-3656.e7, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917318

RESUMO

CBX4, a component of polycomb repressive complex 1 (PRC1), plays important roles in the maintenance of cell identity and organ development through gene silencing. However, whether CBX4 regulates human stem cell homeostasis remains unclear. Here, we demonstrate that CBX4 counteracts human mesenchymal stem cell (hMSC) aging via the maintenance of nucleolar homeostasis. CBX4 protein is downregulated in aged hMSCs, whereas CBX4 knockout in hMSCs results in destabilized nucleolar heterochromatin, enhanced ribosome biogenesis, increased protein translation, and accelerated cellular senescence. CBX4 maintains nucleolar homeostasis by recruiting nucleolar protein fibrillarin (FBL) and heterochromatin protein KRAB-associated protein 1 (KAP1) at nucleolar rDNA, limiting the excessive expression of rRNAs. Overexpression of CBX4 alleviates physiological hMSC aging and attenuates the development of osteoarthritis in mice. Altogether, our findings reveal a critical role of CBX4 in counteracting cellular senescence by maintaining nucleolar homeostasis, providing a potential therapeutic target for aging-associated disorders.


Assuntos
Nucléolo Celular/fisiologia , Senescência Celular/fisiologia , Homeostase , Ligases/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteoartrite/terapia , Proteínas do Grupo Polycomb/fisiologia , Animais , Proteínas Cromossômicas não Histona/metabolismo , Técnicas de Inativação de Genes , Terapia Genética , Células HEK293 , Humanos , Ligases/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas do Grupo Polycomb/genética
19.
Zygote ; 26(5): 395-402, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30311594

RESUMO

SummaryThe present study examines the role of RNA polymerase I (RPI)-mediated transcription, maternally inherited rRNA and nucleolar proteins in the resumption of fibrillogranular nucleoli during embryonic genome activation (EGA) in porcine embryos. Late 4-cell embryos were incubated in the absence (control) or presence of actinomycin D (AD) (0.2 µg/ml for inhibition of RPI; 2.0 µg/ml for inhibition of total transcription) and late 2-cell embryos were cultured to the late 4-cell stage with 0.2 µg/ml AD to block EGA. Embryos were then processed for reverse-transcriptase polymerase chain reaction (RT-PCR), and for autoradiography (ARG), transmission electron microscopy (TEM), fluorescence in situ hybridization (FISH), silver staining and immunofluorescence (for RPI). Embryos in the control group displayed extranucleolar and intranucleolar ARG labelling, and exhibited de novo synthesis of rRNA and reticulated functional nucleoli. Nucleolar proteins were located in large foci. After RPI inhibition, nucleolar precursors transformed into segregated fibrillogranular structures, however no fibrillar centres were observed. The localization of rDNA and clusters of rRNA were detected in 57.1% immunoprecipitated (IP) analyzed nucleoli and dispersed RPI; 30.5% of nuclei showed large deposits of nucleolar proteins. Embryos from the AD-2.0 group did not display any transcriptional activity. Nucleolar formation was completely blocked, however 39.4% of nuclei showed rRNA clusters; 85.7% of nuclei were co-localized with nucleolar proteins. Long-term transcriptional inhibition resulted in the lack of ARG and RPI labelling; 40% of analyzed nuclei displayed the accumulation of rRNA molecules into large foci. In conclusion, maternally inherited rRNA co-localized with rDNA and nucleolar proteins can initiate a partial nucleolar assembly, resulting in the formation of fibrilogranular structures independently on activation of RPI-mediated transcription.


Assuntos
Blastocisto/fisiologia , Nucléolo Celular/genética , Herança Materna , RNA Ribossômico/genética , Animais , Autorradiografia , Blastocisto/citologia , Nucléolo Celular/fisiologia , Feminino , Fertilização in vitro , Genoma , Hibridização in Situ Fluorescente , Masculino , Microscopia Eletrônica de Transmissão , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Ribossômico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos
20.
Phys Rev Lett ; 121(14): 148101, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339413

RESUMO

The nucleolus is a membraneless organelle embedded in chromatin solution inside the cell nucleus. By analyzing surface dynamics and fusion kinetics of human nucleoli in vivo, we find that the nucleolar surface exhibits subtle, but measurable, shape fluctuations and that the radius of the neck connecting two fusing nucleoli grows in time as r(t)∼t^{1/2}. This is consistent with liquid droplets with low surface tension ∼10^{-6} N m^{-1} coalescing within an outside fluid of high viscosity ∼10^{3} Pa s. Our study presents a noninvasive approach of using natural probes and their dynamics to investigate material properties of the cell and its constituents.


Assuntos
Nucléolo Celular/fisiologia , Núcleo Celular/fisiologia , Modelos Biológicos , Nucléolo Celular/química , Núcleo Celular/química , Cromatina/química , Cromatina/fisiologia , Células HeLa , Humanos , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA