Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 650(Pt 1): 709-712, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30212701

RESUMO

Due to the fast growth of the electronic industry, a large quantity of electronic waste (e-waste) is generated worldwide and then often inappropriately dismantled and disposed of. In a pilot study, the occurrence of organophosphorus flame retardants and plasticizers (PFRs) was investigated for the first time in several wild insect species collected from a former e-waste recycling site in the Guangdong province, South China. TEHP was the most abundant PFR (average concentration of 5.8 ng/g ww), followed by TPHP (2.5 ng/g ww), TCIPP (2.2 ng/g ww), TCEP (0.8 ng/g ww), EHDPHP and TCP (both 0.1 ng/g ww). Dragonfly nymphs were the most contaminated insects, with total PFR concentrations of 68 ng/g ww, followed by moth adults (26 ng/g ww) and terrestrial stinkbug (17 ng/g ww). The different contamination patterns observed in the analyzed insects could be explained by their different habitats and feeding habits. This study shows that e-waste recycling areas can be an important local source of contamination with PFRs, mainly caused by inadequate recycling activities.


Assuntos
Resíduo Eletrônico/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Insetos/química , Compostos Organofosforados/análise , Plastificantes/análise , Reciclagem , Animais , China , Ecossistema , Poluentes Ambientais/análise , Insetos/classificação , Odonatos/química , Odonatos/classificação , Projetos Piloto
2.
Biointerphases ; 13(3): 03B406, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402092

RESUMO

The iridescent wings of the Chalcopterix rutilans damselfly (Rambur) (Odonata, Polythoridae) are investigated with focused ion beam/scanning electron microscopy, transmission electron microscopy, and time-of-flight secondary ion mass spectrometry. The electron microscopy images reveal a natural photonic crystal as the source of the varying colors. The photonic crystal has a consistent number and thickness (∼195 nm) of the repeat units on the ventral side of the wing, which is consistent with the red color visible from the bottom side of the wing in all regions. The dorsal side of the wing shows strong color variations ranging from red to blue depending on the region. In the electron microscopy images, the dorsal side of the wing exhibits varied number and thicknesses of the repeat units. The repeat unit spacings for the red, yellow/green, and blue regions are approximately 195, 180, and 145 nm, respectively. Three-dimensional analysis of the natural photonic crystals by time-of-flight secondary ion mass spectrometry reveals that changes in the relative levels of Na, K, and eumelanin are responsible for the varying dielectric constant needed to generate the photonic crystal. The photonic crystal also appears to be assembled with a chemical tricomponent layer structure due to the enhancement of the CH6N3+ species at every other interface between the high/low dielectric constant layers.


Assuntos
Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Odonatos/química , Odonatos/ultraestrutura , Espectrometria de Massa de Íon Secundário , Asas de Animais/química , Asas de Animais/ultraestrutura , Animais , Iridescência , Melaninas/análise , Potássio/análise , Sódio/análise
3.
Acta Biomater ; 59: 148-157, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28688988

RESUMO

The wings of insects such as cicadas and dragonflies have been found to possess nanostructure arrays that are assembled from fatty acids. These arrays can physically interact with the bacterial cell membranes, leading to the death of the cell. Such mechanobactericidal surfaces are of significant interest, as they can kill bacteria without the need for antibacterial chemicals. Here, we report on the bactericidal effect of two of the main lipid components of the insect wing epicuticle, palmitic (C16) and stearic (C18) fatty acids. Films of these fatty acids were re-crystallised on the surface of highly ordered pyrolytic graphite. It appeared that the presence of two additional CH2 groups in the alkyl chain resulted in the formation of different surface structures. Scanning electron microscopy and atomic force microscopy showed that the palmitic acid microcrystallites were more asymmetric than those of the stearic acid, where the palmitic acid microcrystallites were observed to be an angular abutment in the scanning electron micrographs. The principal differences between the two types of long-chain saturated fatty acid crystallites were the larger density of peaks in the upper contact plane of the palmitic acid crystallites, as well as their greater proportion of asymmetrical shapes, in comparison to that of the stearic acid film. These two parameters might contribute to higher bactericidal activity on surfaces derived from palmitic acid. Both the palmitic and stearic acid crystallite surfaces displayed activity against Gram-negative, rod-shaped Pseudomonas aeruginosa and Gram-positive, spherical Staphylococcus aureus cells. These microcrystallite interfaces might be a useful tool in the fabrication of effective bactericidal nanocoatings. STATEMENT OF SIGNIFICANCE: Nanostructured cicada and dragonfly wing surfaces have been discovered to be able physically kill bacterial cells. Here, we report on the successful fabrication of bactericidal three-dimensional structures of two main lipid components of the epicuticle of insect wings, palmitic (C16) and stearic (C18) acids. After crystallisation onto highly ordered pyrolytic graphite, both the palmitic and stearic acid films displayed bactericidal activity against both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus cells. The simplicity of the production of these microcrystallite interfaces suggests that a fabrication technique, based on solution deposition, could be an effective technique for the application of bactericidal nanocoatings.


Assuntos
Antibacterianos , Grafite , Ácido Palmítico , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Ácidos Esteáricos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Grafite/química , Grafite/farmacologia , Hemípteros/química , Odonatos/química , Ácido Palmítico/farmacologia , Ácidos Esteáricos/farmacologia , Propriedades de Superfície
4.
Environ Toxicol Chem ; 36(10): 2833-2837, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28493488

RESUMO

Methylmercury (MeHg) is an aquatic contaminant that can be transferred to terrestrial predators by emergent aquatic insects such as odonates (damselflies and dragonflies). We assessed the effects of month and pond permanence on odonate-mediated MeHg flux (calculated as emergent odonate biomass × MeHg concentration) in 10 experimental ponds and the potential risk to nestling red-winged blackbirds (Agelaius phoeniceus) posed by consuming MeHg-contaminated odonates. Emergent odonates were collected weekly from permanent ponds with bluegill (Lepomis macrochirus; n = 5) and semipermanent ponds without fish (n = 5) over an 8-mo period (January-August 2015). The MeHg flux from damselflies, aeshnid dragonflies, and libellulid dragonflies began in March and peaked in April, May, and June, respectively, and then declined throughout the rest of the summer. Odonate-mediated MeHg flux from semipermanent ponds without fish was greater than that from permanent ponds with fish. Nesting of red-winged blackbirds overlapped with peak odonate emergence and odonate-mediated MeHg flux. Because their diet can be dominated by damselflies and dragonflies, we tested the hypothesis that MeHg-contaminated odonates may pose a health risk to nestling red-winged blackbirds. Concentrations of MeHg in odonates exceeded wildlife values (the minimum odonate MeHg concentrations causing physiologically significant doses in consumers) for nestlings, suggesting that MeHg-contaminated odonates can pose a health risk to nestling red-winged blackbirds. Environ Toxicol Chem 2017;36:2833-2837. © 2017 SETAC.


Assuntos
Compostos de Metilmercúrio/metabolismo , Odonatos/metabolismo , Lagoas/química , Animais , Biomassa , Dieta , Compostos de Metilmercúrio/química , Odonatos/química , Passeriformes/metabolismo , Perciformes/metabolismo , Risco , Estações do Ano , Temperatura
5.
Chemosphere ; 175: 153-160, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28211329

