Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BMC Cancer ; 24(1): 624, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778317

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) has a high mortality rate, and the mechanisms underlying tumor development and progression remain unclear. However, inactivated tumor suppressor genes might play key roles. DNA methylation is a critical regulatory mechanism for inactivating tumor suppressor genes in HCC. Therefore, this study investigated methylation-related tumor suppressors in HCC to identify potential biomarkers and therapeutic targets. METHODS: We assessed genome-wide DNA methylation in HCC using whole genome bisulfite sequencing (WGBS) and RNA sequencing, respectively, and identified the differential expression of methylation-related genes, and finally screened phosphodiesterase 7B (PDE7B) for the study. The correlation between PDE7B expression and clinical features was then assessed. We then analyzed the changes of PDE7B expression in HCC cells before and after DNA methyltransferase inhibitor treatment by MassArray nucleic acid mass spectrometry. Furthermore, HCC cell lines overexpressing PDE7B were constructed to investigate its effect on HCC cell function. Finally, GO and KEGG were applied for the enrichment analysis of PDE7B-related pathways, and their effects on the expression of pathway proteins and EMT-related factors in HCC cells were preliminarily explored. RESULTS: HCC exhibited a genome-wide hypomethylation pattern. We screened 713 hypomethylated and 362 hypermethylated mCG regions in HCC and adjacent normal tissues. GO analysis showed that the main molecular functions of hypermethylation and hypomethylation were "DNA-binding transcriptional activator activity" and "structural component of ribosomes", respectively, whereas KEGG analysis showed that they were enriched in "bile secretion" and "Ras-associated protein-1 (Rap1) signaling pathway", respectively. PDE7B expression was significantly down-regulated in HCC tissues, and this low expression was negatively correlated with recurrence and prognosis of HCC. In addition, DNA methylation regulates PDE7B expression in HCC. On the contrary, overexpression of PDE7B inhibited tumor proliferation and metastasis in vitro. In addition, PDE7B-related genes were mainly enriched in the PI3K/ATK signaling pathway, and PDE7B overexpression inhibited the progression of PI3K/ATK signaling pathway-related proteins and EMT. CONCLUSION: PDE7B expression in HCC may be regulated by promoter methylation. PDE7B can regulate the EMT process in HCC cells through the PI3K/AKT pathway, which in turn affects HCC metastasis and invasion.


Assuntos
Carcinoma Hepatocelular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7 , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Linhagem Celular Tumoral , Invasividade Neoplásica/genética , Genes Supressores de Tumor , Masculino , Proliferação de Células/genética , Feminino , Metástase Neoplásica , Movimento Celular/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-36220621

RESUMO

BACKGROUND: PDEs regulate cAMP levels which is critical for PKA activity-dependent activation of CREB-mediated transcription in learning and memory. Inhibitors of PDEs like PDE4 and Pde7 improve learning and memory in rodents. However, the role of PDE7 in cognition or learning and memory has not been reported yet. METHODS: Therefore, we aimed to explore the cognitive effects of a PDE7 subtype, PDE7a, using combined pharmacological and genetic approaches. RESULTS: PDE7a-nko mice showed deficient working memory, impaired novel object recognition, deficient spatial learning & memory, and contextual fear memory, contrary to enhanced cued fear memory, highlighting the potential opposite role of PDE7a in the hippocampal neurons. Further, pharmacological inhibition of PDE7 by AGF2.20 selectively strengthens cued fear memory in C57BL/6 J mice, decreasing its extinction but did not affect cognitive processes assessed in other behavioral tests. The further biochemical analysis detected deficient cAMP in neural cell culture with genetic excision of the PDE7a gene, as well as in the hippocampus of PDE7a-nko mice in vivo. Importantly, we found overexpression of PKA-R and the reduced level of pPKA-C in the hippocampus of PDE7a-nko mice, suggesting a novel mechanism of the cAMP regulation by PDE7a. Consequently, the decreased phosphorylation of CREB, CAMKII, eif2a, ERK, and AMPK, and reduced total level of NR2A have been found in the brain of PDE7a-nko animals. Notably, genetic excision of PDE7a in neurons was not able to change the expression of NR2B, BDNF, synapsin1, synaptophysin, or snap25. CONCLUSION: Altogether, our current findings demonstrated, for the first time, the role of PDE7a in cognitive processes. Future studies will untangle PDE7a-dependent neurobiological and molecular-cellular mechanisms related to cAMP-associated disorders.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7 , Memória de Curto Prazo , Aprendizagem Espacial , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Medo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Sinaptofisina/metabolismo , Memória , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo
3.
Inflammopharmacology ; 30(6): 2051-2061, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272040

