Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 125: 324-330, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30504073

RESUMO

Oncostatin M (OSM) and its receptor (OSMR) are members of the interleukin-6 family cytokines. Although OSM and OSMR expression was detected in human ovaries, their function and regulation during follicle development, ovulation and luteolysis have not been studied in any species. The aim of the present study was to investigate the levels of OSM and OSMR mRNA in bovine ovaries and the effect of OSM treatment on cultured granulosa cells. OSM mRNA was not detected in granulosa cells obtained from follicles around the time of follicular deviation and from pre-ovulatory follicles, whereas OSMR transcript levels were greater in granulosa cells of atretic subordinate follicles (P < 0.001). Abundance of OSMR mRNA increased in granulosa cells of preovulatory follicles, collected at 12 and 24 h after the ovulatory stimulus with gonadotropins (P < 0.001). In the luteal tissue, OSM mRNA abundance levels were higher at 24-48 h after PGF-induced luteolysis (P < 0.01) compared to 0 h, whereas OSMR mRNA was transiently increased at 2 h after PGF treatment (P < 0.05). In cultured granulosa cells, 10 ng/mL OSM in the presence of FSH increased BAX/BCL2 mRNA ratio (P < 0.05) compared to the control. Moreover, 100 ng/mL OSM in the presence of FSH increased OSMR (P < 0.05) and decreased XIAP mRNA (P < 0.05) levels, compared to the control group. These findings provide the first evidence that OSMR is regulated during follicle atresia, ovulation and luteolysis, and that OSM from other cells may mediate granulosa and luteal cell function, regulating the expression of genes involved in cell's viability.


Assuntos
Regulação da Expressão Gênica/fisiologia , Células da Granulosa/metabolismo , Células Lúteas/metabolismo , Oncostatina M/metabolismo , RNA Mensageiro/metabolismo , Receptores de Oncostatina M/metabolismo , Animais , Bovinos , Células Cultivadas , Feminino , Luteólise/fisiologia , Oncostatina M/genética , Ovulação/fisiologia , RNA Mensageiro/genética , Receptores de Oncostatina M/genética
2.
Brain Behav Immun ; 24(5): 695-704, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20083191

RESUMO

The innate immune reaction to tissue injury is a natural process, which can have detrimental effects in the absence of negative feedbacks by glucocorticoids (GCs). Although acute lipopolysaccharide (LPS) challenge is relatively harmless to the brain parenchyma of adult animals, the endotoxin is highly neurotoxic in animals that are treated with the GC receptor antagonist RU486. This study investigated the role of cytokines of the gp130-related family in these effects, because they are essential components of the inflammatory process that provide survival signals to neurons. Intracerebral LPS injection stimulated expression of several members of this family of cytokines, but oncostatin M (Osm) was the unique ligand to be completely inhibited by the RU486 treatment. OSM receptor (Osmr) is expressed mainly in astrocytes and endothelial cells following LPS administration and GCs are directly responsible for its transcriptional activation in the presence of the endotoxin. In a mouse model of demyelination, exogenous OSM significantly modulated the expression of genes involved in the mobilization of oligodendrocyte precursor cells (OPCs), differentiation of oligodendrocyte, and production of myelin. In conclusion, the activation of OSM signaling is a mechanism activated by TLR4 in the presence of negative feedback by GCs on the innate immune system of the brain. OSM absence is associated with detrimental effects of LPS, whereas exogenous OSM favors repair response to demyelinated regions.


Assuntos
Encéfalo/metabolismo , Doenças Desmielinizantes/metabolismo , Inflamação/metabolismo , Oligodendroglia/metabolismo , Oncostatina M/metabolismo , Receptores de Glucocorticoides/metabolismo , Análise de Variância , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Doenças Desmielinizantes/genética , Imuno-Histoquímica , Hibridização In Situ , Inflamação/genética , Lipopolissacarídeos , Masculino , Camundongos , Oncostatina M/genética , Receptores de Glucocorticoides/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA