Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
J Biomed Sci ; 31(1): 62, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862973

RESUMO

BACKGROUND: Ovarian carcinoma (OC) is a fatal malignancy, with most patients experiencing recurrence and resistance to chemotherapy. In contrast to hematogenous metastasizing tumors, ovarian cancer cells disseminate within the peritoneal cavity, especially the omentum. Previously, we reported omental crown-like structure (CLS) number is associated with poor prognosis of advanced-stage OC. CLS that have pathologic features of a dead or dying adipocyte was surrounded by several macrophages is well known a histologic hallmark for inflammatory adipose tissue. In this study, we attempted to clarify the interaction between metastatic ovarian cancer cells and omental CLS, and to formulate a therapeutic strategy for advanced-stage ovarian cancer. METHODS: A three-cell (including OC cells, adipocytes and macrophages) coculture model was established to mimic the omental tumor microenvironment (TME) of ovarian cancer. Caspase-1 activity, ATP and free fatty acids (FFA) levels were detected by commercial kits. An adipocyte organoid model was established to assess macrophages migration and infiltration. In vitro and in vivo experiments were performed for functional assays and therapeutic effect evaluations. Clinical OC tissue samples were collected for immunochemistry stain and statistics analysis. RESULTS: In three-cell coculture model, OC cells-derived IL-6 and IL-8 could induce the occurrence of pyroptosis in omental adipocytes. The pyroptotic adipocytes release ATP to increase macrophage infiltration, release FFA into TME, uptake by OC cells to increase chemoresistance. From OC tumor samples study, we demonstrated patients with high gasdermin D (GSDMD) expression in omental adipocytes is highly correlated with chemoresistance and poor outcome in advanced-stage OC. In animal model, by pyroptosis inhibitor, DSF, effectively retarded tumor growth and prolonged mice survival. CONCLUSIONS: Omental adipocyte pyroptosis may contribute the chemoresistance in advanced stage OC. Omental adipocytes could release FFA and ATP through the GSDMD-mediate pyroptosis to induce chemoresistance and macrophages infiltration resulting the poor prognosis in advanced-stage OC. Inhibition of adipocyte pyroptosis may be a potential therapeutic modality in advanced-stage OC with omentum metastasis.


Assuntos
Adipócitos , Resistencia a Medicamentos Antineoplásicos , Omento , Neoplasias Ovarianas , Piroptose , Microambiente Tumoral , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Omento/metabolismo , Humanos , Adipócitos/metabolismo , Camundongos , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura
2.
Sci Adv ; 10(23): eadk3081, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848367

RESUMO

Clinical outcomes for total-pancreatectomy followed by intraportal islet autotransplantation (TP-IAT) to treat chronic pancreatitis (CP) are suboptimal due to pancreas inflammation, oxidative stress during islet isolation, and harsh engraftment conditions in the liver's vasculature. We describe a thermoresponsive, antioxidant macromolecule poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) to protect islet redox status and function and to enable extrahepatic omentum islet engraftment. PPCN solution transitions from a liquid to a hydrogel at body temperature. Islets entrapped in PPCN and exposed to oxidative stress remain functional and support long-term euglycemia, in contrast to islets entrapped in a plasma-thrombin biologic scaffold. In the nonhuman primate (NHP) omentum, PPCN is well-tolerated and mostly resorbed without fibrosis at 3 months after implantation. In NHPs, autologous omentum islet transplantation using PPCN restores normoglycemia with minimal exogenous insulin requirements for >100 days. This preclinical study supports TP-IAT with PPCN in patients with CP and highlights antioxidant properties as a mechanism for islet function preservation.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Omento , Estresse Oxidativo , Transplante das Ilhotas Pancreáticas/métodos , Omento/metabolismo , Animais , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ácido Cítrico/farmacologia , Humanos , Antioxidantes/farmacologia , Pancreatite Crônica/metabolismo , Pancreatite Crônica/cirurgia , Pancreatite Crônica/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Masculino , Transição de Fase
3.
Cancer Sci ; 114(5): 1929-1942, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36644823