RESUMO

Neurodegenerative illness develops as a result of genetic defects that cause changes at numerous levels, including genomic products and biological processes. It entails the degradation of cyclic nucleotides, cyclic adenosine monophosphate (cAMP), and cyclic guanosine monophosphate (cGMP). PDE7 modulates intracellular cAMP signalling, which is involved in numerous essential physiological and pathological processes. For the therapy of neurodegenerative illnesses, the normalization of cyclic nucleotide signalling through PDE inhibition remains intriguing. In this article, we shall examine the role of PDEs in neurodegenerative diseases. Alzheimer's disease, Multiple sclerosis, Huntington's disease, Parkinson's disease, Stroke, and Epilepsy are related to alterations in PDE7 expression in the brain. Earlier, animal models of neurological illnesses including Alzheimer's disease, Parkinson's disease, and multiple sclerosis have had significant results to PDE7 inhibitors, i.e., VP3.15; VP1.14. In addition, modulation of CAMP/CREB/GSK/PKA signalling pathways involving PDE7 in neurodegenerative diseases has been addressed. To understand the etiology, treatment options of these disorders mediated by PDE7 and its subtypes can be the focus of future research.


Assuntos
Doença de Alzheimer , Esclerose Múltipla , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Esclerose Múltipla/tratamento farmacológico
4.
Neuropharmacology ; 196: 108694, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34245775

RESUMO

Phosphodiesterase 7 (PDE7), one of the 11 phosphodiesterase (PDE) families, specifically hydrolyzes cyclic 3', 5'-adenosine monophosphate (cAMP). PDE7 is involved in many important functional processes in physiology and pathology by regulating intracellular cAMP signaling. Studies have demonstrated that PDE7 is widely expressed in the central nervous system (CNS) and potentially related to pathogenesis of many CNS diseases. Here, we summarized the classification and distribution of PDE7 in the brain and its functional roles in the mediation of CNS diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), and schizophrenia. It is expected that the findings collected here will not only lead to a better understanding of the mechanisms by which PDE7 mediates CNS function and diseases, but also aid in the development of novel drugs targeting PDE7 for treatment of CNS diseases.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Esclerose Múltipla/metabolismo , Doença de Parkinson/metabolismo , Esquizofrenia/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Humanos , Terapia de Alvo Molecular , Esclerose Múltipla/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Isoformas de Proteínas
5.
Biosci Biotechnol Biochem ; 85(9): 1962-1970, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34077501

RESUMO

Circular RNA plays an important role in the progression of sepsis. Circ_0091702 has been found to be an important regulator of sepsis progression, so its role and mechanism in sepsis progression deserve to be further explored. Lipopolysaccharide (LPS) could suppress cell viability, while enhance cell apoptosis and inflammation to induce cell injury. Circ_0091702 was downregulated in LPS-induced HK2 cells, and its overexpression alleviated LPS-induced cell injury. MiR-182 could be sponged by circ_0091702. Moreover, miR-182 inhibitor could relieve LPS-induced cell injury, and its overexpression also reversed the inhibition of circ_0091702 on LPS-induced cell injury. PDE7A was a target of miR-182, and its expression was reduced in LPS-induced HK2 cells. Additionally, silencing of PDE7A reversed the suppressive effect of circ_0091702 on LPS-induced cell injury. Our data suggested that circ_0091702 sponged miR-182 to regulate PDE7A, thereby alleviating LPS-induced cell injury in sepsis.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/metabolismo , RNA Circular/fisiologia , Linhagem Celular , Biologia Computacional/métodos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Técnicas de Silenciamento de Genes , Humanos
6.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854348

RESUMO

Phosphodiesterase 7 (PDE7), a cAMP-specific PDE family, insensitive to rolipram, is present in many immune cells, including T lymphocytes. Two genes of PDE7 have been identified: PDE7A and PDE7B with three or four splice variants, respectively. Both PDE7A and PDE7B are expressed in T cells, and the predominant splice variant in these cells is PDE7A1. PDE7 is one of several PDE families that terminates biological functions of cAMP-a major regulating intracellular factor. However, the precise role of PDE7 in T cell activation and function is still ambiguous. Some authors reported its crucial role in T cell activation, while according to other studies PDE7 activity was not pivotal to T cells. Several studies showed that inhibition of PDE7 by its selective or dual PDE4/7 inhibitors suppresses T cell activity, and consequently T-mediated immune response. Taken together, it seems quite likely that simultaneous inhibition of PDE4 and PDE7 by dual PDE4/7 inhibitors or a combination of selective PDE4 and PDE7 remains the most interesting therapeutic target for the treatment of some immune-related disorders, such as autoimmune diseases, or selected respiratory diseases. An interesting direction of future studies could also be using a combination of selective PDE7 and PDE3 inhibitors.


