Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 15: 2809-2828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368056

RESUMO

INTRODUCTION: Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). METHODS: Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. RESULTS: SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. DISCUSSION: SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Lipossomos/administração & dosagem , Interferência de RNA , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Técnicas de Transferência de Genes , Glioblastoma/genética , Glioblastoma/patologia , Ouro/química , Humanos , Lipossomos/química , Masculino , Nanopartículas Metálicas/química , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Ácidos Nucleicos/química , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/farmacocinética , Proteínas do Envelope Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Thromb Thrombolysis ; 32(1): 21-31, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21503856

RESUMO

We performed detailed pharmacokinetic and pharmacodynamic modeling of REG1, an anticoagulation system composed of the direct factor IXa (FIXa) inhibitor pegnivacogin (RB006) and its matched active control agent anivamersen (RB007), with a focus on level of target inhibition to translate phase 1 results to phase 2 dose selection. We modeled early-phase clinical data relating weight-adjusted pegnivacogin dose and plasma concentration to prolongation of the activated partial thromboplastin time (aPTT). Using an in vitro calibration curve, percent FIXa inhibition was determined and related to aPTT prolongation and pegnivacogin dose and concentration. Similar methods were applied to relate anivamersen dose and level of reversal of pegnivacogin anticoagulation. Combined early-phase data suggested that ≥0.75 mg/kg pegnivacogin was associated with >99% inhibition of FIX activity and prolongation of plasma aPTT values ≈2.5 times above baseline, leading to selection of a 1 mg/kg dose for a phase 2a elective percutaneous coronary intervention study to achieve a high intensity of anticoagulation and minimize intersubject variability. Phase 2 validated our predictions, demonstrating 1 mg/kg pegnivacogin yielded plasma concentrations ≈25 µg/ml and >99% inhibition of FIX activity. The relationship between the anivamersen to pegnivacogin dose ratio and degree of pegnivacogin reversal was also validated. Our approach decreased the need for extensive dose-response studies, reducing the duration, complexity and cost of clinical development. The 1 mg/kg pegnivacogin dose and a range of anivamersen dose ratios are being tested in the phase 2b RADAR study (NCT00932100).


Assuntos
Anticoagulantes/administração & dosagem , Anticoagulantes/farmacocinética , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/farmacocinética , Modelos Teóricos , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Argentina , Fator IX/antagonistas & inibidores , Fator IX/metabolismo , Feminino , Humanos , Masculino , Tempo de Tromboplastina Parcial , Fatores de Tempo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA