Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.824
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38780268

RESUMO

Oxytocin (OXT), a neuropeptide originating from the hypothalamus and traditionally associated with peripheral functions in parturition and lactation, has emerged as a pivotal player in the central regulation of the autonomic nervous system (ANS). This comprehensive ANS, comprising sympathetic, parasympathetic, and enteric components, intricately combines sympathetic and parasympathetic influences to provide unified control. The central oversight of sympathetic and parasympathetic outputs involves a network of interconnected regions spanning the neuroaxis, playing a pivotal role in the real-time regulation of visceral function, homeostasis, and adaptation to challenges. This review unveils the significant involvement of the central OXT system in modulating autonomic functions, shedding light on diverse subpopulations of OXT neurons within the paraventricular nucleus of the hypothalamus and their intricate projections. The narrative progresses from the basics of central ANS regulation to a detailed discussion of the central controls of sympathetic and parasympathetic outflows. The subsequent segment focuses specifically on the central OXT system, providing a foundation for exploring the central role of OXT in ANS regulation. This review synthesizes current knowledge, paving the way for future research endeavors to unravel the full scope of autonomic control and understand multifaceted impact of OXT on physiological outcomes.


Assuntos
Sistema Nervoso Autônomo , Ocitocina , Ocitocina/metabolismo , Ocitocina/fisiologia , Humanos , Sistema Nervoso Autônomo/fisiologia , Animais
2.
Neurosci Biobehav Rev ; 163: 105734, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38796125

RESUMO

This review addresses key findings on loneliness from the social, neurobiological and clinical fields. From a translational perspective, results from studies in humans and animals are included, with a focus on social interaction, mental and physical illness and the role of oxytocin in loneliness. In terms of social interactions, lonely individuals tend to exhibit a range of abnormal behaviors based on dysfunctional social cognitions that make it difficult for them to form meaningful relationships. Neurobiologically, a link has been established between loneliness and the hypothalamic peptide hormone oxytocin. Since social interactions and especially social touch regulate oxytocin signaling, lonely individuals may have an oxytocin imbalance, which in turn affects their health and well-being. Clinically, loneliness is a predictor of physical and mental illness and leads to increased morbidity and mortality. There is evidence that psychopathology is both a cause and a consequence of loneliness. The final section of this review summarizes the findings from social, neurobiological and clinical perspectives to present a new model of the complex construct of loneliness.


Assuntos
Solidão , Ocitocina , Interação Social , Pesquisa Translacional Biomédica , Humanos , Solidão/psicologia , Ocitocina/metabolismo , Ocitocina/fisiologia , Animais , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Neurociências
3.
Curr Biol ; 34(8): R320-R322, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653200

RESUMO

During social interactions, individuals evaluate relationships with their peers and switch from approach to avoidance, particularly in response to aggressive encounters. A new study in mice investigated the underlying brain mechanisms and identified oxytocin as a key regulator of social avoidance learning.


Assuntos
Ocitocina , Animais , Ocitocina/metabolismo , Ocitocina/fisiologia , Camundongos , Agressão , Aprendizagem da Esquiva/fisiologia , Comportamento Social , Encéfalo/fisiologia , Neurociências , Interação Social , Humanos
4.
Endocr Regul ; 58(1): 105-114, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656256

RESUMO

Oxytocin plays an important role in brain development and is associated with various neurotransmitter systems in the brain. Abnormalities in the production, secretion, and distribution of oxytocin in the brain, at least during some stages of the development, are critical for the pathogenesis of neuropsychiatric diseases, particularly in the autism spectrum disorder. The etiology of autism includes changes in local sensory and dopaminergic areas of the brain, which are also supplied by the hypothalamic sources of oxytocin. It is very important to understand their mutual relationship. In this review, the relationship of oxytocin with several components of the dopaminergic system, gamma-aminobutyric acid (GABA) inhibitory neurotransmission and their alterations in the autism spectrum disorder is discussed. Special attention has been paid to the results describing a reduced expression of inhibitory GABAergic markers in the brain in the context of dopaminergic areas in various models of autism. It is presumed that the altered GABAergic neurotransmission, due to the absence or dysfunction of oxytocin at certain developmental stages, disinhibits the dopaminergic signaling and contributes to the autism symptoms.


Assuntos
Transtorno Autístico , Encéfalo , Dopamina , Ocitocina , Ácido gama-Aminobutírico , Ocitocina/metabolismo , Ocitocina/fisiologia , Humanos , Dopamina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Animais , Transmissão Sináptica/fisiologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/etiologia
5.
Peptides ; 177: 171223, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626843

RESUMO

Oxytocin (OXT), a neuropeptide consisting of only nine amino acids, is synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Although OXT is best known for its role in lactation and parturition, recent research has shown that it also has a significant impact on social behaviors in mammals. However, a comprehensive review of this topic is still lacking. In this paper, we systematically reviewed the effects of OXT on social behavior in mammals. These effects of OXT from the perspective of five key behavioral dimensions were summarized: parental behavior, anxiety, aggression, attachment, and empathy. To date, researchers have agreed that OXT plays a positive regulatory role in a wide range of social behaviors, but there have been controversially reported results. In this review, we have provided a detailed panorama of the role of OXT in social behavior and, for the first time, delved into the underlying regulatory mechanisms, which may help better understand the multifaceted role of OXT. Levels of OXT in previous human studies were also summarized to provide insights for diagnosis of mental disorders.


Assuntos
Ocitocina , Comportamento Social , Ocitocina/metabolismo , Ocitocina/fisiologia , Animais , Humanos , Neuropeptídeos/metabolismo , Mamíferos/metabolismo , Ansiedade/metabolismo , Ansiedade/psicologia , Agressão/fisiologia , Empatia/fisiologia , Feminino , Comportamento Materno/fisiologia
6.
Neurosci Biobehav Rev ; 161: 105675, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608828

RESUMO

Social behaviour is essential for animal survival, and the hypothalamic neuropeptide oxytocin (OXT) critically impacts bonding, parenting, and decision-making. Dopamine (DA), is released by ventral tegmental area (VTA) dopaminergic neurons, regulating social cues in the mesolimbic system. Despite extensive exploration of OXT and DA roles in social behaviour independently, limited studies investigate their interplay. This narrative review integrates insights from human and animal studies, particularly rodents, emphasising recent research on pharmacological manipulations of OXT or DA systems in social behaviour. Additionally, we review studies correlating social behaviour with blood/cerebral OXT and DA levels. Behavioural facets include sociability, cooperation, pair bonding and parental care. In addition, we provide insights into OXT-DA interplay in animal models of social stress, autism, and schizophrenia. Emphasis is placed on the complex relationship between the OXT and DA systems and their collective influence on social behaviour across physiological and pathological conditions. Understanding OXT and DA imbalance is fundamental for unravelling the neurobiological underpinnings of social interaction and reward processing deficits observed in psychiatric conditions.


Assuntos
Dopamina , Ocitocina , Interação Social , Ocitocina/metabolismo , Ocitocina/fisiologia , Humanos , Animais , Dopamina/metabolismo , Comportamento Social , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Transdução de Sinais/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia
7.
Neurosci Biobehav Rev ; 161: 105683, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649125

RESUMO

The lateral septum (LS) is involved in controlling anxiety, aggression, feeding, and other motivated behaviors. Lesion studies have also implicated the LS in various forms of caring behaviors. Recently, novel experimental tools have provided a more detailed insight into the function of the LS, including the specific role of distinct cell types and their neuronal connections in behavioral regulations, in which the LS participates. This article discusses the regulation of different types of maternal behavioral alterations using the distributions of established maternal hormones such as prolactin, estrogens, and the neuropeptide oxytocin. It also considers the distribution of neurons activated in mothers in response to pups and other maternal activities, as well as gene expressional alterations in the maternal LS. Finally, this paper proposes further research directions to keep up with the rapidly developing knowledge on maternal behavioral control in other maternal brain regions.


