Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.048
Filtrar
1.
J Virol ; 98(6): e0057824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38767352

RESUMO

The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.


Assuntos
Febre Lassa , Vírus Lassa , Vírus da Coriomeningite Linfocítica , Nanopartículas , Vacinas Virais , Animais , Feminino , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Glicoproteínas/imunologia , Glicoproteínas/genética , Febre Lassa/prevenção & controle , Febre Lassa/imunologia , Vírus Lassa/imunologia , Vírus Lassa/genética , Lipossomos , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nucleoproteínas/imunologia , Nucleoproteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Carga Viral , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
2.
EBioMedicine ; 104: 105153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805853

RESUMO

BACKGROUND: The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) -/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). METHODS: We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. FINDINGS: Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. INTERPRETATION: Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. FUNDING: This study was funded in part by the Bill and Melinda Gates Foundation (BMGF).


Assuntos
Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Imunidade Celular , Vacinas contra Influenza , Influenza Humana , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Anticorpos Antivirais/imunologia , Feminino , Adulto , Masculino , Linfócitos T/imunologia , Imunização Secundária , Interferon gama/metabolismo , Nucleoproteínas/imunologia , Adulto Jovem , Vírus da Influenza A/imunologia
3.
Microbiol Spectr ; 12(6): e0379623, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38712963

RESUMO

Cyclic GMP-AMP synthase (cGAS) is an important DNA pattern recognition receptor that senses double-stranded DNA derived from invading pathogens or self DNA in cytoplasm, leading to an antiviral interferon response. A tick-borne Bunyavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), is an RNA virus that causes a severe emerging viral hemorrhagic fever in Asia with a high case fatality rate of up to 30%. However, it is unclear whether cGAS interacts with SFTSV infection. In this study, we found that SFTSV infection upregulated cGAS RNA transcription and protein expression, indicating that cGAS is an important innate immune response against SFTSV infection. The mechanism of cGAS recognizing SFTSV is by cGAS interacting with misplaced mitochondrial DNA in the cytoplasm. Depletion of mitochondrial DNA significantly inhibited cGAS activation under SFTSV infection. Strikingly, we found that SFTSV nucleoprotein (N) induced cGAS degradation in a dose-dependent manner. Mechanically, N interacted with the 161-382 domain of cGAS and linked the cGAS to LC3. The cGAS-N-LC3 trimer was targeted to N-induced autophagy, and the cGAS was degraded in autolysosome. Taken together, our study discovered a novel antagonistic mechanism of RNA viruses, SFTSV is able to suppress the cGAS-dependent antiviral innate immune responses through N-hijacking cGAS into N-induced autophagy. Our results indicated that SFTSV N is an important virulence factor of SFTSV in mediating host antiviral immune responses. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne RNA virus that is widespread in East and Southeast Asian countries with a high fatality rate of up to 30%. Up to now, many cytoplasmic pattern recognition receptors, such as RIG-I, MDA5, and SAFA, have been reported to recognize SFTSV genomic RNA and trigger interferon-dependent antiviral responses. However, current knowledge is not clear whether SFTSV can be recognized by DNA sensor cyclic GMP-AMP synthase (cGAS). Our study demonstrated that cGAS could recognize SFTSV infection via ectopic mitochondrial DNA, and the activated cGAS-stimulator of interferon genes signaling pathway could significantly inhibit SFTSV replication. Importantly, we further uncovered a novel mechanism of SFTSV to inhibit innate immune responses by the degradation of cGAS. cGAS was degraded in N-induced autophagy. Collectively, this study illustrated a novel virulence factor of SFTSV to suppress innate immune responses through autophagy-dependent cGAS degradation.


Assuntos
Imunidade Inata , Nucleoproteínas , Nucleotidiltransferases , Phlebovirus , Phlebovirus/genética , Phlebovirus/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Humanos , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/imunologia , Células HEK293 , Febre Grave com Síndrome de Trombocitopenia/virologia , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Autofagia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Interferons/metabolismo , Interferons/imunologia , Interferons/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética
4.
Vaccine ; 42(15): 3505-3513, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38714444