RESUMO

Ovarian cancer (OC) is characterized by frequent widespread peritoneal metastasis. Cancer-associated fibroblasts (CAFs) represent a critical stromal component of metastatic niche and promote omentum metastasis in OC patients. However, the role of exosomes derived from omental CAFs in metastasis remains unclear. We isolated exosomes from primary omental normal fibroblasts (NFs) and CAFs from OC patients (NF-Exo and CAF-Exo, respectively) and assessed their effect on metastasis. In mice bearing orthotopic OC xenografts, CAF-Exo treatment led to more rapid intraperitoneal tumor dissemination and shorter animal survival. Similar results were observed in mice undergoing intraperitoneal injection of tumor cells. Among the miRNAs downregulated in CAF-Exo, miR-29c-3p in OC tissues was associated with metastasis and survival in patients. Moreover, increasing miR-29c-3p in CAF-Exo significantly weakened the metastasis-promoting effect of CAF-Exo. Based on RNA sequencing, expression assays, and luciferase assays, matrix metalloproteinase 2 (MMP2) was identified as a direct target of miR-29c-3p. These results verify the significant contribution of exosomes from omental CAFs to OC peritoneal metastasis, which could be partially due to the relief of MMP2 expression inhibition mediated by low exosomal miR-29c-3p.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , MicroRNAs , Neoplasias Ovarianas , Neoplasias Peritoneais , Feminino , Humanos , Animais , Camundongos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Exossomos/metabolismo , Neoplasias Peritoneais/patologia , Omento/metabolismo , Omento/patologia , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
4.
Biomaterials ; 294: 121996, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36689832

RESUMO

Reliable and predictive experimental models are urgently needed to study metastatic mechanisms of ovarian cancer cells in the omentum. Although models for ovarian cancer cell adhesion and invasion were previously investigated, the lack of certain omental cell types, which influence the metastatic behavior of cancer cells, limits the application of these tissue models. Here, we describe a 3D multi-cellular human omentum tissue model, which considers the spatial arrangement of five omental cell types. Reproducible tissue models were fabricated combining permeable cell culture inserts and bioprinting technology to mimic metastatic processes of immortalized and patient-derived ovarian cancer cells. The implementation of an endothelial barrier further allowed studying the interaction between cancer and endothelial cells during hematogenous dissemination and the impact of chemotherapeutic drugs. This proof-of-concept study may serve as a platform for patient-specific investigations in personalized oncology in the future.


Assuntos
Omento , Neoplasias Ovarianas , Humanos , Feminino , Omento/metabolismo , Omento/patologia , Células Endoteliais/metabolismo , Neoplasias Ovarianas/patologia , Células Cultivadas , Técnicas de Cultura de Células
5.
Tissue Eng Part C Methods ; 28(12): 672-682, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36326206

RESUMO

Recent advances in the field of tissue engineering and regenerative medicine have contributed to the repair of damaged tissues and organs. Renal dysfunctions such as chronic kidney disease (CKD) are considered intractable owing to its cellular heterogeneity. In addition, the absence of definitive treatment options other than dialysis or kidney transplantation in advanced CKD. In this study, we investigated therapeutic effects of a three-dimensional (3D) bio-printed omentum patch as treatment source. Because omentum contains a lot of biological sources for immune regulation and tissue regeneration, it has been used in clinic for >100 years. By using autologous tissue as a bio-ink, the patch could minimize the immune response. The mechanically micronized omentum without any additives became small enough to print, but the original components could be preserved. Then, the 3D printed omentum patch was transplanted under renal subcapsular layer in unilateral ureteral obstruction (UUO) rat model. After 14 days of patch transplantation, the kidneys were analyzed through bulk RNA sequencing and histopathological staining. From the results, decreased tubular injury was observed in the omentum patch group. In addition, the omentum patch significantly altered biological process of gene ontology such as fibrosis-related gene and growth factors. RNA sequencing confirmed the antifibrotic effect by inhibiting fibrosis-inducing mechanisms within PI3K-AKT and JAK-STAT pathways. In conclusion, the omentum patch showed the effect of antitubular injury and antifibrosis on UUO kidneys. In particular, the omentum patch is expected to protect the organ from further degeneration and loss of function by inhibiting the progression of fibrosis. The omentum patch can be a novel therapeutic option for renal dysfunction. Impact statement Many studies and clinical trials are being conducted to develop new treatments for kidney disease. However, there are no newly developed renal replacement therapies. In this study, we developed a new treatment that can ameliorate renal interstitial fibrosis using three-dimensional (3D) bio-printed autologous omentum patch. The 3D printer enables precise patch printing, and the bio-ink made of autologous tissue minimizes the immune response after transplantation. The whole kidneys were analyzed by RNA sequencing and histopathological staining 14 days after transplantation. From the results, the omentum patch had the effect of relieving tubular injury in the injured state. Also, the omentum patch significantly altered biological process of gene ontology. In particular, genes related to fibrosis were observed to be downregulated by the omentum patch. RNA sequencing confirmed that the antifibrotic effect was owing to inducing mechanisms of PI3K-AKT and JAK-STAT pathways. The findings reported in this study represent a significant advancement in the application of 3D bio-printer to damaged organ treatments, especially fibrosis-related diseases.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Ratos , Animais , Obstrução Ureteral/complicações , Obstrução Ureteral/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteínas Proto-Oncogênicas c-akt/uso terapêutico , Omento/metabolismo , Fibrose , Rim , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Modelos Animais de Doenças
6.
Cells ; 11(21)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359787