Assuntos
Doenças Autoimunes/imunologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Doenças Respiratórias/imunologia , Linfócitos T/metabolismo , Processamento Alternativo , Animais , Doenças Autoimunes/tratamento farmacológico , Divisão Celular , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Humanos , Ativação Linfocitária , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Doenças Respiratórias/tratamento farmacológico , Linfócitos T/efeitos dos fármacos
7.
Eur J Med Chem ; 201: 112437, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673902

RESUMO

A library of novel anilide and benzylamide derivatives of ω-(4-(2-methoxyphenyl)piperazin-1-yl)alkanoic acids as combined 5-HT1A/5-HT7 receptor ligands and phosphodiesterase PDE4B/PDE7A inhibitors was designed using a structure-based drug design approach. The in vitro studies of 33 newly synthesized compounds (7-39) allowed us to identify 22 as the most promising multifunctional 5-HT1A/5-HT7 receptor antagonist (5-HT1AKi = 8 nM, Kb = 0.04 nM; 5-HT7Ki = 451 nM, Kb = 460 nM) with PDE4B/PDE7A inhibitory activity (PDE4B IC50 = 80.4 µM; PDE7A IC50 = 151.3 µM). Compound 22 exerted a very good ability to passively penetrate through biological membranes and a high metabolic stability in vitro. Moreover, the pharmacological evaluation of 22 showed its procognitive and antidepressant properties in rat behavioral tests. Compound 22 at a dose of 3 mg/kg (i.p.) significantly reversed MK-801-induced episodic memory deficits in the novel object recognition test, while at a dose of 10 mg/kg (i.p.) reduced the immobility time of animals (by about 34%) in the forced swimming test. The antidepressant-like effect produced by compound 22 was stronger than that of escitalopram used as a reference drug. This study opens a new perspective in the search for efficacious drugs for the treatment of cognitive and depressive disorders.


Assuntos
Anilidas/farmacologia , Fármacos do Sistema Nervoso Central/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Piperazinas/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Anilidas/síntese química , Anilidas/metabolismo , Animais , Células CHO , Fármacos do Sistema Nervoso Central/síntese química , Fármacos do Sistema Nervoso Central/metabolismo , Cricetulus , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Células HEK293 , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Teste de Campo Aberto/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/metabolismo , Piperazinas/síntese química , Piperazinas/metabolismo , Ligação Proteica , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/síntese química , Antagonistas do Receptor 5-HT1 de Serotonina/metabolismo , Células Sf9 , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503342

RESUMO

Phosphodiesterase (PDE) inhibitors are currently a widespread and extensively studied group of anti-inflammatory and anti-fibrotic compounds which may find use in the treatment of numerous lung diseases, including asthma and chronic obstructive pulmonary disease. Several PDE inhibitors are currently in clinical development, and some of them, e.g., roflumilast, are already recommended for clinical use. Due to numerous reports indicating that elevated intracellular cAMP levels may contribute to the alleviation of inflammation and airway fibrosis, new and effective PDE inhibitors are constantly being sought. Recently, a group of 7,8-disubstituted purine-2,6-dione derivatives, representing a novel and prominent pan-PDE inhibitors has been synthesized. Some of them were reported to modulate transient receptor potential ankyrin 1 (TRPA1) ion channels as well. In this study, we investigated the effect of selected derivatives (832-a pan-PDE inhibitor, 869-a TRPA1 modulator, and 145-a pan-PDE inhibitor and a weak TRPA1 modulator) on cellular responses related to airway remodeling using MRC-5 human lung fibroblasts. Compound 145 exerted the most considerable effect in limiting fibroblast to myofibroblasts transition (FMT) as well as proliferation, migration, and contraction. The effect of this compound appeared to depend mainly on its strong PDE inhibitory properties, and not on its effects on TRPA1 modulation. The strong anti-remodeling effects of 145 required activation of the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway leading to inhibition of transforming growth factor type ß1 (TGF-ß1) and Smad-dependent signaling in MRC-5 cells. These data suggest that the TGF-ß pathway is a major target for PDE inhibitors leading to inhibitory effects on cell responses involved in airway remodeling. These potent, pan-PDE inhibitors from the group of 7,8-disubstituted purine-2,6-dione derivatives, thus represent promising anti-remodeling drug candidates for further research.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Cálcio/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/metabolismo , Fibrose , Humanos , Pulmão/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais , Canal de Cátion TRPA1/metabolismo
9.
PLoS One ; 15(1): e0227279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999703