Assuntos
Comportamento Materno , Núcleos Septais , Comportamento Materno/fisiologia , Animais , Núcleos Septais/fisiologia , Núcleos Septais/metabolismo , Feminino , Humanos , Ocitocina/metabolismo , Ocitocina/fisiologia
8.
Physiol Rev ; 104(3): 1121-1145, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329421

RESUMO

Parturition is a complex physiological process that must occur in a reliable manner and at an appropriate gestation stage to ensure a healthy newborn and mother. To this end, hormones that affect the function of the gravid uterus, especially progesterone (P4), 17ß-estradiol (E2), oxytocin (OT), and prostaglandins (PGs), play pivotal roles. P4 via the nuclear P4 receptor (PR) promotes uterine quiescence and for most of pregnancy exerts a dominant block to labor. Loss of the P4 block to parturition in association with a gain in prolabor actions of E2 are key transitions in the hormonal cascade leading to parturition. P4 withdrawal can occur through various mechanisms depending on species and physiological context. Parturition in most species involves inflammation within the uterine tissues and especially at the maternal-fetal interface. Local PGs and other inflammatory mediators may initiate parturition by inducing P4 withdrawal. Withdrawal of the P4 block is coordinated with increased E2 actions to enhance uterotonic signals mediated by OT and PGs to promote uterine contractions, cervix softening, and membrane rupture, i.e., labor. This review examines recent advances in research to understand the hormonal control of parturition, with focus on the roles of P4, E2, PGs, OT, inflammatory cytokines, and placental peptide hormones together with evolutionary biology of and implications for clinical management of human parturition.


Assuntos
Parto , Parto/fisiologia , Humanos , Feminino , Gravidez , Animais , Progesterona/metabolismo , Progesterona/fisiologia , Ocitocina/metabolismo , Ocitocina/fisiologia , Útero/metabolismo , Útero/fisiologia , Prostaglandinas/metabolismo , Estradiol/metabolismo
9.
Neuron ; 112(7): 1081-1099.e7, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38290516

RESUMO

Oxytocin (OXT) plays important roles in autonomic control and behavioral modulation. However, it is unknown how the projection patterns of OXT neurons align with underlying physiological functions. Here, we present the reconstructed single-neuron, whole-brain projectomes of 264 OXT neurons of the mouse paraventricular hypothalamic nucleus (PVH) at submicron resolution. These neurons hierarchically clustered into two groups, with distinct morphological and transcriptional characteristics and mutually exclusive projection patterns. Cluster 1 (177 neurons) axons terminated exclusively in the median eminence (ME) and have few collaterals terminating within hypothalamic regions. By contrast, cluster 2 (87 neurons) sent wide-spread axons to multiple brain regions, but excluding ME. Dendritic arbors of OXT neurons also extended outside of the PVH, suggesting capability to sense signals and modulate target regions. These single-neuron resolution observations reveal distinct OXT subpopulations, provide comprehensive analysis of their morphology, and lay the structural foundation for better understanding the functional heterogeneity of OXT neurons.


Assuntos
Ocitocina , Núcleo Hipotalâmico Paraventricular , Animais , Camundongos , Hipotálamo , Neurônios/fisiologia , Ocitocina/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia
10.
Horm Behav ; 160: 105487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281444

RESUMO

Oxytocin is a versatile neuropeptide that modulates many different forms of social behavior. Recent hypotheses pose that oxytocin enhances the salience of rewarding and aversive social experiences, and the field has been working to identify mechanisms that allow oxytocin to have diverse effects on behavior. Here we review studies conducted on the California mouse (Peromyscus californicus) that shed light on how oxytocin modulates social behavior following stressful experiences. In this species, both males and females exhibit high levels of aggression, which has facilitated the study of how social stress impacts both sexes. We review findings of short- and long-term effects of social stress on the reactivity of oxytocin neurons. We also consider the results of pharmacological studies which show that oxytocin receptors in the bed nucleus of the stria terminalis and nucleus accumbens have distinct but overlapping effects on social approach behaviors. These findings help explain how social stress can have different behavioral effects in males and females, and how oxytocin can have such divergent effects on behavior. Finally, we consider how new technological developments and innovative research programs take advantage of the unique social organization of California mice to address questions that can be difficult to study in conventional rodent model species. These new methods and questions have opened new avenues for studying the neurobiology of social behavior.