RESUMO

Epithelial ovarian cancer (EOC) patients frequently develop peritoneal metastasis, especially in the human omentum. However, the mechanism underlying this propensity remains unknown. A previous study found that human omental adipose-derived mesenchymal stem cells are potentially involved in ovarian cancer growth and metastasis, but the results were inconsistent and even contradictory. In addition, the underlying mechanisms of visceral adipose metastasis remain poorly understood. Here, our goal is to clarify the role and mechanism of human omental adipose-derived mesenchymal stem cells (HO-ADSCs) in EOC cancer growth and metastasis. We first found that human omental tissue conditioned medium (HO-CM) enhances EOC cell function. Subsequent coculture studies indicated that HO-ADSCs increase the growth, migratory and invasive capabilities of ovarian cancer cells. Then, we demonstrated that exosomes secreted by HO-ADSCs (HO-ADSC exosomes) enhanced ovarian cancer cell function, and further mechanistic studies showed that the FOXM1, Cyclin F, KIF20A, and MAPK signaling pathways were involved in this process. In addition, subcutaneous tumorigenesis and peritoneal metastatic xenograft experiments provided evidence that HO-ADSC exosomes promote ovarian cancer growth and metastasis in vivo. Finally, our clinical studies provided evidence that ascites from ovarian cancer patients enhance EOC cell line proliferation, migration, and invasion in vitro. The present study indicated that HO-ADSC exosomes are secreted into ascites and exert a tumor-promoting effect on EOC growth and metastasis, providing a new perspective and method to develop future novel therapeutic strategies for the treatment of ovarian cancer.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Neoplasias Ovarianas , Neoplasias Peritoneais , Humanos , Feminino , Carcinoma Epitelial do Ovário/patologia , Exossomos/metabolismo , Omento/metabolismo , Omento/patologia , Ascite/patologia , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias Ovarianas/patologia , Processos Neoplásicos
7.
Cell Rep ; 39(13): 111012, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35767962

RESUMO

Ovarian cancer (OC) is the most lethal gynecological malignancy, with aggressive metastatic disease responsible for the majority of OC-related deaths. In particular, OC tumors preferentially metastasize to and proliferate rapidly in the omentum. Here, we show that metastatic OC cells experience increased oxidative stress in the omental microenvironment. Metabolic reprogramming, including upregulation of the pentose phosphate pathway (PPP), a key cellular redox homeostasis mechanism, allows OC cells to compensate for this challenge. Inhibition of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, reduces tumor burden in pre-clinical models of OC, suggesting that this adaptive metabolic dependency is important for OC omental metastasis.


Assuntos
Glucosefosfato Desidrogenase , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Feminino , Glucosefosfato Desidrogenase/metabolismo , Humanos , Omento/metabolismo , Estresse Oxidativo , Via de Pentose Fosfato , Microambiente Tumoral
8.
Immunology ; 166(4): 458-474, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35437746

RESUMO

The relationship between macrophages of the peritoneal cavity and the adjacent omentum remains poorly understood. Here, we describe two populations of omental macrophages distinguished by CD102 expression and use an adoptive cell transfer approach to investigate whether these arise from peritoneal macrophages, and whether this depends upon inflammatory status, the origin of peritoneal macrophages and availability of the omental niches. We show that whereas established resident peritoneal macrophages largely fail to migrate to the omentum, monocyte-derived resident cells readily migrate and form a substantial component of omental CD102+ macrophages in the months following resolution of peritoneal inflammation. In contrast, both populations had the capacity to migrate to the omentum in the absence of endogenous peritoneal and omental macrophages. However, inflammatory macrophages expanded more effectively and more efficiently repopulated both CD102+ and CD102- omental populations, whereas established resident macrophages partially reconstituted the omental niche via recruitment of monocytes. Hence, cell origin determines the migration of peritoneal macrophages to the omentum and predisposes established resident macrophages to drive infiltration of monocyte-derived cells.