RESUMO

Perfluorinated substances are global and ubiquitous pollutants. However, very little is known about these substances in invertebrates, and even less in terrestrial invertebrates in particular. We analysed adult male dragonflies from six sites in South Africa for perfluoroalkyl substances (PFASs), including perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluro-n-undecanoic acid (PFUnA), perfluoro-n-dodecanoic acid (PFDoA), perfluorohexanoic acid (PFHxA), and perfluorohexane sulfonic acid (PFHxS). PFOS was detected in all individuals, with less quantifiable occurrences of the other substances. The dragonflies from the three northern sites located in farming areas had significantly lower ΣPFASs concentrations than the southern sites located closer to industrial areas (median ΣPFASs of 0.32 ng/g wm (wet mass) for North, and 9.3 ng/g wm for South). All substances except PFOS occurred at similar concentrations at all six sites when quantifiable, but PFOS dominated in the Southern sites. The highest median concentration was from Bloemhof Dam (ΣPFASs = 21 ng/g wm), which is known to be polluted by PFOS. Perfluorinated substances are not known to be manufactured in South Africa, therefore the residues detected are likely to have been derived from imported products. Odonata play a significant role in freshwater ecology. Any impacts on these aquatic and aerial predators are likely to have effects on aquatic and associated ecosystems. Further studies are required over a much larger geographic region and to investigate sources.


Assuntos
Fluorocarbonos/análise , Invertebrados/química , Odonatos/química , Animais , Ecossistema , Monitoramento Ambiental , Água Doce/química , Resíduos Industriais , Masculino , África do Sul , Poluentes da Água
6.
Sci Rep ; 6: 38051, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966520

RESUMO

In this study the damselfly Ischnura senegalensis (Rambur, 1842) was first found to produce strong photoluminescence (PL) emissions from various colored-body portions, such as the eighth abdominal segment of the tail. The colors of the colored-body portions can be enhanced or modified by the PL emissions for assistance in reducing intrasexual and male harassment, and improving mature mating and conspecific identity. Therefore, the PL emissions that contribute to the color modification and coloration are involved in the cuticle evolution of the damselflies. The micro-PL confocal images verify that the PL emissions can strongly influence the surface colors of the cuticle, and demonstrate why the damselfly Ischnura senegalensis is called a bluetail.


Assuntos
Luminescência , Odonatos/anatomia & histologia , Animais , Cor , Masculino , Microscopia Confocal , Odonatos/química , Odonatos/ultraestrutura
7.
Int J Biol Macromol ; 89: 54-61, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27109757

RESUMO

Chitin in the compound eyes of arthropods serves as a part of the visual system. The quality of chitin in such highly specialised body parts deserves more detailed examination. Chitin in the corneal (ommatidial) lenses of dragonfly (Sympetrum fonscolombii) compound eyes was isolated by using the classical chemical method. The chitin content of the corneal lenses was determined to be quite high (20.3±0.85%). The FT-IR analysis showed that corneal lens chitin was in the α-form as found in all arthropod species where mechanical strength is required. The surface morphology analysis by scanning electron microscopy revealed that the outer part of corneal lenses consisted of long chitin fibrils with regular arrays of papillary structures while the smoother inner part had concentric lamellated chitin formation with shorter chitin nanofibrils. Chitinase enzymatic digestion studies, elemental analysis results and the degree of acetylation value showed the purity of chitin samples from corneal lens. The maximum degradation temperature value of the corneal lens chitin was observed at 369.2°C. X-ray analysis revealed that corneal lens chitin has high crystallinity index; 96.4%. Identification of chitin found in ommaditia of insect compound eyes can provide insights into insect vision and chitin-based optical material design studies.


Assuntos
Quitina/análise , Olho Composto de Artrópodes/química , Córnea/química , Cristalino/química , Odonatos/química , Animais , Quitina/ultraestrutura , Quitinases/metabolismo , Olho Composto de Artrópodes/citologia , Olho Composto de Artrópodes/ultraestrutura , Córnea/ultraestrutura , Cristalização , Hidrólise , Cristalino/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
8.
Homeopathy ; 105(1): 96-101, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26828004