Assuntos
Ocitocina , Peromyscus , Masculino , Feminino , Animais , Ocitocina/farmacologia , Ocitocina/fisiologia , Peromyscus/fisiologia , Comportamento Social , Agressão/fisiologia , Receptores de Ocitocina , Roedores
11.
Behav Brain Res ; 462: 114881, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38272188

RESUMO

It has been hypothesized that oxytocin increases the salience of social stimuli, whether the valence is positive or negative, through its interactions with the ventral tegmental area (VTA). Indeed, oxytocin neurons project to the VTA and activate dopamine neurons that are necessary for social experiences with positive valence. Surprisingly, though, there has not been an investigation of the role of oxytocin in the VTA in mediating social experiences with negative valence (e.g., social stress). Given that there are sex differences in how oxytocin regulates the salience of positively-valenced social interactions, we hypothesized that oxytocin acting in the VTA also alters the salience of social stress in a sex-dependent manner. To test this, female and male Syrian hamsters were site-specifically infused with either saline, oxytocin (9 µM), or oxytocin receptor antagonist (90 µM) into the VTA. Subjects were then exposed to either no defeat or a single, 15 min defeat by one RA. The day following social defeat, subjects underwent a 5 min social avoidance test. There was an interaction between sex and drug treatment, such that the oxytocin antagonist increased social avoidance compared to saline treatment in socially stressed females, while oxytocin decreased social avoidance compared to saline treatment in socially stressed males. Contrary to expectations, these results suggest that oxytocin signaling generally acts to decrease social avoidance, regardless of sex. These sex differences in the efficacy of oxytocin and oxytocin receptor antagonists to alter negatively-valenced social stimuli, however, should be considered when guiding pharmacotherapies for disorders involving social deficits.


Assuntos
Ocitocina , Área Tegmentar Ventral , Cricetinae , Animais , Feminino , Masculino , Humanos , Ocitocina/farmacologia , Ocitocina/fisiologia , Receptores de Ocitocina , Comportamento Social , Mesocricetus , Antagonistas de Hormônios/farmacologia , Estresse Psicológico , Neurônios Dopaminérgicos
12.
Psychoneuroendocrinology ; 161: 106950, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38194846

RESUMO

Leading hypotheses of oxytocin's (OT) role in human cognition posit that it enhances salience attribution. However, whether OT exerts its effects predominantly in social (vs non-social) contexts remains debatable, and the time-course of intranasal OT's effects' on salience attribution processing is still unknown. We used the social Salience Attribution Task modified (sSAT) in a double-blind, placebo-controlled intranasal OT (inOT) administration, between-subjects design, with 54 male participants, to test existing theories of OT's role in cognition. Namely, we aimed to test whether inOT would differently affect salience attribution processing of social stimuli (expressing fearfulness) and non-social stimuli (fruits) made relevant via monetary reinforcement, and its neural processing time-course. During electroencephalography (EEG) recording, participants made speeded responses to emotional social (fearful faces) and non-emotional non-social (fruits) stimuli - which were matched for task-relevant motivational salience through their (color-dependent) probability of monetary reinforcement. InOT affected early (rather than late, P3b and LPP) EEG components, increasing N170 amplitude (p = .041) and P2b latency (p .001; albeit not of P1), regardless of stimuli's (emotional) socialness or reinforcement probability. Fear-related socialness affected salience attribution processing EEG (p .05) across time (N170, P2b and P3b), being later modulated by reinforcement probability (LPP). Our data suggest that OT's effects on neural activity during early perception, may exist irrespective of fear-related social- or reward-contexts. This partially supports the tri-phasic model of OT (which posits OT enhances salience attribution in an early perception stage regardless of socialness), and not the social salience nor the general approach-withdrawal hypotheses of OT, for early salience processing event-related potentials.