Assuntos
Macrófagos Peritoneais , Omento , Macrófagos , Omento/metabolismo , Cavidade Peritoneal
9.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008946

RESUMO

Obesity is associated with extensive expansion and remodeling of the adipose tissue architecture, including its microenvironment and extracellular matrix (ECM). Although obesity has been reported to induce adipose tissue fibrosis, the composition of the ECM under healthy physiological conditions has remained underexplored and debated. Here, we used a combination of three established techniques (picrosirius red staining, a colorimetric hydroxyproline assay, and sensitive gene expression measurements) to evaluate the status of the ECM in metabolically healthy lean (MHL) and metabolically unhealthy obese (MUO) subjects. We investigated ECM deposition in the two major human adipose tissues, namely the omental and subcutaneous depots. Biopsies were obtained from the same anatomic region of respective individuals. We found robust ECM deposition in MHL subjects, which correlated with high expression of collagens and enzymes involved in ECM remodeling. In contrast, MUO individuals showed lower expression of ECM components but elevated levels of ECM cross-linking and adhesion proteins, e.g., lysyl oxidase and thrombospondin. Our data suggests that subcutaneous fat is more prone to express proteins involved in ECM remodeling than omental adipose tissues. We conclude that a more dynamic ability to deposit and remodel ECM may be a key signature of healthy adipose tissue, and that subcutaneous fat may adapt more readily to changing metabolic conditions than omental fat.


Assuntos
Tecido Adiposo/metabolismo , Matriz Extracelular/metabolismo , Expressão Gênica , Omento/metabolismo , Gordura Subcutânea/metabolismo , Adulto , Biomarcadores , Colágeno/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , RNA Mensageiro/genética , Sensibilidade e Especificidade
10.
Circ Res ; 130(3): 366-383, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986653

RESUMO

BACKGROUND: The chromatin-remodeling enzyme BRG1 (brahma-related gene 1) regulates gene expression in a variety of rapidly differentiating cells during embryonic development. However, the critical genes that BRG1 regulates during lymphatic vascular development are unknown. METHODS: We used genetic and imaging techniques to define the role of BRG1 in murine embryonic lymphatic development, although this approach inadvertently expanded our study to multiple interacting cell types. RESULTS: We found that omental macrophages fine-tune an unexpected developmental process by which erythrocytes escaping from naturally discontinuous omental blood vessels are collected by nearby lymphatic vessels. Our data indicate that circulating fibrin(ogen) leaking from gaps in omental blood vessels can trigger inflammasome-mediated IL-1ß (interleukin-1ß) production and secretion from nearby macrophages. IL-1ß destabilizes adherens junctions in omental blood and lymphatic vessels, contributing to both extravasation of erythrocytes and their uptake by lymphatics. BRG1 regulates IL-1ß production in omental macrophages by transcriptionally suppressing the inflammasome trigger RIPK3 (receptor interacting protein kinase 3). CONCLUSIONS: Genetic deletion of Brg1 in embryonic macrophages leads to excessive IL-1ß production, erythrocyte leakage from blood vessels, and blood-filled lymphatics in the developing omentum. Altogether, these results highlight a novel context for epigenetically regulated crosstalk between macrophages, blood vessels, and lymphatics.


Assuntos
Vasos Sanguíneos/metabolismo , DNA Helicases/metabolismo , Interleucina-1beta/metabolismo , Vasos Linfáticos/metabolismo , Proteínas Nucleares/metabolismo , Omento/metabolismo , Fatores de Transcrição/metabolismo , Junções Aderentes/metabolismo , Animais , Vasos Sanguíneos/embriologia , DNA Helicases/genética , Eritrócitos/metabolismo , Inflamassomos/metabolismo , Vasos Linfáticos/embriologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Omento/irrigação sanguínea , Omento/embriologia , Fatores de Transcrição/genética
11.
J Clin Endocrinol Metab ; 107(3): 755-775, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34669916

