Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Phycol ; 60(1): 170-184, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141034

RESUMO

Mixotrophic protists combine photosynthesis and phagotrophy to obtain energy and nutrients. Because mixotrophs can act as either primary producers or consumers, they have a complex role in marine food webs and biogeochemical cycles. Many mixotrophs are also phenotypically plastic and can adjust their metabolic investments in response to resource availability. Thus, a single species's ecological role may vary with environmental conditions. Here, we quantified how light and food availability impacted the growth rates, energy acquisition rates, and metabolic investment strategies of eight strains of the mixotrophic chrysophyte, Ochromonas. All eight Ochromonas strains photoacclimated by decreasing chlorophyll content as light intensity increased. Some strains were obligate phototrophs that required light for growth, while other strains showed stronger metabolic responses to prey availability. When prey availability was high, all eight strains exhibited accelerated growth rates and decreased their investments in both photosynthesis and phagotrophy. Photosynthesis and phagotrophy generally produced additive benefits: In low-prey environments, Ochromonas growth rates increased to maximum, light-saturated rates with increasing light but increased further with the addition of abundant bacterial prey. The additive benefits observed between photosynthesis and phagotrophy in Ochromonas suggest that the two metabolic modes provide nonsubstitutable resources, which may explain why a tradeoff between phagotrophic and phototrophic investments emerged in some but not all strains.


Assuntos
Chrysophyta , Ochromonas , Ochromonas/metabolismo , Fotossíntese , Luz , Clorofila/metabolismo
2.
Sci Total Environ ; 905: 166998, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37716685

RESUMO

In this study, odor characteristics and phytoplankton composition were systematically investigated in two winter periods in a reservoir with fishy odor in north China. Ten potential fishy odor-producing algae were isolated and odorant-producing potentials were evaluated. Olfactometry profile and odorant composition of water samples were analyzed using GC-Olfactometry combined with GC × GC-TOFMS. The results showed that 2,4-heptadienal and hexanal were major fishy odor contributors. The abundance of Uroglena sp., Synura sp. and Peridinium sp. was negatively correlated with total dissolved organic carbon, ammonia nitrogen, and nitrate, illustrating nutrient level might be major drivers for the succession of fishy odor-producing algae. Dinobryon sp. and Uroglena sp. made the greatest contribution to fishy odor, followed by Peridinium sp., Synura sp., and Ochromonas sp. Fishy odor in 2016 winter and the early of 2017 winter was mainly caused by Dinobryon sp., while Uroglena sp. contributes mostly in March in 2017 winter. This study demonstrates the main odorants and algae causing fishy odor in reservoir, which will provide a scientific basis for the management of seasonal fishy odor problems in water source.


Assuntos
Ochromonas , Odorantes , Água , Temperatura , Olfatometria/métodos
3.
Sci Total Environ ; 889: 164331, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209736

RESUMO

Herbicide pollution is a main form of water pollution. As a result of additional harms to other non-target organisms, it threatens the function and structure of ecosystems. Previous researches mainly focused on the assessment of the toxicity and ecological effect of herbicides on monotrophic organisms. Responses of mixotrophs as an important component of functional groups are rarely understood in contaminated waters, although their metabolic plasticity and unique ecological functions in ecosystem stability are a major concern. This work aimed to investigate the trophic plasticity of mixotrophic organisms in atrazine-contaminated waters, and a primarily heterotrophic Ochromonas was used as the tested organism. Results showed that the herbicide atrazine significantly inhibited the photochemical activity and impaired the photosynthetic machine of Ochromonas, and photosynthesis activated by light was sensitive to atrazine. However, phagotrophy was unaffected by atrazine and closely correlated with growth rate, indicating that heterotrophy helped population maintenance during herbicide exposure. Mixotrophic Ochromonas upregulated the gene expression level involved in photosynthesis, energy synthesis, and antioxidation to adapt to increasing atrazine after long-term exposure. Compared with bacterivory, herbivory increased atrazine tolerance of photosynthesis under mixotrophic status. This study systematically illustrated the mechanism by which mixotrophic Ochromonas respond to the herbicide atrazine at population, photochemical activity, morphology, and gene expression levels and demonstrated the potential effect of atrazine on the metabolic flexibility and ecological niches of mixotrophs. These findings will provide important theoretical reference for governance and management decision-making in contaminated environments.