RESUMO

It is necessary to develop universal vaccines that act broadly and continuously to combat regular seasonal epidemics of influenza and rare pandemics. The aim of this study was to find the optimal dose regimen for the efficacy and safety of a mixture of previously developed recombinant adenovirus-based vaccines that expressed influenza nucleoprotein, hemagglutinin, and ectodomain of matrix protein 2 (rAd/NP and rAd/HA-M2e). The vaccine efficacy and safety were measured in the immunized mice with the mixture of rAd/NP and rAd/HA-M2e intranasally or intramuscularly. The minimum dose that would be efficacious in a single intranasal administration of the vaccine mixture and cross-protective efficacy against various influenza strains were examined. In addition, the immune responses that may affect the cross-protective efficacy were measured. We found that intranasal administration is an optimal route for 107 pfu of vaccine mixture, which is effective against pre-existing immunity against adenovirus. In a study to find the minimum dose with vaccine efficacy, the 106 pfu of vaccine mixture showed higher antibody titers to the nucleoprotein than did the same dose of rAd/NP alone in the serum of immunized mice. The 106 pfu of vaccine mixture overcame the morbidity and mortality of mice against the lethal dose of pH1N1, H3N2, and H5N1 influenza infections. No noticeable side effects were observed in single and repeated toxicity studies. We found that the mucosal administration of adenovirus-based universal influenza vaccine has both efficacy and safety, and can provide cross-protection against various influenza infections even at doses lower than those previously known to be effective.


Assuntos
Adenoviridae , Administração Intranasal , Anticorpos Antivirais , Proteção Cruzada , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Proteínas da Matriz Viral , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Adenoviridae/genética , Adenoviridae/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Camundongos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Feminino , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/genética , Eficácia de Vacinas , Nucleoproteínas/imunologia , Nucleoproteínas/genética , Proteínas do Core Viral/imunologia , Proteínas do Core Viral/genética , Injeções Intramusculares , Proteínas Viroporinas
5.
Nat Commun ; 14(1): 1352, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906645

RESUMO

Lassa fever hits West African countries annually in the absence of licensed vaccine to limit the burden of this viral hemorrhagic fever. We previously developed MeV-NP, a single-shot vaccine protecting cynomolgus monkeys against divergent strains one month or more than a year before Lassa virus infection. Given the limited dissemination area during outbreaks and the risk of nosocomial transmission, a vaccine inducing rapid protection could be useful to protect exposed people during outbreaks in the absence of preventive vaccination. Here, we test whether the time to protection can be reduced after immunization by challenging measles virus pre-immune male cynomolgus monkeys sixteen or eight days after a single shot of MeV-NP. None of the immunized monkeys develop disease and they rapidly control viral replication. Animals immunized eight days before the challenge are the best controllers, producing a strong CD8 T-cell response against the viral glycoprotein. A group of animals was also vaccinated one hour after the challenge, but was not protected and succumbed to the disease as the control animals. This study demonstrates that MeV-NP can induce a rapid protective immune response against Lassa fever in the presence of MeV pre-existing immunity but can likely not be used as therapeutic vaccine.


Assuntos
Febre Lassa , Febre Lassa/imunologia , Febre Lassa/prevenção & controle , Vírus Lassa/imunologia , Masculino , Animais , Macaca fascicularis , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Nucleoproteínas/imunologia , Imunidade Humoral , Replicação Viral , Linfócitos T/imunologia , Células Matadoras Naturais/imunologia , Transcriptoma
6.
J Virol ; 97(4): e0181422, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36939341

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and potentially fatal hemorrhagic fever in humans. Autophagy is a self-degradative process that can restrict viral replication at multiple infection steps. In this study, we evaluated the effects of RVFV-triggered autophagy on viral replication and immune responses. Our results showed that RVFV infection triggered autophagosome formation and induced complete autophagy. Impairing autophagy flux by depleting autophagy-related gene 5 (ATG5), ATG7, or sequestosome 1 (SQSTM1) or treatment with autophagy inhibitors markedly reduced viral RNA synthesis and progeny virus production. Mechanistically, our findings demonstrated that the RVFV nucleoprotein (NP) C-terminal domain interacts with the autophagy receptor SQSTM1 and promotes the SQSTM1-microtubule-associated protein 1 light chain 3 B (LC3B) interaction and autophagy. Deletion of the NP C-terminal domain impaired the interaction between NP and SQSTM1 and its ability to trigger autophagy. Notably, RVFV-triggered autophagy promoted viral infection in macrophages but not in other tested cell types, including Huh7 hepatocytes and human umbilical vein endothelial cells, suggesting cell type specificity of this mechanism. It was further revealed that RVFV NP-triggered autophagy dampens antiviral innate immune responses in infected macrophages to promote viral replication. These results provide novel insights into the mechanisms of RVFV-triggered autophagy and indicate the potential of targeting the autophagy pathway to develop antivirals against RVFV. IMPORTANCE We showed that RVFV infection induced the complete autophagy process. Depletion of the core autophagy genes ATG5, ATG7, or SQSTM1 or pharmacologic inhibition of autophagy in macrophages strongly suppressed RVFV replication. We further revealed that the RVFV NP C-terminal domain interacted with SQSTM1 and enhanced the SQSTM1/LC3B interaction to promote autophagy. RVFV NP-triggered autophagy strongly inhibited virus-induced expression of interferon-stimulated genes in infected macrophages but not in other tested cell types. Our study provides novel insights into the mechanisms of RVFV-triggered autophagy and highlights the potential of targeting autophagy flux to develop antivirals against this virus.


Assuntos
Autofagia , Imunidade Inata , Nucleoproteínas , Vírus da Febre do Vale do Rift , Imunidade Inata/imunologia , Vírus da Febre do Vale do Rift/imunologia , Nucleoproteínas/imunologia , Nucleoproteínas/metabolismo , Autofagia/imunologia , Replicação Viral , Linhagem Celular , Febre do Vale de Rift/imunologia , Humanos , Animais , Macrófagos/virologia
7.
Cell Rep Med ; 3(1): 100499, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35106511

RESUMO

Borna disease virus 1 (BoDV-1) causes rare but often fatal encephalitis in humans. Late diagnosis prohibits an experimental therapeutic approach. Here, we report a recent case of fatal BoDV-1 infection diagnosed on day 12 after hospitalization by detection of BoDV-1 RNA in the cerebrospinal fluid. In a retrospective analysis, we detect BoDV-1 RNA 1 day after hospital admission when the cell count in the cerebrospinal fluid is still normal. We develop a new ELISA using recombinant BoDV-1 nucleoprotein, phosphoprotein, and accessory protein X to detect seroconversion on day 12. Antibody responses are also shown in seven previously confirmed cases. The individual BoDV-1 antibody profiles show variability, but the usage of three different BoDV-1 antigens results in a more sensitive diagnostic tool. Our findings demonstrate that early detection of BoDV-1 RNA in cerebrospinal fluid and the presence of antibodies against at least two different viral antigens contribute to BoDV-1 diagnosis. Physicians in endemic regions should consider BoDV-1 infection in cases of unclear encephalopathy and initiate appropriate diagnostics at an early stage.


Assuntos
Anticorpos/imunologia , Doença de Borna/diagnóstico , Doença de Borna/imunologia , Vírus da Doença de Borna/fisiologia , Nucleoproteínas/imunologia , Fosfoproteínas/imunologia , Proteínas Virais/imunologia , Idoso , Animais , Chlorocebus aethiops , Humanos , Proteínas Recombinantes/imunologia , Células Vero
8.
EMBO J ; 40(17): e108588, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323299

RESUMO

The humoral immune response to SARS-CoV-2 results in antibodies against spike (S) and nucleoprotein (N). However, whilst there are widely available neutralization assays for S antibodies, there is no assay for N-antibody activity. Here, we present a simple in vitro method called EDNA (electroporated-antibody-dependent neutralization assay) that provides a quantitative measure of N-antibody activity in unpurified serum from SARS-CoV-2 convalescents. We show that N antibodies neutralize SARS-CoV-2 intracellularly and cell-autonomously but require the cytosolic Fc receptor TRIM21. Using EDNA, we show that low N-antibody titres can be neutralizing, whilst some convalescents possess serum with high titres but weak activity. N-antibody and N-specific T-cell activity correlates within individuals, suggesting N antibodies may protect against SARS-CoV-2 by promoting antigen presentation. This work highlights the potential benefits of N-based vaccines and provides an in vitro assay to allow the antibodies they induce to be tested.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , COVID-19/sangue , SARS-CoV-2/isolamento & purificação , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/virologia , Humanos , Nucleoproteínas/sangue , Nucleoproteínas/imunologia , SARS-CoV-2/patogenicidade
9.
Eur J Clin Microbiol Infect Dis ; 40(12): 2645-2649, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34085159

RESUMO

SARS CoV-2 antibody assays measure antibodies against the viral nucleoprotein (NP) or spike protein. The study examined if testing of antibodies against both antigens increases the diagnostic sensitivity. Sera (N=98) from infected individuals were tested with ELISAs based on the NP, receptor-binding domain (RBD), or both proteins. The AUROCs were 0.958 (NP), 0.991 (RBD), and 0.992 (NP/RBD). The RBD- and NP/RBD-based ELISAs showed better performance than the NP-based assay. Simultaneous testing for antibodies against NP and RBD increased the number of true and false positives. If maximum diagnostic sensitivity is required, the NP/RBD-based ELISA is preferable. Otherwise, the RBD-based ELISA is sufficient.