RESUMO

BACKGROUND: Homeopathy is a form of alternative medicine in which uses highly diluted preparations that are believed to cause healthy people to exhibit symptoms similar to those exhibited by patients. The aim of this study was to investigate the effects of dragonfly (Anax imperator, Anax i.) on learning and memory in naive mice using the Morris water maze (MWM) test; moreover, the effects of dragonfly on MK-801-induced cognitive dysfunction were evaluated. METHODS: Male balb-c mice were treated with dragonfly (30C and 200C) or MK-801 (0.2 mg/kg) alone or concurrently (n = 10). Dragonfly (D) and MK-801 were administered subchronically for 6 days intraperitoneally 60 min and 30 min, respectively, before the daily performance of the MWM test. RESULTS: This study revealed that in the familiarization session and first session of the MWM test, Anax i. D30 significantly decreased escape latency compared to the control group, although MK-801, D30 and D200 significantly increased escape latency at the end of five acquisition sessions. Anax i. combined with dizocilpine maleate (MK-801) also significantly decreased escape latency in the familiarization session and first session of the MWM test, although this combination increased escape latency compared to the MK-801 alone group at the end of the test. Time spent in escape platform's quadrant in the probe trial significantly decreased while mean distance to platform significantly increased in MK-801, D30 and D200 groups. In the MWM test, Anax i. combined with MK-801 significantly decreased speed of the animals compared to the MK-801 alone group. General cell morphology was disturbed in the MK-801 group while D30 and D200 seemed to improve cell damage in the MK-801 group. CONCLUSIONS: These results suggest that the homeopathic Anax i. can impair learning acquisition and reference memory, and it has beneficial effects on disturbed cell morphology.


Assuntos
Homeopatia/métodos , Materia Medica/uso terapêutico , Odonatos/química , Animais , Relação Dose-Resposta a Droga , Hormônios de Inseto/efeitos adversos , Hormônios de Inseto/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Oligopeptídeos/efeitos adversos , Oligopeptídeos/uso terapêutico , Ácido Pirrolidonocarboxílico/efeitos adversos , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/uso terapêutico
9.
J Insect Physiol ; 85: 1-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26598807

RESUMO

Flying insects can tolerate substantial wing wear before their ability to fly is entirely compromised. In order to keep flying with damaged wings, the entire flight apparatus needs to adjust its action to compensate for the reduced aerodynamic force and to balance the asymmetries in area and shape of the damaged wings. While several studies have shown that damaged wings change their flapping kinematics in response to partial loss of wing area, it is unclear how, in insects with four separate wings, the remaining three wings compensate for the loss of a fourth wing. We used high-speed video of flying blue-tailed damselflies (Ischnura elegans) to identify the wingbeat kinematics of the two wing pairs and compared it to the flapping kinematics after one of the hindwings was artificially removed. The insects remained capable of flying and precise maneuvering using only three wings. To compensate for the reduction in lift, they increased flapping frequency by 18±15.4% on average. To achieve steady straight flight, the remaining intact hindwing reduced its flapping amplitude while the forewings changed their stroke plane angle so that the forewing of the manipulated side flapped at a shallower stroke plane angle. In addition, the angular position of the stroke reversal points became asymmetrical. When the wingbeat amplitude and frequency of the three wings were used as input in a simple aerodynamic model, the estimation of total aerodynamic force was not significantly different (paired t-test, p=0.73) from the force produced by the four wings during normal flight. Thus, the removal of one wing resulted in adjustments of the motions of the remaining three wings, exemplifying the precision and plasticity of coordination between the operational wings. Such coordination is vital for precise maneuvering during normal flight but it also provides the means to maintain flight when some of the wings are severely damaged.


Assuntos
Odonatos/fisiologia , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Voo Animal , Masculino , Odonatos/química , Asas de Animais/química
10.
J Exp Biol ; 218(Pt 24): 3919-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26567349