Assuntos
Emoções , Ocitocina , Humanos , Masculino , Ocitocina/farmacologia , Ocitocina/fisiologia , Emoções/fisiologia , Percepção Social , Eletroencefalografia , Potenciais Evocados/fisiologia , Administração Intranasal , Método Duplo-Cego
13.
Peptides ; 173: 171150, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38190970

RESUMO

Our previous studies have established that intrathecal oxytocin (OT) and angiotensin IV (Ang IV) injections induce antihyperalgesia and antiallodynia in rodents. Ang IV, a renin-angiotensin system hexapeptide, acts as an endogenous inhibitor that inhibits the oxytocin-degrading enzyme insulin-regulated aminopeptidase (IRAP). The pain inhibitory effects by Ang IV were found to be through its inhibition on IRAP to potentiate the effect of OT. However, these effects were found to be with a significant sex difference, which could be partially due to the higher expression of IRAP at the spinal cords of female. Therefore, we synthesized Ang IV and OT conjugates connected with a peptide bond and tested for their effects on hyperalgesia and allodynia. Carrageenan-induced hyperalgesia and partial sciatic nerve ligation (PSNL) were performed using rat models. Conjugates Ang IV-OT (Ang IV at the N-terminal) and OT-Ang IV (OT at the N-terminal) were synthesized and intrathecally injected into male and female rats. Our results showed that Ang IV-OT exhibited prominent antihyperalgesia in male rats, particularly during hyperalgesia recovery, whereas OT-Ang IV was more effective during development stage. Ang IV-OT showed clear antihyperalgesia in female rats, but OT-Ang IV had no significant effect. Notably, both conjugates alleviated neuropathic allodynia in male rats; however, OT-Ang IV had no effect in female rats, whereas Ang IV-OT induced significant antiallodynia. In conclusion, Ang IV-OT has greater therapeutic potential for treating hyperalgesia and allodynia than OT-Ang IV. Its effects were not affected by sex, unlike those of OT and OT-Ang IV, extending its possible clinical applications.


Assuntos
Angiotensina II/análogos & derivados , Hiperalgesia , Ocitocina , Ratos , Feminino , Masculino , Animais , Ocitocina/farmacologia , Ocitocina/uso terapêutico , Ocitocina/fisiologia , Hiperalgesia/tratamento farmacológico , Cistinil Aminopeptidase/metabolismo , Angiotensina II/farmacologia , Aminopeptidases , Injeções Espinhais
14.
Hormones (Athens) ; 23(1): 15-23, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37979096

RESUMO

BACKGROUND: The neuropeptide oxytocin (OT) is crucial in several conditions, such as lactation, parturition, mother-infant interaction, and psychosocial function. Moreover, OT may be involved in the regulation of eating behaviors. METHODS: This review briefly summarizes data concerning the role of OT in eating behaviors. Appropriate keywords and medical subject headings were identified and searched for in PubMed/MEDLINE. References of original articles and reviews were screened, examined, and selected. RESULTS: Hypothalamic OT-secreting neurons project to different cerebral areas controlling eating behaviors, such as the amygdala, area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus nerve. Intracerebral/ventricular OT administration decreases food intake and body weight in wild and genetically obese rats. OT may alter food intake and the quality of meals, especially carbohydrates and sweets, in humans. DISCUSSION: OT may play a role in the pathophysiology of eating disorders with potential therapeutic perspectives. In obese patients and those with certain eating disorders, such as bulimia nervosa or binge/compulsive eating, OT may reduce appetite and caloric consumption. Conversely, OT administered to patients with anorexia nervosa may paradoxically stimulate appetite, possibly by lowering anxiety which usually complicates the management of these patients. Nevertheless, OT administration (e.g., intranasal route) is not always associated with clinical benefit, probably because intranasally administered OT fails to achieve therapeutic intracerebral levels of the hormone. CONCLUSION: OT administration could play a therapeutic role in managing eating disorders and disordered eating. However, specific studies are needed to clarify this issue with regard to dose-finding and route and administration time.