RESUMO

CONTEXT: Adipose tissue distribution is a key factor influencing metabolic health and risk in obesity-associated comorbidities. OBJECTIVE: Here we aim to compare the proteomic profiles of mature adipocytes from different depots. METHODS: Abdominal subcutaneous (SA) and omental visceral adipocytes (VA) were isolated from paired adipose tissue biopsies obtained during bariatric surgery on 19 severely obese women (body mass index > 30 kg/m2) and analyzed using state-of-the-art mass spectrometry. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed to investigate proteome signature properties and to examine a possible association of the protein expression with the clinical data. RESULTS: We identified 3686 protein groups and found 1140 differentially expressed proteins (adj. P value < 0.05), of which 576 proteins were upregulated in SA and 564 in VA samples. We provide a global protein profile of abdominal SA and omental VA, present the most differentially expressed pathways and processes distinguishing SA from VA, and correlate them with clinical and body composition data. We show that SA are significantly more active in processes linked to vesicular transport and secretion, and to increased lipid metabolism activity. Conversely, the expression of proteins involved in the mitochondrial energy metabolism and translational or biosynthetic activity is higher in VA. CONCLUSION: Our analysis represents a valuable resource of protein expression profiles in abdominal SA and omental VA, highlighting key differences in their role in obesity.


Assuntos
Adipócitos/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade Mórbida/metabolismo , Gordura Subcutânea Abdominal/metabolismo , Adulto , Cirurgia Bariátrica , Feminino , Redes Reguladoras de Genes , Humanos , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/patologia , Pessoa de Meia-Idade , Obesidade Mórbida/patologia , Obesidade Mórbida/cirurgia , Omento/citologia , Omento/metabolismo , Omento/patologia , Omento/cirurgia , Proteômica , Gordura Subcutânea Abdominal/citologia , Gordura Subcutânea Abdominal/patologia
12.
Int J Cancer ; 149(11): 1961-1972, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469585

RESUMO

Adipocyte-rich omentum offers "good soil" for disseminating ovarian cancer (OvCa), contributing to therapeutic difficulty. However, little is understood about the association between adipocytes and tumor growth at peritoneal dissemination site. Herein, we report the induction of adipocyte dedifferentiation by OvCa cells and pro-tumorigenic effects of resulted adipocyte-derived fibroblasts. We confirmed that malignant ascites promoted the dedifferentiation of the primary human adipocytes obtained from surgical omental specimen into omental adipocyte-derived fibroblast (O-ADF) that possess both mesenchymal stem cell and myofibroblast-like features. This promotion of dedifferentiation by malignant ascites was blocked by addition of Wnt signaling inhibitor. The effects of dedifferentiated adipocytes in proliferation and migration of OvCa cells were analyzed with in vitro coculturing experimental models and in vivo mice model, and we demonstrated that OvCa cell lines showed enhanced proliferative characteristics, as well as increased migratory abilities upon coculturing with O-ADF. Additionally, exogenous transforming growth factor-ß1 augmented desmoplastic morphological change of O-ADF, leading to higher proliferative ability. Our results suggest that OvCa cells promote dedifferentiation of peritoneal adipocytes by activating Wnt/ß-catenin signaling, and generated O-ADFs exhibit pro-tumoral hallmarks.


Assuntos
Adipócitos/patologia , Fibroblastos Associados a Câncer/patologia , Omento/patologia , Neoplasias Ovarianas/patologia , Microambiente Tumoral , Células 3T3-L1 , Actinas/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Ascite/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Desdiferenciação Celular/efeitos dos fármacos , Movimento Celular , Proliferação de Células , Feminino , Humanos , Imidas/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Omento/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/secundário , Quinolinas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A/metabolismo
13.
Obesity (Silver Spring) ; 29(6): 976-984, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33943025

RESUMO

OBJECTIVE: Morphological alterations including adipocyte hypertrophy and fibrosis deposition are important surrogate markers of visceral adipose tissue function, but the relationships between these morphological changes and type 2 diabetes mellitus (T2DM) and impaired insulin sensitivity are poorly defined. METHODS: Omental adipose tissue was obtained from 66 individuals with obesity but without T2DM (OB group), 93 individuals with both obesity and T2DM (T2DM group), and 15 individuals with normal BMI and normal glucose tolerance (NGT group). Adipocyte diameter and volume were measured through pathological section analysis. Pericellular and perilobular fibrosis was determined through picrosirius red staining and immunochemistry, while fibrosis-related genes were tested through gene expression and hydroxyproline content. RESULTS: Compared with the NGT and OB groups, individuals from the T2DM group displayed increased adipocyte diameter and volume levels. Increased adipocyte size (diameter and volume) was positively associated with hyperglycemia and insulin resistance and inversely correlated with insulin sensitivity (using the Matsuda whole-body insulin sensitivity index assessment of insulin sensitivity) and ß-cell function (disposition index 30 and disposition index 120). The fibrosis levels of the OB group were the highest out of the three groups, whereas the fibrosis levels of T2DM individuals were lower than the OB group but higher than the NGT group. Although fibrosis was negatively correlated with T2DM, fibrosis deposition was not remarkably associated with impaired systemic insulin sensitivity and glucose metabolism. CONCLUSIONS: Compared with fibrosis deposition, adipocyte hypertrophy is more closely associated with T2DM and impaired systemic insulin sensitivity.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Gordura Intra-Abdominal/patologia , Obesidade/epidemiologia , Omento/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Adulto , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Fibrose/complicações , Fibrose/epidemiologia , Fibrose/metabolismo , Humanos , Hipertrofia/complicações , Hipertrofia/epidemiologia , Hipertrofia/metabolismo , Resistência à Insulina/fisiologia , Gordura Intra-Abdominal/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Omento/patologia
14.
FASEB J ; 35(5): e21534, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817830

RESUMO

The adipocyte precursors (APs) located in white adipose tissue (WAT) are functionally significant in adipose plasticity and browning. Modifying adipogenesis or WAT browning targeted on APs is a promising mechanism for anti-obesity drug. We herein explored the in vitro actions and mechanisms of glucose-dependent insulinotropic polypeptide (GIP), a gut-derived peptide, in human adipose-derived mesenchymal stem cells (hADSCs) isolated from omentum. The hADSCs were cotreated with 100 nM GIP with or without equimolar concentration of GIP3-42 (a GIP receptor antagonist), and subsequently examined in vitro. CCK-8, EdU incorporation, and flow cytometry assays were used to assess cellular proliferation. Annexin V FTIC/PI double stain, TUNEL staining, and Western blot were applied for apoptosis evaluation. Adipogenesis was reflected by Western blot, real-time PCR, Oil Red O staining, mitochondrial staining, and mitochondrial DNA analysis. Results showed that GIP promoted proliferation and inhibited apoptosis of hADSCs via pleiotropic effects. Besides, GIP facilitated de novo beige adipogenesis, by accelerating mitotic clonal expansion (MCE), upregulating core adipogenic regulators (C/EBPα and PPARγ), augmenting beige-related genes (UCP1, PGC1α, and PRDM16), increasing mitochondrial content and improving beige adipocyte functionalities. Above all, our study expands knowledge on the mechanisms of GIP modifying adipogenesis especially in inducing beige adipogenesis, and thus provides a theoretical support for clinical usage of GIP on obesity treatment.


Assuntos
Adipócitos Bege/citologia , Adipócitos/citologia , Adipogenia , Polipeptídeo Inibidor Gástrico/farmacologia , Fármacos Gastrointestinais/farmacologia , Células-Tronco Mesenquimais/citologia , Omento/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Omento/efeitos dos fármacos , Omento/metabolismo , Transdução de Sinais
15.
BMC Cancer ; 21(1): 461, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902518

RESUMO

BACKGROUND: Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC) is an innovative treatment against peritoneal carcinomatosis. Doxorubicin is a common intra-venous chemotherapy used for peritoneal carcinomatosis and for PIPAC. This study evaluated the impact of increased PIPAC intraperitoneal pressure on the distribution and cell penetration of doxorubicin in a sheep model. METHODS: Doxorubicin was aerosolized using PIPAC into the peritoneal cavity of 6 ewes (pre-alpes breed): N = 3 with 12 mmHg intraperitoneal pressure ("group 12") and N = 3 with 20 mmHg ("group 20"). Samples from peritoneum (N = 6), ovarian (N = 1), omentum (N = 1) and caecum (N = 1) were collected for each ewe. The number of doxorubicin positive cells was determined using the ratio between doxorubicine fluorescence-positive cell nuclei (DOXO+) over total number of DAPI positive cell nuclei (DAPI+). Penetration depth (µm) was defined as the distance between the luminal surface and the location of the deepest DOXO+ nuclei over the total number of cell nuclei that were stained with DAPI. Penetration depth (µm) was defined as the distance between the luminal surface and the location of the deepest DOXO+ nuclei. RESULTS: DOXO+ nuclei were identified in 87% of samples. All omental samples, directly localized in front of the nebulizer head, had 100% DOXO+ nuclei whereas very few nuclei were DOXO+ for caecum. Distribution patterns were not different between the two groups but penetration depth in ovary and caecum samples was significantly deeper in group 20. CONCLUSIONS: This study showed that applying a higher intra-peritoneal pressure during PIPAC treatment leads to a deeper penetration of doxorubicin in ovarian and caecum but does not affect distribution patterns.