RESUMO

Fibrous dysplasia (FD) of bone is a complex disease of the skeleton caused by dominant activating mutations of the GNAS locus encoding for the α subunit of the G protein-coupled receptor complex (Gsα). The mutation involves a substitution of arginine at position 201 by histidine or cysteine (GsαR201H or R201C), which leads to overproduction of cAMP. Several signaling pathways are implicated downstream of excess cAMP in the manifestation of disease. However, the pathogenesis of FD remains largely unknown. The overall FD phenotype can be attributed to alterations of skeletal stem/progenitor cells which normally develop into osteogenic or adipogenic cells (in cis), and are also known to provide support to angiogenesis, hematopoiesis, and osteoclastogenesis (in trans). In order to dissect the molecular pathways rooted in skeletal stem/progenitor cells by FD mutations, we engineered human skeletal stem/progenitor cells with the GsαR201C mutation and performed transcriptomic analysis. Our data suggest that this FD mutation profoundly alters the properties of skeletal stem/progenitor cells by pushing them towards formation of disorganized bone with a concomitant alteration of adipogenic differentiation. In addition, the mutation creates an altered in trans environment that induces neovascularization, cytokine/chemokine changes and osteoclastogenesis. In silico comparison of our data with the signature of FD craniofacial samples highlighted common traits, such as the upregulation of ADAM (A Disintegrin and Metalloprotease) proteins and other matrix-related factors, and of PDE7B (Phosphodiesterase 7B), which can be considered as a buffering process, activated to compensate for excess cAMP. We also observed high levels of CEBPs (CCAAT-Enhancer Binding Proteins) in both data sets, factors related to browning of white fat. This is the first analysis of the reaction of human skeletal stem/progenitor cells to the introduction of the FD mutation and we believe it provides a useful background for further studies on the molecular basis of the disease and for the identification of novel potential therapeutic targets.


Assuntos
Células da Medula Óssea/fisiologia , Diferenciação Celular/genética , Cromograninas/genética , Displasia Fibrosa Óssea/patologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Células-Tronco/fisiologia , Proteínas ADAM/metabolismo , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Cromograninas/metabolismo , Simulação por Computador , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Conjuntos de Dados como Assunto , Displasia Fibrosa Óssea/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Mutação com Ganho de Função , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/metabolismo , Osteogênese/genética , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Estromais/fisiologia , Regulação para Cima
10.
Mol Neurobiol ; 57(2): 806-822, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31473904

RESUMO

Parkinson's disease is characterized by a loss of dopaminergic neurons in the ventral midbrain. This disease is diagnosed when around 50% of these neurons have already died; consequently, therapeutic treatments start too late. Therefore, an urgent need exists to find new targets involved in the onset and progression of the disease. Phosphodiesterase 7 (PDE7) is a key enzyme involved in the degradation of intracellular levels of cyclic adenosine 3', 5'-monophosphate in different cell types; however, little is known regarding its role in neurodegenerative diseases, and specifically in Parkinson's disease. We have previously shown that chemical as well as genetic inhibition of this enzyme results in neuroprotection and anti-inflammatory activity in different models of neurodegenerative disorders, including Parkinson's disease. Here, we have used in vitro and in vivo models of Parkinson's disease to study the regulation of PDE7 protein levels. Our results show that PDE7 is upregulated after an injury both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures and after lipopolysaccharide or 6-hidroxydopamine injection in the Substantia nigra pars compacta of adult mice. PDE7 increase takes place mainly in degenerating dopaminergic neurons and in microglia cells. This enhanced expression appears to be direct since 6-hydroxydopamine and lipopolysaccharide increase the expression of a 962-bp fragment of its promoter. Taking together, these results reveal an essential function for PDE7 in the pathways leading to neurodegeneration and inflammatory-mediated brain damage and suggest novel roles for PDE7 in neurodegenerative diseases, specifically in PD, opening the door for new therapeutic interventions.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/patologia , Animais , Apoptose , Linhagem Celular , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Modelos Animais de Doenças , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/patologia , Embrião de Mamíferos/enzimologia , Humanos , Masculino , Mesencéfalo/enzimologia , Mesencéfalo/patologia , Neuroglia/enzimologia , Neuroglia/patologia , Oxidopamina , Regiões Promotoras Genéticas/genética , Ratos Wistar , Substância Negra/enzimologia , Substância Negra/patologia
11.
Arch Pharm (Weinheim) ; 353(1): e1900211, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31696968