Assuntos
Atrazina , Herbicidas , Ochromonas , Atrazina/toxicidade , Atrazina/metabolismo , Herbicidas/toxicidade , Herbicidas/metabolismo , Ecossistema , Fotoquímica , Fotossíntese , Ochromonas/fisiologia , Expressão Gênica
4.
Bioresour Technol ; 363: 127922, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087653

RESUMO

Fucoxanthin (Fx) has attracted great interest due to its remarkable biological activities such as antioxidant and anti-obesity, and its increasing demands in biopharmaceutical and cosmetic fields. However, its commercial production is limited by low yield and high cost. In this study, we isolated and identified a species of golden algae (Ochromonas sp.) capable of engulfing Microcystis aeruginosa (M. aeruginosa) and accumulating Fx. After 72 h mixotrophic cultivation of Ochromonas sp. and M. aeruginosa, the algal culture changed from green to yellow-brown, and the content of Fx and the daily production rate were up to 11.58 mg g-1, and 1.315 mg L-1 d-1, respectively. The utilization rate of M. aeruginosa was 527.27 fg cell-1. This study will not only provide a new thought to produce Fx in an efficient, low-cost, and sustainable way but an innovative method for the control and treatment of harmful cyanobacterial blooms from eutrophic freshwaters as well.


Assuntos
Produtos Biológicos , Microcystis , Ochromonas , Antioxidantes , Xantofilas
5.
Environ Microbiol Rep ; 14(4): 530-537, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35509225

RESUMO

Mixotrophy usually is considered with respect to the advantages gained and the associated trade-offs of this form of nutrition, compared to specialized competitors, strict photoautotrophs and heterotrophs. However, we currently have an incomplete understanding of the functional diversity of mixotrophs and the factors controlling niche differentiation in different mixotrophic species. Here we experimentally studied the light-dependent niche differentiation in two chrysophyte species. We show that the newly isolated Ochromonas sp. is an obligate phototroph and possibly an obligate mixotroph. In contrast, Poterioochromonas malhamensis is a facultative mixotroph; photosynthesis and heterotrophy in this species represent substitutable routes of resource acquisition. We further hypothesize that the variable plasticity in the considered traits of the here tested species may result in different niche differentiation with regard to a vertical light gradient. Ochromonas sp. should perform better in stable stratified surface water layers, where light is available, but prey abundances might be low. However, P. malhamensis should be able to also successfully grow in deeper water layers, benefiting from higher bacterial production. This study represents a first step towards understanding competition between mixotrophs engaging in different physiological strategies, and consequently their potential co-occurrence due to niche differentiation.


Assuntos
Ochromonas , Bactérias/genética , Processos Heterotróficos , Ochromonas/fisiologia , Fotossíntese , Água
6.
Sci Total Environ ; 820: 153267, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35074368

RESUMO

Cyanobacterial blooms are increasingly threatening the aquatic ecosystem functioning as a result of the global warming and eutrophication. The "top-down" control of cyanobacteria from consumers like the protozoans shows great potential because of the effectiveness and environment-friendliness. To reveal how the nutrition availability and elevated temperature affect the cyanobacteria removal through protozoans grazing, we grew the toxic Microcystis aeruginosa and the mixotrophic Ochromonas gloeopara in monocultures and cocultures at environmentally relevant nitrogen levels (0.5-8.0 mg L-1) under 25 °C and 30 °C, respectively. The growth of M. aeruginosa in monocultures was significantly enhanced as nitrogen concentration and temperature rose, partially benefitting from the promoted photosynthesis. By contrast, nitrogen availability affected neither the photoautotrophic growth nor the feeding on Microcystis of the mixotrophic O. gloeopara, but high temperature induced the mixotroph to be more heterotrophic as evidenced by the suppressed photosynthesis but strengthened feeding activity. Accordingly, the M. aeruginosa removal through O. gloeopara grazing in cocultures was delayed with increasing nitrogen, which, however, was sharply accelerated by elevated temperature. Based on the Gaussian models fitting, the theoretical time that the Microcystis was removed at 25 °C was prolonged from about 7.5 days to 10 days with increased nitrogen, but it was reduced to less than 4.6 days in all groups at 30 °C. While the intensity of Microcystis blooms is strongly positively correlated to the nutrition availability and temperature, the present study provided references for the practical application of Microcystis removal through grazing outdoors.


Assuntos
Microcystis , Ochromonas , Ecossistema , Microcistinas , Nitrogênio , Temperatura
7.
Phys Biol ; 18(4)2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853054

RESUMO

Recent experiments and thermodynamic arguments suggest that mitochondrial temperatures are higher than those of the cytoplasm. A "hot mitochondrion" calls for a closer examination of the energy balance that endows it with these claimed elevated temperatures. As a first step in this effort, we present here a semi-quantitative bookkeeping whereby, in one stroke, a formula is proposed that yields the rate of heat production in a typical mitochondrion and a formula for estimating the number of "active" ATP synthase molecules per mitochondrion. The number of active ATP synthase molecules is the equivalent number of ATP synthases operating at 100% capacity to maintain the rate of mitochondrial heat generation. Scaling laws are shown to determine the number of active ATP synthase molecules in a mitochondrion and mitochondrial rate of heat production, whereby both appear to scale with cell volume. Four heterotrophic protozoan cell types are considered in this study. The studied cells, selected to cover a wide range of sizes (volumes) fromca.100µm3to 1 millionµm3, are estimated to exhibit a power per mitochondrion ranging fromca.1 pW to 0.03 pW. In these cells, the corresponding number of active ATP synthases per mitochondrion ranges from 5000 to just about a hundred. The absolute total number of ATP synthase molecules per mitochondrion, regardless of their activity status, can be up to two orders of magnitudes higher.


Assuntos
Amoeba/metabolismo , Cilióforos/metabolismo , Metabolismo Energético , Euglena/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Ochromonas/metabolismo
8.
Water Environ Res ; 93(9): 1660-1668, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33682257

RESUMO

Phagotrophic algae can consume bacteria that are the predominant microorganisms present in the waste activated sludge (WAS) generated from municipal wastewater treatment processes. In this study, we developed a combined ultrasonication-phagotrophic algal process for WAS conversion. The ultrasonic pretreatment released small volatile solids (VS) including bacteria from WAS flocs. A phagotrophic alga Ochromonas danica then grew by consuming more than 80% of the released VS, with approximately 30% (w/w) algal cell yield. The process reduced the overall WAS VS by 42.4% in 1 day, comparing very favorably with the 27% reduction in 10 days by aerobic digestion. For stabilizing the solids remaining from the ultrasonic step, the total oxygen uptake required was 65%-92% lower than that for the original WAS, indicating substantially reduced aeration cost. Overall, this novel process enhanced the WAS digestion at lower energy requirements and produced microalgae for other potential uses. © 2021 Water Environment Federation PRACTITIONER POINTS: At least 80% of released VS from WAS can be processed by phagotrophic algae. Significant amounts of algae can be produced from WAS. Ultrasonication-phagotrophic algal process can make sludge management more sustainable.


Assuntos
Microalgas , Ochromonas , Purificação da Água , Bactérias , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
9.
Chemosphere ; 265: 129030, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33239234

RESUMO

Microplastics with different sizes exist widely in fresh waters, which may affect the interspecific dynamics between predator and prey. The flagellate Ochromonas gloeopara can efficiently eliminate Microcystis aeruginosa and degrade microcystins, which shows great potential for controlling harmful Microcystis. In order to evaluate the effects of microplastics on O. gloeopara eliminating Microcystis, we designed an experiment of O. gloeopara feeding on Microcystis under different sizes (0.07 and 3 µm) and concentrations (0, 0.4, 0.8, 1.6, and 2.0 mg L-1) of microplastics. The results showed that maximum abundance of M. aeruginosa decreased significantly with addition of microplastics, regardless of the size and concentration. O. gloeopara can ingest the microplastics and suffer from their adverse effects. The maximum abundance of O. gloeopara decreased with enhancing concentrations of 3 µm microplastics during the process of O. gloeopara eliminating M. aeruginosa, whereas 0.07 µm microplastics did not affect the growth of O. gloeopara obviously. During the period of exposure under microplastics, clearance rate of O. gloeopara on M. aeruginosa decreased with the increasing concentrations of microplastics. Specially, 3 µm microplastics had a stronger reduction on clearance rate of O. gloeopara. The time to M. aeruginosa extinction was prolonged with the increasing concentrations of microplastics in both sizes. Comparatively speaking, 3 µm microplastics had a stronger delayed effect on the removal of Microcystis. These findings suggest that microplastics can interfere with protozoa eliminating toxic Microcystis, which may aggravate their adverse impacts on aquatic ecosystem.


Assuntos
Microcystis , Ochromonas , Ecossistema , Microcistinas , Microplásticos , Plásticos/toxicidade
10.
ACS Chem Biol ; 15(11): 2986-2995, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33035052

RESUMO

The chlorosulfolipids are amphiphilic natural products with stereochemically complex patterns of chlorination and sulfation. Despite their role in toxic shellfish poisoning, potential pharmacological activities, and unknown biological roles, they remain understudied due to the difficulties in purifying them from natural sources. The structure of these molecules, with a charged sulfate group in the middle of the hydrophobic chain, appears incompatible with the conventional lipid bilayer structure. Questions about chlorosulfolipids remain unanswered partly due to the unavailability of structural analogues with which to conduct structure-function studies. We approach this problem by combining enantioselective total synthesis and membrane biophysics. Using a combination of Langmuir pressure-area isotherms of lipid monolayers, fluorescence imaging of vesicles, mass spectrometry imaging, natural product isolation, small-angle X-ray scattering, and cryogenic electron microscopy, we show that danicalipin A (1) likely inserts into lipid bilayers in the headgroup region and alters their structure and phase behavior. Specifically, danicalipin A (1) thins the bilayer and fluidizes it, allowing even saturated lipid to form fluid bilayers. Lipid monolayers show similar fluidizing upon insertion of danicalipin A (1). Furthermore, we show that the halogenation of the molecule is critical for its membrane activity, likely due to sterically controlled conformational changes. Synthetic unchlorinated and monochlorinated analogues do not thin and fluidize lipid bilayers to the same extent as the natural product. Overall, this study sheds light on how amphiphilic small molecules interact with lipid bilayers and the importance of stereochemistry and halogenation for this interaction.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Ochromonas/química , Halogenação , Fluidez de Membrana , Transição de Fase
11.
Environ Sci Pollut Res Int ; 27(23): 29068-29074, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32424761

RESUMO

Mixotrophs account for a high proportion (occasionally up to 80%) of the phytoplankton biomass. Chrysophyte is one major component of mixotrophs. Because of their possible toxicity and linkage between microbial community and higher trophic levels, the effect of mixotrophic golden algae on potential grazers received much attention. The present study investigated the effect of Ochromonas gloeopara at different proportions in diet (combined with Scenedesmus obliquus) on the life history of Daphnia similoides sinensis. Results showed that osmotrophically grown O. gloeopara in light produced fish toxins and hemolysins, and negatively influenced the survival and reproduction of D. similoides sinensis. The mortality of the cladoceran increased as the proportion of O. gloeopara in food increased. The D. similoides sinensis could not reproduce throughout the life when Ochromonas comprised above 35%. When fed foods containing 15% of Ochromonas, the time to first brood of D. similoides sinensis was prolonged, together with the reduced number of offspring in first brood and total number of broods. Replacement by 100% S. obliquus delayed the time to death, but did not improve the reproduction of Daphnia. The present study indicated the strong inhibitory effect of O. gloeopara on D. similoides sinensis, and underlined the importance of evaluating its ecological role in aquatic ecosystems.


Assuntos
Ochromonas , Animais , Daphnia , Ecossistema , Fitoplâncton , Reprodução
12.
Environ Sci Technol ; 54(7): 4609-4620, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32126758