RESUMO

Neurophysiological modifications associated to phenotypic plasticity in response to predators are largely unexplored, and there is a gap of knowledge on how the information encoded in predator cues is processed by prey sensory systems. To explore these issues, we exposed Rana dalmatina embryos to dragonfly chemical cues (kairomones) up to hatching. At different times after hatching (up to 40 days), we recorded morphology and anti-predator behaviour of tadpoles from control and kairomone-treated embryo groups as well as their neural olfactory responses, by recording the activity of their mitral neurons before and after exposure to a kairomone solution. Treated embryos hatched later and hatchlings were smaller than control siblings. In addition, the tadpoles from the treated group showed a stronger anti-predator response than controls at 10 days (but not at 30 days) post-hatching, though the intensity of the contextual response to the kairomone stimulus did not differ between the two groups. Baseline neuronal activity at 30 days post-hatching, as assessed by the frequency of spontaneous excitatory postsynaptic events and by the firing rate of mitral cells, was higher among tadpoles from the treated versus the control embryo groups. At the same time, neuronal activity showed a stronger increase among tadpoles from the treated versus the control group after a local kairomone perfusion. Hence, a different contextual plasticity between treatments at the neuronal level was not mirrored by the anti-predator behavioural response. In conclusion, our experiments demonstrate ontogenetic plasticity in tadpole neuronal activity after embryonic exposure to predator cues, corroborating the evidence that early-life experience contributes to shaping the phenotype at later life stages.


Assuntos
Medo/fisiologia , Odonatos/química , Comportamento Predatório , Ranidae/fisiologia , Animais , Comportamento Animal , Sinais (Psicologia) , Potenciais Pós-Sinápticos Excitadores , Larva/química , Larva/fisiologia , Estágios do Ciclo de Vida , Odorantes , Ranidae/embriologia , Ranidae/crescimento & desenvolvimento , Olfato
11.
Oecologia ; 179(3): 699-710, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26163350

RESUMO

Chemical cues that evoke anti-predator developmental changes have received considerable attention, but it is not known to what extent prey use information from the smell of predators and from cues released through digestion. We conducted an experiment to determine the importance of various types of cues for the adjustment of anti-predator defences. We exposed tadpoles (common frog, Rana temporaria) to water originating from predators (caged dragonfly larvae, Aeshna cyanea) that were fed different types and quantities of prey outside of tadpole-rearing containers. Variation among treatments in the magnitude of morphological and behavioural responses was highly consistent. Our results demonstrate that tadpoles can assess the threat posed by predators through digestion-released, prey-borne cues and continually released predator-borne cues. These cues may play an important role in the fine-tuning of anti-predator responses and significantly affect the outcome of interactions between predators and prey in aquatic ecosystems. There has been much confusion regards terminology used in the literature, and therefore we also propose a more precise and consistent binomial nomenclature based on the timing of chemical cue release (stress-, attack-, capture-, digestion- or continually released cues) and the origin of cues (prey-borne or predator-borne cues). We hope that this new nomenclature will improve comparisons among studies on this topic.


Assuntos
Sinais (Psicologia) , Cadeia Alimentar , Larva/fisiologia , Odonatos/química , Comportamento Predatório , Rana temporaria/fisiologia , Animais , Comportamento Animal , Digestão , Larva/química , Odorantes , Percepção , Olfato , Água
12.
Environ Toxicol Chem ; 33(9): 2047-54, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24890113

RESUMO

Dragonflies (Odonata: Anisoptera) are an important component of both aquatic and terrestrial food webs and are vectors for methylmercury (MeHg) biomagnification. Variations in mercury content with life stage and body regions may affect the relative transfer of mercury to aquatic or terrestrial food webs; however, there has been little research on this subject. Also, little is known about mercury bioaccumulation in different body regions of dragonflies. To address these knowledge gaps, dragonfly naiads, adults, and exuviae were collected at 2 lakes in Kejimkujik National Park, Nova Scotia, Canada, and mercury concentrations in different life stages and body regions were quantified. Mean whole body concentrations of MeHg were substantial in naiads (232 ± 112 ng g(-1) dry wt, n = 66), emerging adults (236 ± 50 ng g(-1) dry wt, n = 10), and mature adults (231 ± 74 ng g(-1) dry wt, n = 20). Mean MeHg concentrations in exuviae (5.6 ± 4.3 ng g(-1), n = 32) were 40-fold lower than in naiads and adults. Emerging adults had 2-fold to 2.5-fold higher Hg(II) concentrations than naiads, mature adults, and exuviae. In body regions of both naiads and adults, some abdomens contained significantly higher concentrations of Hg(II) than heads or thoraces, and this trend was consistent across families. Across families, Aeshnidae had significantly higher concentrations of MeHg and total Hg than Gomphidae and Libellulidae, but not higher than Cordulidae. The Hg(II) concentrations were lower in Aeshnidae and Libellulidae than in Gomphidae and Cordulidae. Shedding of exuviae presents a possible mechanism for mercury detoxification, but mercury concentrations and burdens in exuviae are low in comparison with naiads and adults. Dragonfly adults retain a high potential for transferring substantial amounts of MeHg to their predators.