RESUMO

N-Substituted isatoic anhydrides were used as starting materials for the synthesis of compounds 5-16 through alkali hydrolysis, Schiff base reactions, and oxidation. Compounds 18-23 were obtained by thionation of their oxo isosteres using Lawesson's reagent. Cyclocondesation of anthranilic acid with thiourea afforded compounds 25-27, which were S-alkylated to afford compounds 28-30, which were thionated using Lawesson's reagent to afford 31-33. The compounds were tested for their in vitro inhibitory activity against the phosphodiesterase 7A (PDE7A) enzyme compared with the selective PDE7 inhibitor BRL50481. All the compounds showed the inhibitory activity on the enzyme at micromolar levels. Compounds 9 and 25 showed the highest inhibitory activity on the enzyme: IC50 = 0.096 and 0.074 µM, respectively, comparable to BRL50481 (IC50 = 0.072 µM). The binding mode and binding affinity of the target compounds at the enzyme PDE7A-binding site were studied through molecular docking. Compounds 9 and 25 showed good recognition at the enzyme-binding site and were capable of binding in an inhibitory mode similar to the reference compound BRL50481, forming the necessary interactions with the key amino acids. Docking studies and enzyme assay were in agreement.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Quinazolinas/farmacologia , Quinazolinonas/farmacologia , Tionas/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Quinazolinonas/síntese química , Quinazolinonas/química , Relação Estrutura-Atividade , Tionas/síntese química , Tionas/química
12.
Bull Exp Biol Med ; 167(4): 467-469, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31493257

RESUMO

Second messengers cAMP and cGMP play an important role in synaptic plasticity and memory consolidation. The inhibitors of phosphodiesterases, enzymes hydrolyzing these cyclic nucleotides, are actively studied as potential drugs for the treatment of various cognitive disorders and depression. We studied the effects of a new inhibitor of phosphodiesterase 7 AGF2.20 on the formation of long-term potentiation in hippocampal slices. Administration of AGF2.20 (10 nM) in 90 min after weak tetanization prevented a decrease in the amplitude of excitatory post-synaptic potentials and stabilized long-term potentiation. These data attest to the involvement of phosphodiesterase 7 in the development of synaptic plasticity in the hippocampus. The inhibitor AGF2.20 is considered for the further analysis as a promising substance for the treatment of cognitive impairments.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Inibidores Enzimáticos/farmacologia , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos
13.
Proc Natl Acad Sci U S A ; 115(52): E12265-E12274, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30541888

RESUMO

Adrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fasciculata (zF). Here, we show that this unidirectionality is ensured by the histone methyltransferase EZH2. Indeed, we demonstrate that EZH2 maintains adrenal steroidogenic cell differentiation by preventing expression of GATA4 and WT1 that cause abnormal dedifferentiation to a progenitor-like state in Ezh2 KO adrenals. EZH2 further ensures normal cortical differentiation by programming cells for optimal response to adrenocorticotrophic hormone (ACTH)/PKA signaling. This is achieved by repression of phosphodiesterases PDE1B, 3A, and 7A and of PRKAR1B. Consequently, EZH2 ablation results in blunted zF differentiation and primary glucocorticoid insufficiency. These data demonstrate an all-encompassing role for EZH2 in programming steroidogenic cells for optimal response to differentiation signals and in maintaining their differentiated state.