RESUMO

Driven by global warming and eutrophication, outbreaks of cyanobacterial blooms have severely impacted ecosystem stability and water safety. Of the organisms used to control cyanobacteria, protozoa can highly resist cyanotoxins, efficiently control cyanobacterial populations, and show considerably different feeding strategies from those of metazoans. Thus, protozoa have great potential to control harmful cyanobacteria and improve phytoplankton composition in eutrophic waters. To evaluate the actual effects of protozoa in controlling cyanobacteria and improving the phytoplankton community structure in the field, an in situ microcosm study was performed using a flagellate Ochromonas gloeopara that ingests Microcystis. Results showed that adding Ochromonas reduced the cyanobacterial populations and increased the chlorophyte and diatom proportions. Furthermore, the species richness and diversity of the phytoplankton community were enhanced in microcosms with Ochromonas. Additionally, there was a gradual increase in the chlorophyte population in the unicellular Microcystis control, while Ochromonas addition significantly accelerated the replacement of dominant species. This study was the first to show the practical effects of protozoa on controlling cyanobacteria in the field, highlighting that a reduction in in situ cyanobacteria via protozoa can improve the phytoplankton community structure, dredge the toxic cyanobacteria-dominated microbial food web, and mitigate harmful cyanobacteria risks in fresh waters.


Assuntos
Microcystis , Ochromonas , Ecossistema , Eutrofização , Fitoplâncton
13.
Biochemistry ; 58(22): 2608-2616, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31082213

RESUMO

Light-oxygen-voltage (LOV) domains are increasingly used to engineer photoresponsive biological systems. While the photochemical cycle is well documented, the allosteric mechanism by which formation of a cysteinyl-flavin adduct leads to activation is unclear. Via replacement of flavin mononucleotide (FMN) with 5-deazaflavin mononucleotide (5dFMN) in the Aureochrome1a (Au1a) transcription factor from Ochromonas danica, a thermally stable cysteinyl-5dFMN adduct was generated. High-resolution crystal structures (<2 Å) under different illumination conditions with either FMN or 5dFMN chromophores reveal three conformations of the highly conserved glutamine 293. An allosteric hydrogen bond network linking the chromophore via Gln293 to the auxiliary A'α helix is observed. With FMN, a "flip" of the Gln293 side chain occurs between dark and lit states. 5dFMN cannot hydrogen bond through the C5 position and proved to be unable to support Au1a domain dimerization. Under blue light, the Gln293 side chain instead "swings" away in a conformation distal to the chromophore and not previously observed in existing LOV domain structures. Together, the multiple side chain conformations of Gln293 and functional analysis of 5dFMN provide new insight into the structural requirements for LOV domain activation.


Assuntos
Proteínas de Algas/química , Flavinas/química , Ribonucleotídeos/química , Fatores de Transcrição/química , Proteínas de Algas/efeitos da radiação , Cisteína/química , Mononucleotídeo de Flavina/química , Glutamina/química , Luz , Ochromonas/química , Conformação Proteica/efeitos da radiação , Domínios Proteicos/efeitos da radiação , Fatores de Transcrição/efeitos da radiação
14.
Sci Total Environ ; 671: 149-156, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30928744

RESUMO

Disgusting fishy odor problems have become a major concern in drinking water quality, and are commonly related to algal proliferation in source water. Unlike the typical musty/earthy odorants 2-methylisoborneol (MIB) and geosmin, identification of the corresponding fishy odorants is still a big challenge. In this study, two species of fishy-odor-producing algae, Ochromonas sp. and Cryptomonas ovate, were cultured to explore the odor production characteristics and typical odorants. When algae were ruptured in the stationary and decline phases, fishy odor intensities of 4 to 8 characterized by FPA were produced. However, some frequently reported aldehydes that could cause fishy odor, including n-hexanal, 2-octenal, heptanal, 2,4-heptanal and 2,4-decadienal, were not detected in either of the cultured algae. The possible fishy odor-causing compounds were further identified by combining gas chromatography-olfactometry (GC-O/MS) and comprehensive two-dimensional gas chromatography (GC × GC-TOFMS) using retention indices (RIs). From GC-O/MS analysis, twelve and six olfactometry peaks with various odor characteristics were identified in Ochromonas sp. and Cryptomonas ovate, respectively, of which three and two olfactometry peaks showed fishy odor characteristics. 2-Nonenal, 2,4-octadienal, fluorene and 2-tetradecanone were identified as fishy odorants in Ochromonas sp., and 1-octen-3-ol, 6-methyl-5-hepten-2-one, 1-octen-3-one, 2-nonenal and 2,4-octadienal were identified in Cryptomonas ovate. Other identified compounds, including butyl butanoate (fragrant odor), ionone (fragrant odor), bis (2-chloroisopropyl) ether (chemical odor) etc., did not show fishy features. Therefore, the fishy odor might be a synthetic and comprehensive odor, which resulted from the combination of different odorants and their synergistic effects. The results of this study will be helpful for understanding fishy odor problems, which will provide support for fishy odor management and control in the drinking water industry.