Assuntos
Anorexia Nervosa , Ocitocina , Humanos , Feminino , Ratos , Animais , Ocitocina/fisiologia , Comportamento Alimentar/fisiologia , Hipotálamo , Obesidade
15.
Gynecol Obstet Fertil Senol ; 52(6): 418-424, 2024 Jun.
Artigo em Francês | MEDLINE | ID: mdl-38145743

RESUMO

OBJECTIVE: Prematurity and intra-uterine growth retardation are responsible for brain damage associated with various neurocognitive and behavioral disorders in more than 9 million children each year. Most pharmacological strategies aimed at preventing perinatal brain injury have not demonstrated substantial clinical benefits so far. In contrast, enrichment of the newborn's environment appears to have positive effects on brain structure and function, influences newborn hormonal responses, and has lasting neurobehavioral consequences during infancy and adulthood. Oxytocin (OT), a neuropeptide released by the hypothalamus, may represent the hormonal basis for these long-term effects. METHOD: This review of the literature summarizes the knowledge concerning the effect of OT in the newborn and the preclinical data supporting its neuroprotective effect. RESULTS: OT plays a role during the perinatal period, in parent-child attachment and in social behavior. Furthermore, preclinical studies strongly suggest that endogenous and synthetic OT is capable of regulating the inflammatory response of the central nervous system in response to situations of prematurity or more generally insults to the developing brain. The long-term effect of synthetic OT administration during labor is also discussed. CONCLUSION: All the conceptual and experimental data converge to indicate that OT would be a promising candidate for neonatal neuroprotection, in particular through the regulation of neuroinflammation.


Assuntos
Fármacos Neuroprotetores , Ocitocina , Humanos , Ocitocina/uso terapêutico , Ocitocina/fisiologia , Recém-Nascido , Fármacos Neuroprotetores/uso terapêutico , Animais , Feminino , Gravidez , Recém-Nascido Prematuro , Encéfalo/efeitos dos fármacos , Comportamento Social , Lesões Encefálicas/prevenção & controle , Apego ao Objeto
16.
Horm Behav ; 155: 105424, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37678092

RESUMO

Disgust is considered to be a fundamental affective state associated with triggering the behavioral avoidance of infection and parasite/pathogen threat. In humans, and other vertebrates, disgust affects how individuals interact with, and respond to, parasites, pathogens and potentially infected conspecifics and their sensory cues. Here we show that the land snail, Cepaea nemoralis, displays a similar "disgust-like" state eliciting behavioral avoidance responses to the mucus associated cues of infected and potentially infected snails. Brief exposure to the mucus of snails treated with the Gram-negative bacterial endotoxin, lipopolysaccharide (LPS), elicited dose-related behavioral avoidance, including acute antinociceptive responses, similar to those expressed by mammals. In addition, exposure to the mucus cues of LPS treated snails led to a subsequent avoidance of unfamiliar individuals, paralleling the recognition of and avoidance responses exhibited by vertebrates exposed to potential pathogen risk. Further, the avoidance of, and antinociceptive responses to, the mucus of LPS treated snails were attenuated in a dose-related manner by the oxytocin (OT) receptor antagonist, L-368,899. This supports the involvement of OT and OT receptor homologs in the expression of infection avoidance, and consistent with the roles of OT in the modulation of responses to salient social and infection threats by rodents and other vertebrates. These findings with land snails are indicative of evolutionarily conserved disgust-like states associated with OT/OT receptor homolog modulated behavioral avoidance responses to infection and pathogen threat.


Assuntos
Aprendizagem da Esquiva , Ocitocina , Animais , Analgésicos , Aprendizagem da Esquiva/fisiologia , Lipopolissacarídeos/farmacologia , Ocitocina/fisiologia , Receptores de Ocitocina/antagonistas & inibidores
17.
BMC Geriatr ; 23(1): 416, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420191

RESUMO

BACKGROUND: The health outcomes of geriatric patients exposed to surgery were found to be enhanced by social support and stress management. The aim of this study was to characterise the relationship between oxytocin and neuropsychiatric disorders after surgery. METHODS: A total of 132 geriatric patients aged ≥ 60 years received orthopedic surgery in the First Affiliated Hospital of Harbin Medical University (Harbin, China) were enrolled in the present study. The salivary levels of stress hormone cortisol and oxytocin were measured by enzyme-linked immunosorbent assay for the screening of the stress state and oxytocin function. Moreover, the Depression Anxiety and Stress Scale (DASS), the Geriatric Anxiety Inventory (GAI), the Geriatric Depression Scale (GDS) and the Montgomery-Åsberg Depression Rating Scale (MADRS) were conducted to identify the severity of anxiety and depression. The association between oxytocin and mental health was performed by linear regression analyses in older patients receiving orthopedic surgery. Finally, the Duke Social Support Index (DSSI) was selected to measure the social support and the potential link to mental outcomes. RESULTS: The scores from questionnaires showed that female patients with higher social support and higher levels of oxytocin demonstrated better stress-reducing responses as reflected by lower cortisol and decreased anxiety and depression symptoms. Regression analyses revealed that there was a significant association between oxytocin and scores in DASS, GAI, GDS, MADRS and DSSI, suggesting a potential link between peripheral oxytocin function and mood outcomes after orthopedic surgery. CONCLUSIONS: Our findings reveal that oxytocin enhances the stress-protective effects of social support and reduces anxiety and depression states under stressful circumstances, particularly in older women receiving orthopedic surgery.