Assuntos
Córtex Suprarrenal/enzimologia , Subunidade RIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Transdução de Sinais , Córtex Suprarrenal/metabolismo , Animais , Diferenciação Celular , Subunidade RIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esteroides/metabolismo , Zona Fasciculada/citologia , Zona Fasciculada/enzimologia , Zona Fasciculada/metabolismo , Zona Glomerulosa/citologia , Zona Glomerulosa/enzimologia , Zona Glomerulosa/metabolismo
14.
Eur J Med Chem ; 158: 517-533, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30245393

RESUMO

A series of novel amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids designed using a structure-based computational approach was synthesized and assayed to evaluate their ability to block human TRPA1 channel and inhibit PDE4B/7A activity. We identified compounds 16 and 27 which showed higher potency against TRPA1 compared to HC-030031. In turn, compound 36 was the most promising multifunctional TRPA1 antagonist and PDE4B/7A dual inhibitor with IC50 values in the range of that of the reference rolipram and BRL-50481, respectively. Compound 36 as a combined TRPA1/PDE4B/PDE7A ligand was characterized by a distinct binding mode in comparison to 16 and 27, in the given protein targets. The inhibition of both cAMP-specific PDE isoenzymes resulted in a strong anti-TNF-α effect of 36in vivo. Moreover, the potent anti-inflammatory and analgesic efficacy of 36 was observed in animal models of pain and inflammation (formalin test in mice and carrageenan-induced paw edema in rats). This compound also displayed significant antiallodynic properties in the early phase of chemotherapy-induced peripheral neuropathy in mice. In turn, the pure TRPA1 antagonists 16 and 27 revealed a statistically significant antiallodynic effect in the formalin test and in the von Frey test performed in both phases of oxaliplatin-induced allodynia. Antiallodynic activity of the test compounds 16, 27 and 36 was observed at a dose range comparable to that of the reference drug - pregabalin. In conclusion, the proposed approach of pain treatment based on the concomitant blocking of TRPA1 channel and PDE4B/7A inhibitory activity appears to be interesting research direction for the future search for novel analgesics.


Assuntos
Analgésicos/química , Analgésicos/uso terapêutico , Dor/tratamento farmacológico , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/uso terapêutico , Canal de Cátion TRPA1/antagonistas & inibidores , Amidas/química , Amidas/farmacologia , Amidas/uso terapêutico , Analgésicos/farmacologia , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Dor/metabolismo , Medição da Dor/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Inibidores de Fosfodiesterase/farmacologia , Ratos Wistar , Canal de Cátion TRPA1/metabolismo
15.
Endocrinology ; 159(5): 2142-2152, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608743

RESUMO

Luteinizing hormone (LH) acts on the granulosa cells that surround the oocyte in mammalian preovulatory follicles to cause meiotic resumption and ovulation. Both of these responses are mediated primarily by an increase in cyclic adenosine monophosphate (cAMP) in the granulosa cells, and the activity of cAMP phosphodiesterases (PDEs), including PDE4, contributes to preventing premature responses. However, two other cAMP-specific PDEs, PDE7 and PDE8, are also expressed at high levels in the granulosa cells, raising the question of whether these PDEs also contribute to preventing uncontrolled activation of meiotic resumption and ovulation. With the use of selective inhibitors, we show that inhibition of PDE7 or PDE8 alone has no effect on the cAMP content of follicles, and inhibition of PDE4 alone has only a small and variable effect. In contrast, a mixture of the three inhibitors elevates cAMP to a level comparable with that seen with LH. Correspondingly, inhibition of PDE7 or PDE8 alone has no effect on meiotic resumption or ovulation, and inhibition of PDE4 alone has only a partial and slow effect. However, the fraction of oocytes resuming meiosis and undergoing ovulation is increased when PDE4, PDE7, and PDE8 are simultaneously inhibited. PDE4, PDE7, and PDE8 also function together to suppress the premature synthesis of progesterone and progesterone receptors, which are required for ovulation. Our results indicate that three cAMP PDEs act in concert to suppress premature responses in preovulatory follicles.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Meiose/fisiologia , Oócitos/metabolismo , Ovulação/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Feminino , Meiose/efeitos dos fármacos , Camundongos , Oócitos/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Rolipram/farmacologia
16.
Eur J Med Chem ; 146: 381-394, 2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29407965

RESUMO

A novel butanehydrazide derivatives of purine-2,6-dione designed using a ligand-based approach were synthesized and their in vitro activity against both PDE4B and PDE7A isoenzymes was assessed. The 7,8-disubstituted purine-2,6-dione derivatives 31, 34, 37, and 40 appeared to be the most potent PDE4/7 inhibitors with IC50 values in the range of that of the reference rolipram and BRL-50481, respectively. Moreover, docking studies explained the importance of N-(2,3,4-trihydroxybenzylidene)butanehydrazide substituent in position 7 of purine-2,6-dione core for dual PDE4/7 inhibitory properties. The inhibition of both the cAMP-specific PDE isoenzymes resulted in a strong anti-TNF-α effect. Compounds 31, 34, and 37 in the in vivo study in rats with LPS-induced endotoxemia decreased the maximum concentration of this proinflammatory cytokine by 53, 84 and 88%, respectively.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Butanos/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Desenho de Fármacos , Hidrazinas/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Purinonas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Butanos/análise , Butanos/síntese química , Butanos/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Relação Dose-Resposta a Droga , Endotoxemia/tratamento farmacológico , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Purinonas/síntese química , Purinonas/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
17.
Alzheimers Res Ther ; 10(1): 24, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29458418