Assuntos
Criptófitas/química , Ochromonas/química , Odorantes/análise , Cromatografia Gasosa , Monitoramento Ambiental , Olfatometria
15.
Evolution ; 73(6): 1296-1308, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30883720

RESUMO

The first step in the evolution of complex multicellular organisms involves single cells forming a cooperative group. Consequently, to understand multicellularity, we need to understand the costs and benefits associated with multicellular group formation. We found that in the facultatively multicellular algae Chlorella sorokiniana: (1) the presence of the flagellate Ochromonas danica or the crustacean Daphnia magna leads to the formation of multicellular groups; (2) the formation of multicellular groups reduces predation by O. danica, but not by the larger predator D. magna; (3) under conditions of relatively low light intensity, where competition for light is greater, multicellular groups grow slower than single cells; (4) in the absence of live predators, the proportion of cells in multicellular groups decreases at a rate that does not vary with light intensity. These results can explain why, in cases such as this algae species, multicellular group formation is facultative, in response to the presence of predators.


Assuntos
Chlorella/fisiologia , Daphnia/fisiologia , Cadeia Alimentar , Características de História de Vida , Ochromonas/fisiologia , Comportamento Predatório , Animais , Evolução Biológica , Análise Custo-Benefício , Interações Microbianas
16.
J Biol Chem ; 294(16): 6483-6493, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819804

RESUMO

Glycoside phosphorylases (GPs) catalyze the phosphorolysis of glycans into the corresponding sugar 1-phosphates and shortened glycan chains. Given the diversity of natural ß-(1→3)-glucans and their wide range of biotechnological applications, the identification of enzymatic tools that can act on ß-(1→3)-glucooligosaccharides is an attractive area of research. GP activities acting on ß-(1→3)-glucooligosaccharides have been described in bacteria, the photosynthetic excavate Euglena gracilis, and the heterokont Ochromonas spp. Previously, we characterized ß-(1→3)-glucan GPs from bacteria and E. gracilis, leading to their classification in glycoside hydrolase family GH149. Here, we characterized GPs from Gram-positive bacteria and heterokont algae acting on ß-(1→3)-glucooligosaccharides. We identified a phosphorylase sequence from Ochromonas spp. (OcP1) together with its orthologs from other species, leading us to propose the establishment of a new GH family, designated GH161. To establish the activity of GH161 members, we recombinantly expressed a bacterial GH161 gene sequence (PapP) from the Gram-positive bacterium Paenibacillus polymyxa ATCC 842 in Escherichia coli We found that PapP acts on ß-(1→3)-glucooligosaccharide acceptors with a degree of polymerization (DP) ≥ 2. This activity was distinct from that of characterized GH149 ß-(1→3)-glucan phosphorylases, which operate on acceptors with DP ≥ 1. We also found that bacterial GH161 genes co-localize with genes encoding ß-glucosidases and ATP-binding cassette transporters, highlighting a probable involvement of GH161 enzymes in carbohydrate degradation. Importantly, in some species, GH161 and GH94 genes were present in tandem, providing evidence that GPs from different CAZy families may work sequentially to degrade oligosaccharides.


Assuntos
Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/metabolismo , Paenibacillus polymyxa/enzimologia , beta-Glucanas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Euglena gracilis/enzimologia , Euglena gracilis/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Ochromonas/enzimologia , Ochromonas/genética , Oligossacarídeos/química , Paenibacillus polymyxa/genética , beta-Glucanas/química
17.
Appl Microbiol Biotechnol ; 103(2): 695-705, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30392123

RESUMO

Grease balls collected from a municipal wastewater treatment plant were melt-screened and used for cultivation of microalga Ochromonas danica, which could phagocytize droplets and particles as food. After autoclaving, the waste grease (WG) separated into two (upper and lower) phases. O. danica grew well on both, accumulating 48-79% (w/w) intracellular lipids. Initial WG contained approximately 50:50 triglycerides and free fatty acids (FFAs); over time, almost only FFAs remained in the extracellular WG presumably due to hydrolysis by algal lipase. PUFAs, mainly C18:2n6, C18:3n3, C18:3n6, C20:4n6, and C22:5n6, were synthesized and enriched to up to 67% of intracellular FAs, from the original 15% PUFA content in WG. The study showed feasibility of converting wastewater-originated WG to PUFA-rich O. danica algae culture, possibly as aquaculture/animal feed. WG dispersion was identified as a major processing factor to further improve for optimal WG conversion rate and cell and FA yields.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Ochromonas/crescimento & desenvolvimento , Ochromonas/metabolismo , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Biotransformação , Triglicerídeos/metabolismo
18.
Environ Sci Technol ; 52(19): 11102-11113, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30176726