Assuntos
Procedimentos Ortopédicos , Ocitocina , Idoso , Feminino , Humanos , Ansiedade/diagnóstico , Depressão/diagnóstico , Hidrocortisona , Procedimentos Ortopédicos/efeitos adversos , Ocitocina/fisiologia
18.
J Neuroendocrinol ; 35(9): e13324, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515539

RESUMO

The neuropeptidergic mechanisms controlling socio-sexual behaviours consist of complex neuronal circuitry systems in widely distributed areas of the brain and spinal cord. At the organismal level, it is now becoming clear that "hormonal regulations" play an important role, in addition to the activation of neuronal circuits. The gastrin-releasing peptide (GRP) system in the lumbosacral spinal cord is an important component of the neural circuits that control penile reflexes in rats, circuits that are commonly referred to as the "spinal ejaculation generator (SEG)." Oxytocin, long known as a neurohypophyseal hormone, is now known to be involved in the regulation of socio-sexual behaviors in mammals, ranging from social bonding to empathy. However, the functional interaction between the SEG neurons and the hypothalamo-spinal oxytocin system remains unclear. Oxytocin is known to be synthesised mainly in hypothalamic neurons and released from the posterior pituitary into the circulation. Oxytocin is also released from the dendrites of the neurons into the hypothalamus where they have important roles in social behaviours via non-synaptic volume transmission. Because the most familiar functions of oxytocin are to regulate female reproductive functions including parturition, milk ejection, and maternal behaviour, oxytocin is often thought of as a "feminine" hormone. However, there is evidence that a group of parvocellular oxytocin neurons project to the lower spinal cord and control male sexual function in rats. In this report, we review the functional interaction between the SEG neurons and the hypothalamo-spinal oxytocin system and effects of these neuropeptides on male sexual behaviour. Furthermore, we discuss the finding of a recently identified, localised "volume transmission" role of oxytocin in the spinal cord. Findings from our studies suggest that the newly discovered "oxytocin-mediated spinal control of male sexual function" may be useful in the treatment of erectile and ejaculatory dysfunction.


Assuntos
Neuropeptídeos , Ocitocina , Ratos , Masculino , Feminino , Animais , Peptídeo Liberador de Gastrina/fisiologia , Ocitocina/fisiologia , Medula Espinal , Ereção Peniana/fisiologia , Neuropeptídeos/fisiologia , Mamíferos
19.
J Neuroendocrinol ; 35(6): e13303, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37316906

RESUMO

In the present experiments, we tested the conclusion from previous electrophysiological experiments that gavage of sweet food and systemically applied insulin both stimulate oxytocin secretion. To do so, we measured oxytocin secretion from urethane-anaesthetised male rats, and demonstrated a significant increase in secretion in response to gavage of sweetened condensed milk but not isocaloric cream, and a significant increase in response to intravenous injection of insulin. We compared the measurements made in response to sweetened condensed milk with the predictions from a computational model, which we used to predict plasma concentrations of oxytocin from the published electrophysiological responses of oxytocin cells. The prediction from the computational model was very closely aligned to the levels of oxytocin measured in rats in response to gavage.


Assuntos
Insulinas , Ocitocina , Ratos , Masculino , Animais , Ocitocina/fisiologia , Núcleo Supraóptico/fisiologia , Uretana , Simulação por Computador
20.
Nat Rev Neurosci ; 24(6): 332, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37130967
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...