Assuntos
Anticorpos Antivirais/sangue , Teste para COVID-19/métodos , COVID-19/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Nucleoproteínas/imunologia , SARS-CoV-2/imunologia , COVID-19/virologia , Humanos , Nucleoproteínas/química , Domínios Proteicos , SARS-CoV-2/química
10.
Front Immunol ; 12: 627568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995351

RESUMO

The beta-coronavirus SARS-CoV-2 induces severe disease (COVID-19) mainly in elderly persons with risk factors, whereas the majority of patients experience a mild course of infection. As the circulating common cold coronaviruses OC43 and HKU1 share some homologous sequences with SARS-CoV-2, beta-coronavirus cross-reactive T-cell responses could influence the susceptibility to SARS-CoV-2 infection and the course of COVID-19. To investigate the role of beta-coronavirus cross-reactive T-cells, we analyzed the T-cell response against a 15 amino acid long peptide (SCoV-DP15: DLSPRWYFYYLGTGP) from the SARS-CoV-2 nucleoprotein sequence with a high homology to the corresponding sequence (QLLPRWYFYYLGTGP) in OC43 and HKU1. SCoV-DP15-specific T-cells were detected in 4 out of 23 (17.4%) SARS-CoV-2-seronegative healthy donors. As HIV-1 infection is a potential risk factor for COVID-19, we also studied a cohort of HIV-1-infected patients on antiretroviral therapy. 44 out of these 116 HIV-1-infected patients (37.9%) showed a specific recognition of the SCoV-DP15 peptide or of shorter peptides within SCoV-DP15 by CD4+ T-cells and/or by CD8+ T-cells. We could define several new cross-reactive HLA-I-restricted epitopes in the SARS-CoV-2 nucleoprotein such as SPRWYFYYL (HLA-B*07, HLA-B*35), DLSPRWYFYY (HLA-A*02), LSPRWYFYY (HLA-A*29), WYFYYLGTGP and WYFYYLGT. Epitope specific CD8+ T-cell lines recognized corresponding epitopes within OC43 and HKU1 to a similar degree or even at lower peptide concentrations suggesting that they were induced by infection with OC43 or HKU1. Our results confirm that SARS-CoV-2-seronegative subjects can target SARS-CoV-2 not only by beta-coronavirus cross-reactive CD4+ T-cells but also by cross-reactive CD8+ cytotoxic T-cells (CTL). The delineation of cross-reactive T-cell epitopes contributes to an efficient epitope-specific immunomonitoring of SARS-CoV-2-specific T-cells. Further prospective studies are needed to prove a protective role of cross-reactive T-cells and their restricting HLA alleles for control of SARS-CoV-2 infection. The frequent observation of SARS-CoV-2-reactive T-cells in HIV-1-infected subjects could be a reason that treated HIV-1 infection does not seem to be a strong risk factor for the development of severe COVID-19.


Assuntos
Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Resfriado Comum/imunologia , Epitopos de Linfócito T/imunologia , Nucleoproteínas/imunologia , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto , Idoso , Linfócitos T CD4-Positivos/patologia , COVID-19/genética , COVID-19/patologia , Linhagem Celular , Resfriado Comum/genética , Resfriado Comum/patologia , Reações Cruzadas , Epitopos de Linfócito T/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nucleoproteínas/genética , SARS-CoV-2/genética , Linfócitos T Citotóxicos/patologia
11.
J Med Virol ; 93(9): 5614-5617, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33913546

RESUMO

The severity of disease of Covid-19 is highly variable, ranging from asymptomatic to critical respiratory disease and death. Potential cross-reactive immune responses between SARS-CoV-2 and endemic coronavirus (eCoV) may hypothetically contribute to this variability. We herein studied if eCoV nucleoprotein (N)-specific antibodies in the sera of patients with mild or severe Covid-19 are associated with Covid-19 severity. There were comparable levels of eCoV N-specific antibodies early and during the first month of infection in Covid-19 patients with mild and severe symptoms, and healthy SARS-CoV-2-negative subjects. These results warrant further studies to investigate the potential role of eCoV-specific antibodies in immunity to SARS-CoV-2 infection.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Nucleoproteínas/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , COVID-19/sangue , Teste Sorológico para COVID-19 , Reações Cruzadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Suécia , Adulto Jovem
12.
Commun Biol ; 4(1): 486, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879833

RESUMO

There is an ongoing need of developing sensitive and specific methods for the determination of SARS-CoV-2 seroconversion. For this purpose, we have developed a multiplexed flow cytometric bead array (C19BA) that allows the identification of IgG and IgM antibodies against three immunogenic proteins simultaneously: the spike receptor-binding domain (RBD), the spike protein subunit 1 (S1) and the nucleoprotein (N). Using different cohorts of samples collected before and after the pandemic, we show that this assay is more sensitive than ELISAs performed in our laboratory. The combination of three viral antigens allows for the interrogation of full seroconversion. Importantly, we have detected N-reactive antibodies in COVID-19-negative individuals. Here we present an immunoassay that can be easily implemented and has superior potential to detect low antibody titers compared to current gold standard serology methods.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , Citometria de Fluxo/métodos , Nucleoproteínas/imunologia , SARS-CoV-2/imunologia , Soroconversão , Antígenos Virais/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Imunoensaio/métodos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Pandemias , Reprodutibilidade dos Testes , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade
13.
J Clin Virol ; 137: 104784, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33711693

RESUMO

BACKGROUND: Accurate anti-SARS-CoV-2 assays are needed to inform diagnostic, therapeutic, and public health decisions. The first manufacturer-independent head-to-head comparison of two rapid high-throughput automated electrochemiluminescence double-antigen sandwich immunoassays targeting total anti-SARS-CoV-2 antibodies against two different viral proteins, Elecsys Anti-SARS-CoV-2 (Elecsys-N) and Elecsys Anti-SARS-CoV-2 S (Elecsys-S) (Roche Diagnostics), was performed in a routine setting during the exponential growth phase of the epidemic's second wave. METHODS: The diagnostic specificity of Elecsys-N and Elecsys-S was initially evaluated on a panel of 572 pre-COVID-19 samples, showing 100 % specificity of both assays. Elecsys-N/Elecsys-S head-to-head comparison used 3,416 consecutive blood samples from individuals that were tested for the presence of anti-SARS-CoV-2 within commercial out-of-pocket serologic testing. RESULTS: Elecsys-N/Elecsys-S head-to-head comparison showed overall agreement of 98.68 % (3,371/3,416; 95 % CI, 98.23-99.03 %), positive agreement of 95.16 % (884/929; 95 % CI, 93.52-96.41 %), and a high kappa value of 0.996 (95 % CI, 0.956-0.976). Previous SARS-CoV-2 PCR positivity was identified in 14/24 (58.3 %) Elecsys-N negative/Elecsys-S positive individuals and in 4/21 (19.0 %) Elecsys-N positive/Elecsys-S negative individuals. CONCLUSION: The first Elecsys-N/Elecsys-S head-to-head comparison showed excellent agreement of two highly specific and rapid high-throughput automated anti-SARS-CoV-2 assays. An important question is whether laboratories offering two different antibody assays could benefit from combining the assays; if so, should use be concomitant or sequential-and, in the latter case, in which order? Based on our results, we favor concomitant over sequential Elecsys-N/Elecsys-S use when testing individuals for anti-SARS-CoV-2 antibodies in high-incidence settings; for example, during the exponential or stationary growth phase of the COVID-19 epidemic.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Ensaios de Triagem em Larga Escala/métodos , Nucleoproteínas/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/sangue , Eletroquímica/métodos , Humanos , Imunoensaio/métodos , Imunoglobulina G/sangue , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
14.
PLoS Pathog ; 17(2): e1008859, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534867

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS.