Assuntos
Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Peritoneais/metabolismo , Aerossóis , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/análise , Ceco/química , Ceco/metabolismo , Núcleo Celular/química , Doxorrubicina/administração & dosagem , Doxorrubicina/análise , Feminino , Omento/química , Omento/metabolismo , Ovário/química , Ovário/metabolismo , Neoplasias Peritoneais/tratamento farmacológico , Peritônio/química , Peritônio/metabolismo , Pressão , Ovinos , Distribuição Tecidual
16.
Cell Rep ; 31(13): 107818, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32610121

RESUMO

Obesity is characterized by adipose tissue inflammation. Because proteoglycans regulate inflammation, here we investigate their role in adipose tissue inflammation in obesity. We find that adipose tissue versican and biglycan increase in obesity. Versican is produced mainly by adipocytes and biglycan by adipose tissue macrophages. Both proteoglycans are also present in adipose tissue from obese human subjects undergoing gastric bypass surgery. Deletion of adipocyte-specific versican or macrophage-specific biglycan in mice reduces macrophage accumulation and chemokine and cytokine expression, although only adipocyte-specific versican deletion leads to sustained improvement in glucose tolerance. Macrophage-derived biglycan activates inflammatory genes in adipocytes. Versican expression increases in cultured adipocytes exposed to excess glucose, and adipocyte-conditioned medium stimulates inflammation in resident peritoneal macrophages, in part because of a versican breakdown product, versikine. These findings provide insights into the role of adipocyte- and macrophage-derived proteoglycans in adipose tissue inflammation in obesity.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/patologia , Biglicano/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Obesidade/patologia , Versicanas/metabolismo , Células 3T3-L1 , Animais , Medula Óssea/metabolismo , Dieta Hiperlipídica , Feminino , Teste de Tolerância a Glucose , Humanos , Hipertrofia , Resistência à Insulina , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Pessoa de Meia-Idade , Omento/metabolismo , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Gordura Subcutânea/patologia , Versicanas/genética
17.
Br J Cancer ; 123(3): 459-470, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32439934

RESUMO

BACKGROUND: Gastric cancer (GC) patients frequently develop peritoneal metastasis; however, the underlying mechanism remains unknown. We hypothesised that omental adipocytes (OmAd) trigger GC cells towards malignant activity to induce peritoneal metastasis. METHODS: We analysed interactions among human GC cells, endothelial cells and OmAd using a 3D co-culture system. We also employed a multipronged animal study, including subcutaneous and orthotopic tumours, and humanised omental adipose tissue models. Urinary levels of CXCL2 were analysed in human GC patients with and without peritoneal metastasis. RESULTS: Conditioned media derived from OmAd (OmAd-CM) promoted the proliferation, migration and capacity to induce angiogenesis of GC cells through AKT phosphorylation and VEGFA overexpression, whereas silencing CXCL2 in OmAd cancelled OmAd-induced effects. In an orthotopic tumour model using SCID mice, omentectomy suppressed GC growth and peritoneal dissemination, and reduced serum levels of CXCL2. OmAd promoted GC growth in a humanised omental adipose tissue model using NSG mice, but silencing CXCL2 in OmAd cancelled OmAd-induced tumour growth. Finally, urinary levels of CXCL2 were significantly higher in GC patients with peritoneal metastasis than in those without. CONCLUSION: Omental adipocytes trigger GC cells to an aggressive phenotype through CXCL2 secretion, which induces angiogenesis followed by cell growth and peritoneal metastasis.