RESUMO

BACKGROUND: The phosphodiesterase (PDE) 7 inhibitor S14 is a cell-permeable small heterocyclic molecule that is able to cross the blood-brain barrier. We previously found that intraperitoneal treatment with S14 exerted neuroprotection in an Alzheimer's disease (AD) model (in APP/PS1 mice). The objective of this study was to investigate the neurogenic and cellular effects of oral administration of S14 on amyloid ß (Aß) overload. METHODS: We orally administered the PDE7 inhibitor S14 (15 mg/kg/day) or vehicle in 6-month-old APP/PS1 mice. After 5 weeks of S14 treatment, we evaluated cognitive functions and brain tissues. We also assessed the effects of S14 on the Aß-treated human neuroblastome SH-SY5Y cell line. RESULTS: Targeting the cyclic adenosine monophosphate (cAMP)/cAMP-response element binding protein (CREB) pathway, S14 rescued cognitive decline by improving hippocampal neurogenesis in APP/PS1 transgenic mice. Additionally, S14 treatment reverted the Aß-induced reduction in mitochondrial mass in APP/PS1 mice and in the human neuroblastoma SH-SY5Y cells co-exposed to Aß. The restoration of the mitochondrial mass was found to be a dual effect of S14: a rescue of the mitochondrial biogenesis formerly slowed down by Aß overload, and a reduction in the Aß-increased mitochondrial clearance mechanism of mitophagy. CONCLUSIONS: Here, we show new therapeutic effects of the PDE7 inhibitor, confirming S14 as a potential therapeutic drug for AD.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/enzimologia , Hipocampo/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Quinazolinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/patologia , Humanos , Deficiências da Aprendizagem/tratamento farmacológico , Deficiências da Aprendizagem/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dinâmica Mitocondrial/genética , Neurogênese/genética , Inibidores de Fosfodiesterase/uso terapêutico , Quinazolinas/uso terapêutico , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
18.
Stem Cells ; 35(2): 458-472, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27538853

RESUMO

The phosphodiesterase 7 (PDE7) enzyme is one of the enzymes responsible for controlling intracellular levels of cyclic adenosine 3',5'-monophosphate in the immune and central nervous system. We have previously shown that inhibitors of this enzyme are potent neuroprotective and anti-inflammatory agents. In addition, we also demonstrated that PDE7 inhibition induces endogenous neuroregenerative processes toward a dopaminergic phenotype. Here, we show that PDE7 inhibition controls stem cell expansion in the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the subventricular zone (SVZ) in the adult rat brain. Neurospheres cultures obtained from SGZ and SVZ of adult rats treated with PDE7 inhibitors presented an increased proliferation and neuronal differentiation compared to control cultures. PDE7 inhibitors treatment of neurospheres cultures also resulted in an increase of the levels of phosphorylated cAMP response element binding protein, suggesting that their effects were indeed mediated through the activation of the cAMP/PKA signaling pathway. In addition, adult rats orally treated with S14, a specific inhibitor of PDE7, presented elevated numbers of proliferating progenitor cells, and migrating precursors in the SGZ and the SVZ. Moreover, long-term treatment with this PDE7 inhibitor shows a significant increase in newly generated neurons in the olfactory bulb and the hippocampus. Also a better performance in memory tests was observed in S14 treated rats, suggesting a functional relevance for the S14-induced increase in SGZ neurogenesis. Taken together, our results indicate for the first time that inhibition of PDE7 directly regulates proliferation, migration and differentiation of neural stem cells, improving spatial learning and memory tasks. Stem Cells 2017;35:458-472.


Assuntos
Envelhecimento/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Hipocampo/enzimologia , Hipocampo/crescimento & desenvolvimento , Ventrículos Laterais/enzimologia , Ventrículos Laterais/crescimento & desenvolvimento , Neurogênese , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Giro Denteado/citologia , Hipocampo/efeitos dos fármacos , Ventrículos Laterais/efeitos dos fármacos , Masculino , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Inibidores de Fosfodiesterase/farmacologia , Ratos Wistar , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
19.
Stem Cells Transl Med ; 4(6): 564-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25925836

RESUMO

UNLABELLED: Parkinson's disease is characterized by a loss of dopaminergic neurons in a specific brain region, the ventral midbrain. Parkinson's disease is diagnosed when approximately 50% of the dopaminergic neurons of the substantia nigra pars compacta (SNpc) have degenerated and the others are already affected by the disease. Thus, it is conceivable that all therapeutic strategies, aimed at neuroprotection, start too late. Therefore, an urgent medical need exists to discover new pharmacological targets and novel drugs with disease-modifying properties. In this regard, modulation of endogenous adult neurogenesis toward a dopaminergic phenotype might provide a new strategy to target Parkinson's disease by partially ameliorating the dopaminergic cell loss that occurs in this disorder. We have previously shown that a phosphodiesterase 7 (PDE7) inhibitor, S14, exerts potent neuroprotective and anti-inflammatory effects in different rodent models of Parkinson's disease, indicating that this compound could represent a novel therapeutic agent to stop the dopaminergic cell loss that occurs during the progression of the disease. In this report we show that, in addition to its neuroprotective effect, the PDE7 inhibitor S14 is also able to induce endogenous neuroregenerative processes toward a dopaminergic phenotype. We describe a population of actively dividing cells that give rise to new neurons in the SNpc of hemiparkinsonian rats after treatment with S14. In conclusion, our data identify S14 as a novel regulator of dopaminergic neuron generation. SIGNIFICANCE: Parkinson's disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the ventral midbrain. Currently, no cure and no effective disease-modifying therapy are available for Parkinson's disease; therefore, an urgent medical need exists to discover new pharmacological targets and novel drugs for the treatment of this disorder. The present study reports that an inhibitor of the enzyme phosphodiesterase 7 (S14) induces proliferation in vitro and in vivo of neural stem cells, promoting its differentiation toward a dopaminergic phenotype and therefore enhancing dopaminergic neuron generation. Because this drug is also able to confer neuroprotection of these cells in animal models of Parkinson's disease, S14 holds great promise as a therapeutic new strategy for this disorder.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Neurônios Dopaminérgicos/enzimologia , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Inibidores de Fosfodiesterase/farmacologia , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/patologia , Ratos , Ratos Wistar
20.
Br J Pharmacol ; 172(17): 4277-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25994655

RESUMO

BACKGROUND AND PURPOSE: cAMP plays an important role in the transduction of signalling pathways involved in neuroprotection and immune regulation. Control of the levels of this nucleotide by inhibition of cAMP-specific PDEs such as PDE7 may affect the pathological processes of neuroinflammatory diseases like multiple sclerosis (MS). In the present study, we evaluated the therapeutic potential of the selective PDE7 inhibitor, TC3.6, in a model of primary progressive multiple sclerosis (PPMS), a rare and severe variant of MS. EXPERIMENTAL APPROACH: Theiler's murine encephalomyelitis virus-induced demyelinated disease (TMEV-IDD) is one of the models used to validate the therapeutic efficacy of new drugs in MS. As recent studies have analysed the effect of PDE7 inhibitors in the EAE model of MS, here the TMEV-IDD model was used to test their efficacy in a progressive variant of MS. Mice were subjected to two protocols of TC3.6 administration: on the pre-symptomatic phase and once the disease was established. KEY RESULTS: Treatment with TC3.6 ameliorated the disease course and improved motor deficits of infected mice. This was associated with down-regulation of microglial activation and reduced cellular infiltrates. Decreased expression of pro-inflammatory mediators such as COX-2 and the cytokines, IL-1ß, TNF-α, IFN-γ and IL-6 in the spinal cord of TMEV-infected mice was also observed after TC3.6 administration. CONCLUSION: These findings support the importance of PDE7 inhibitors, and specifically TC3.6, as a novel class of agents with therapeutic potential for PPMS. Preclinical studies are needed to determine whether their effects translate into durable clinical benefits.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Modelos Animais de Doenças , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Animais , Animais Recém-Nascidos , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Feminino , Camundongos , Esclerose Múltipla Crônica Progressiva/enzimologia , Esclerose Múltipla Crônica Progressiva/patologia , Células PC12 , Inibidores de Fosfodiesterase/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...