Assuntos
Antígenos Virais/imunologia , Nucleoproteínas/imunologia , Phlebovirus/imunologia , Febre Grave com Síndrome de Trombocitopenia/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Proteínas do Envelope Viral/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/virologia
16.
Front Immunol ; 12: 813300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095908

RESUMO

Background: The presentation of SARS-CoV-2 infection varies from asymptomatic to severe COVID-19. Similarly, high variability in the presence, titre and duration of specific antibodies has been reported. While some host factors determining these differences, such as age and ethnicity have been identified, the underlying molecular mechanisms underpinning these differences remain poorly defined. Methods: We analysed serum and PBMC from 17 subjects with a previous PCR-confirmed SARS-CoV-2 infection and 10 unexposed volunteers following the first wave of the pandemic, in the UK. Anti-NP IgG and neutralising antibodies were measured, as well as a panel of infection and inflammation related cytokines. The virus-specific T cell response was determined by IFN-γ ELISPOT and flow cytometry after overnight incubation of PBMCs with pools of selected SARS-CoV-2 specific peptides. Results: Seven of 17 convalescent subjects had undetectable levels of anti-NP IgG, and a positive correlation was shown between anti-NP IgG levels and the titre of neutralising antibodies (IC50). In contrast, a discrepancy was noted between antibody levels and T cell IFN-γ production by ELISpot following stimulation with specific peptides. Among the analysed cytokines, ß-NGF and IL-1α levels were significantly different between anti-NP positive and negative subjects, and only ß-NGF significantly correlated with anti-NP positivity. Interestingly, CD4+ T cells of anti-NP negative subjects expressed lower amounts of the ß-NGF-specific receptor TrkA. Conclusions: Our results suggest that the ß-NGF/TrkA signalling pathway is associated with the production of anti-NP specific antibody in mild SARS-CoV-2 infection and the mechanistic regulation of this pathway in COVID-19 requires further investigation.


Assuntos
Anticorpos Anti-Idiotípicos/imunologia , COVID-19/imunologia , Imunoglobulina G/imunologia , Fator de Crescimento Neural/imunologia , Nucleoproteínas/imunologia , Receptor trkA/imunologia , Transdução de Sinais/imunologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Chlorocebus aethiops , Citocinas/imunologia , Humanos , Inflamação/imunologia , SARS-CoV-2/imunologia , Células Vero
17.
Methods Mol Biol ; 2225: 39-61, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33108656

RESUMO

Vaccines are the most effective means to prevent infectious diseases, especially for viral infection. The key to an excellent antiviral vaccine is the ability to induce long-term protective immunity against a specific virus. Bacterial vaccine vectors have been used to impart protection against self, as well as heterologous antigens. One significant benefit of using live bacterial vaccine vectors is their ability to invade and colonize deep effector lymphoid tissues after mucosal delivery. The bacterium Salmonella is considered the best at this deep colonization. This is critically essential for inducing protective immunity. This chapter describes the methodology for developing genetically modified self-destructing Salmonella (GMS) vaccine delivery systems targeting influenza infection. Specifically, the methods covered include the procedures for the development of GMSs for protective antigen delivery to induce cellular immune responses and DNA vaccine delivery to induce systemic immunity against the influenza virus. These self-destructing GMS could be modified to provide effective biological containment for genetically engineered bacteria used for a diversity of purposes in addition to vaccines.


Assuntos
Engenharia Genética/métodos , Imunização/métodos , Vacinas contra Influenza/genética , Influenza Humana/prevenção & controle , Salmonella typhimurium/genética , Vacinas de DNA/genética , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Antígenos Virais/genética , Antígenos Virais/imunologia , Feminino , Genes Letais , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Nucleoproteínas/genética , Nucleoproteínas/imunologia , Organismos Geneticamente Modificados , Plasmídeos/química , Plasmídeos/metabolismo , Salmonella typhimurium/imunologia , Transgenes
18.
Emerg Microbes Infect ; 9(1): 2303-2314, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32990499

RESUMO

ABSTRACT Haemorrhagic fever with renal syndrome (HFRS) following Hantaan virus (HTNV) infection displays variable clinical signs. Humoral responses elicited during HTNV infections are considered important, however, this process remains poorly understood. Herein, we have investigated the phenotype, temporal dynamics, and characteristics of B-cell receptor (BCR) repertoire in an HFRS cohort. The serological profiles were characterized by a lowered expression level of nucleoprotein (NP)-specific antibody in severe cases. Importantly, B-cell subsets were activated and proliferated within the first two weeks of symptom onset and moderate cases reacted more rapidly. BCR analysis in the recovery phase revealed a dramatic increase in the immunoglobulin gene diversity which was more significantly progressed in moderate infections. In severe cases, B-cell-related transcription was lower with inflammatory sets overactivated. Taken together, these data suggest the clinical signs and disease recovery in HFRS patients were positively impacted by rapid and efficacious humoral responses.


Assuntos
Vírus Hantaan/imunologia , Febre Hemorrágica com Síndrome Renal/imunologia , Nucleoproteínas/imunologia , Receptores de Antígenos de Linfócitos B/genética , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Linfócitos B/imunologia , China , Regulação para Baixo , Feminino , Febre Hemorrágica com Síndrome Renal/genética , Humanos , Imunidade Humoral , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Transcrição Gênica
19.
J Clin Virol ; 129: 104544, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32663788

RESUMO

The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) has been followed by the rapid development of antibody tests. To assess the utility of the tests for clinical use and seroepidemiologic studies, we examined the sensitivity of commercial antibody tests from Roche, Abbott, Novatec, Virotech Siemens, Euroimmun, and Mediagnost in a prospective diagnostic study. The tests were evaluated with 73 sera from SARS CoV-2 RNA positive individuals with mild to moderate disease or asymptomatic infection. Sera were obtained at 2-3 weeks (N = 25) or > 4 weeks (N = 48) after symptom onset and viral RNA test. The overall sensitivity of the tests ranged from 64.4-93.2%. The most sensitive assays recognized 95.8-100 % of the sera obtained after 4 weeks or later. Sera drawn at 2-3 weeks were recognized with lower sensitivity indicating that the optimal time point for serologic testing is later than 3 weeks after onset of the disease. Nucleoprotein- and glycoproteinbased assays had similar sensitivity indicating that tests with both antigens are suitable for serological diagnostics. Breakdown of the test results showed that nucleoprotein- and glycoprotein-based tests of comparable sensitivity reacted with different sets of sera. The observation indicates that a combination of nucleoprotein- and glycoprotein-based tests would increase the percentage of positive results.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Testes Sorológicos/métodos , Proteínas Estruturais Virais/imunologia , Betacoronavirus/imunologia , COVID-19 , Teste para COVID-19 , Glicoproteínas/imunologia , Humanos , Nucleoproteínas/imunologia , Pandemias , Estudos Prospectivos , SARS-CoV-2 , Sensibilidade e Especificidade , Fatores de Tempo
20.
Bioconjug Chem ; 31(8): 1948-1959, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32678574

RESUMO

Naturally occurring self-assembling ferritin nanoparticles have become widely appreciated for vaccine design. In this study, an apoferritin (AFt) nanocage was used as a carrier to construct a biomimetic influenza vaccine by encapsulating a conserved internal nucleoprotein (NP) antigen peptide inside the nanocage, followed by chemically conjugating the surface antigen hemagglutinin (HA) protein on the outer surface of the AFt. Benefiting from the excellent thermal stability and thermallyassociated structural flexibility of the AFt nanocages, a novel temperature shift based encapsulation process was proposed and proved efficient for encapsulation of the NP peptides. On average, about 18 NPs were encapsulated and 1.6 HA antigens were conjugated in each of the HA-AFt+NP dual-antigen influenza vaccines. Upon immunization in mice, the HA-AFt+NP vaccine elicited both HA and NP-specific antibodies, and conferred complete protection against a lethal infection of both homologous PR8 H1N1 and heterologous A/FM/1/47 (FM1, H1N1) strains, while the HA-AFt conjugate vaccine without encapsulated NP antigen only conferred 60% protection against the FM1 H1N1 viral challenge. The potential cross-protective effect of the HA-AFt+NP vaccine was further demonstrated by significant specific hemagglutination inhibition (HAI) titers in serum of the immunized mice against heterologous A/Hong Kong/4801/2014 (H3N2) viral strain, which was about 3-fold of that induced by HA antigen and 2-fold of the HA-AFt conjugate vaccine. This biomimetic HA-AFt+NP conjugate vaccine, therefore, may represent a new strategy for developing a potential universal influenza vaccine without the need of any adjuvant, and further broaden the application of AFt nanocages in the areas of vaccine development and delivery system.


Assuntos
Apoferritinas/química , Apoferritinas/imunologia , Hemaglutininas/química , Hemaglutininas/imunologia , Vacinas contra Influenza/imunologia , Nucleoproteínas/imunologia , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Camundongos , Camundongos Endogâmicos BALB C , Nucleoproteínas/química , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Vacinas Conjugadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...