Assuntos
Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Odonatos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Canadá , Cadeia Alimentar , Lagos/análise , Mercúrio/análise , Compostos de Metilmercúrio/análise , Odonatos/anatomia & histologia , Odonatos/química , Odonatos/crescimento & desenvolvimento , Poluentes Químicos da Água/análise
13.
J Insect Physiol ; 62: 26-31, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24486162

RESUMO

Dragonflies and damselflies are among the most ancient winged insects. Adults belonging to this order are visually oriented and are considered anosmic on the basis of neuroanatomical investigations. As a consequence, the chemical ecology of these predatory insects has long been neglected. Morphological and electrophysiological data demonstrated that dragonfly antennae possess olfactory sensilla. Additionally, a neuroanatomical study revealed the presence of spherical knots in the aglomerular antennal lobe that could allow for the perception of odour. However, the biological role of the antennal olfactory sensilla remains unknown, and no bioassay showing the use of olfaction in Odonata has been performed thus far. Here, we demonstrate through behavioural assays that adults of Ischnura elegans are attracted by olfactory cues emitted by prey; furthermore, using electrophysiological single-cell recordings, we prove that the antennal olfactory sensilla of I. elegans respond to prey odour. Our results clearly demonstrate the involvement of antennal olfactory sensilla in Odonata predation, thus showing, for the first time, the use of olfaction in Odonata biology. This finding indicates that the nervous system of Odonata is able to receive and process olfactory information, suggesting that the simple organisation of the antennal lobe does not prevent the use of olfaction in insects.


Assuntos
Odonatos/fisiologia , Animais , Comportamento Animal , Eletrofisiologia , Odonatos/química , Odorantes/análise , Sensilas/química , Sensilas/fisiologia , Olfato
14.
Langmuir ; 28(50): 17404-9, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23181510

RESUMO

Self-cleaning surfaces found in nature show great potential for application in many fields, ranging from industry to medicine. The ability for a surface to self-clean is intimately related to the wetting properties of the surface; for a surface to possess self-cleaning ability it must exhibit extremely high water contact angles and low water adhesion. While investigating the self-cleaning properties of damselfly wings, significant spatial variations in surface wettability were observed. Within an area of 100 µm × 100 µm of the wing surface the water contact angle was found to vary up to 17.8°, while remaining consistently superhydrophobic. The contributions of both surface chemistry and topography to the hydrophobicity of the wings were assessed in an effort to explain these variations. Synchrotron-sourced Fourier-transform infrared microspectroscopy revealed that some of the major components of the wing were aliphatic hydrocarbons and esters, which are attributable to epicuticular lipids. The wing topography, as determined by optical profilometry and atomic force microscopy (AFM), also showed only minor levels of heterogeneity arising from irregular ordering of surface nanostructures. The measured contact angle of a single droplet of water was also found to decrease over time as it evaporated, reaching a minimum of 107°. This is well below the threshold value for superhydrophobicity (i.e., 150°), demonstrating that when the surface is in contact with water for a prolonged period, the damselfly wings lose their superhydrophobicity and subsequently their ability to self-clean. This decrease in hydrophobicity over time can be attributed to the surface undergoing a transition from the Cassie-Baxter wettability state toward the Wenzel wettability state.


Assuntos
Odonatos/química , Água/química , Molhabilidade , Asas de Animais/química , Animais , Odonatos/ultraestrutura , Asas de Animais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...