RESUMO

Toxic Microcystis bloom is a tough environment problem worldwide. Microcystin is highly toxic and is an easily accumulated secondary metabolite of toxic Microcystis that threatens water safety. Biodegradation of microcystin by protozoan grazing is a promising and efficient biological method, but the mechanism in this process is still unclear. The present study aimed to identify potential pathways involved in resisting and degrading microcystin in flagellates through transcriptomic analyses. A total of 999 unigenes were significantly differentially expressed between treatments with flagellates Ochromonas fed on microcystin-producing Microcystis and microcystin-free Microcystis. These dysregulated genes were strongly associated with translation, carbohydrate metabolism, phagosome, and energy metabolism. Upregulated genes encoding peroxiredoxin, serine/threonine-protein phosphatase, glutathione S-transferase (GST), HSP70, and O-GlcNAc transferase were involved in resisting microcystin. In addition, genes encoding cathepsin and GST and genes related to inducing reactive oxygen species (ROS) were all upregulated, which highly probably linked with degrading microcystin in flagellates. The results of this study provided a better understanding of transcriptomic responses of flagellates to toxic Microcystis as well as highlighted a potential mechanism of biodegrading microcystin by flagellate Ochromonas, which served as a strong theoretical support for control of toxic microalgae by protozoans.


Assuntos
Microcystis , Ochromonas , Perfilação da Expressão Gênica , Microcistinas , Transcriptoma
19.
Bioprocess Biosyst Eng ; 41(12): 1757-1766, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30099623

RESUMO

A substantial amount of organic matter is wasted in current wastewater treatment processes. To reclaim the value of organic matter, a two-stage continuous-flow open process has been developed by utilizing the capability of phagotrophic algae in ingesting bacterial cells. In this process, wastewater is first pumped into a bacteria tank to grow bacterial cells, and then the effluent containing grown bacteria cells is fed to an algae tank to grow phagotrophic algae. The operation conditions such as dilution rate, pH, and dissolved oxygen level were comprehensively investigated and optimized with long-term tests. Results show that phagotrophic algae can be stably cultivated with wastewater organics through this open process without costly chemical/physical sterilization. The produced phagotrophic algae had high lipid content and can be potentially used as biofuel feedstock.


Assuntos
Bactérias/crescimento & desenvolvimento , Ochromonas/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Microbiologia da Água , Purificação da Água/métodos
20.
Water Res ; 145: 190-197, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30142517

RESUMO

In this study waste activated sludge (WAS) was sonicated to release bacteria-sized volatile solids (VS) from flocs, after initial pH adjustment to 10 for higher energy efficiency. The released VS supported growth of phagotrophic alga Ochromonas danica. Initial-rate growth experiments confirmed the Monod-type kinetics but the specific cell growth rate, µ, correlated with the prey-to-predator ratio, i.e., the ratio of (fed VS concentration)-to-(initial O. danica concentration), significantly better than with the VS alone, as the typical Monod dependency on soluble substrates. The best-fit kinetics had the following parameters: µmax = 0.198 h-1 and KM = 1.056 (g-VS/g-algae). Post-sonication reflocculation could render particles too large to ingest by O. danica; therefore, pH and VS effects on reflocculation were investigated. Batch cultivations were then conducted in fermentors at pH 5, under nonsterile conditions. Algae number reached 8.86 × 1010 L-1 after 20 h, corresponding to ∼2.3 g/L dry-weight and volumetric algae productivity of 2.8 g/L-day. VS reduction was 38%, giving an O. danica VS yield of 44.5%. The ultrasonication-algae process can be used to produce algae while achieving at least partial WAS treatment.


Assuntos
Microalgas , Ochromonas , Bactérias , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...