Assuntos
Quimiocina CXCL2/urina , Técnicas de Cocultura/métodos , Omento/citologia , Neoplasias Peritoneais/secundário , Neoplasias Gástricas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Linhagem Celular Tumoral , Quimiocina CXCL2/genética , Meios de Cultivo Condicionados/química , Feminino , Humanos , Camundongos , Camundongos SCID , Omento/metabolismo , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulação para Cima
18.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32125283

RESUMO

Severe obesity (SO) affects about 6% of youth in the United States, augmenting the risks for cardiovascular disease and type 2 diabetes. Herein, we obtained paired omental adipose tissue (omVAT) and abdominal subcutaneous adipose tissue (SAT) biopsies from girls with SO undergoing sleeve gastrectomy (SG), to test whether differences in cellular and transcriptomic profiles between omVAT and SAT depots affect insulin sensitivity differently. Following weight loss, these analyses were repeated in a subgroup of subjects having a second SAT biopsy. We found that omVAT displayed smaller adipocytes compared with SAT, increased lipolysis through adipose triglyceride lipase phosphorylation, reduced inflammation, and increased expression of browning/beiging markers. Contrary to omVAT, SAT adipocyte diameter correlated with insulin resistance. Following SG, both weight and insulin sensitivity improved markedly in all subjects. SAT adipocytes' size became smaller, showing increased lipolysis through perilipin 1 phosphorylation, decreased inflammation, and increased expression in browning/beiging markers. In summary, in adolescent girls with SO, both omVAT and SAT depots showed distinct cellular and transcriptomic profiles. Following weight loss, the SAT depot changed its cellular morphology and transcriptomic profiles into more favorable ones. These changes in the SAT depot may play a fundamental role in the resolution of insulin resistance.


Assuntos
Lipólise/fisiologia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Omento/metabolismo , Gordura Subcutânea Abdominal/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Adolescente , Feminino , Gastrectomia , Humanos , Transcriptoma , Adulto Jovem
19.
J Exp Med ; 217(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31951251

RESUMO

Experimental and clinical evidence suggests that tumor-associated macrophages (TAMs) play important roles in cancer progression. Here, we have characterized the ontogeny and function of TAM subsets in a mouse model of metastatic ovarian cancer that is representative for visceral peritoneal metastasis. We show that the omentum is a critical premetastatic niche for development of invasive disease in this model and define a unique subset of CD163+ Tim4+ resident omental macrophages responsible for metastatic spread of ovarian cancer cells. Transcriptomic analysis showed that resident CD163+ Tim4+ omental macrophages were phenotypically distinct and maintained their resident identity during tumor growth. Selective depletion of CD163+ Tim4+ macrophages in omentum using genetic and pharmacological tools prevented tumor progression and metastatic spread of disease. These studies describe a specific role for tissue-resident macrophages in the invasive progression of metastatic ovarian cancer. The molecular pathways of cross-talk between tissue-resident macrophages and disseminated cancer cells may represent new targets to prevent metastasis and disease recurrence.


Assuntos
Macrófagos/metabolismo , Omento/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/secundário , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transcriptoma
20.
Nat Commun ; 10(1): 5070, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699980

RESUMO

ß-Adrenergic receptor (ß-AR) signaling is a pathway controlling adaptive thermogenesis in brown or beige adipocytes. Here we investigate the biological roles of the transcription factor Foxp1 in brown/beige adipocyte differentiation and thermogenesis. Adipose-specific deletion of Foxp1 leads to an increase of brown adipose activity and browning program of white adipose tissues. The Foxp1-deficient mice show an augmented energy expenditure and are protected from diet-induced obesity and insulin resistance. Consistently, overexpression of Foxp1 in adipocytes impairs adaptive thermogenesis and promotes diet-induced obesity. A robust change in abundance of the ß3-adrenergic receptor (ß3-AR) is observed in brown/beige adipocytes from both lines of mice. Molecularly, Foxp1 directly represses ß3-AR transcription and regulates its desensitization behavior. Taken together, our findings reveal Foxp1 as a master transcriptional repressor of brown/beige adipocyte differentiation and thermogenesis, and provide an important clue for its targeting and treatment of obesity.


Assuntos
Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipogenia/genética , Metabolismo Energético/genética , Fatores de Transcrição Forkhead/genética , Receptores Adrenérgicos beta 3/genética , Proteínas Repressoras/genética , Termogênese/genética , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina , Camundongos , Obesidade/genética , Obesidade/metabolismo , Omento/metabolismo , Feocromocitoma/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...