Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 812
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39273486

RESUMO

Vanda R.Br. is an epiphytic orchid genus with significant horticultural and ornamental value. Previous molecular studies expanded Vanda including some members from five other genera. However, the interspecific relationships of this recently radiated genus have remained unclear based on several DNA markers until now. In this study, the complete plastome has been used to infer the phylogenetic relationships of Vanda s.l. The five newly obtained plastomes ranged from 146,340 bp to 149,273 bp in length, with a GC content ranging from 36.5% to 36.7%. The five plastomes contained 74 protein-coding genes (CDSs), 38 tRNAs, and 8 rRNAs, and their ndh genes underwent loss or pseudogenization. Comparative plastome analyses of 13 Vanda species revealed high conservation in terms of genome size, structure, and gene order, except for a large inversion from trnGGCC to ycf3 in V. coerulea. Moreover, six CDSs and five non-CDSs were selected as candidate DNA barcodes. Our phylogenetic analyses demonstrated that Vanda s.l. is a monophyletic group with high supporting values based on five different datasets (complete plastome with one IR, 68 CDSs, LSC, five hypervariable non-CDSs, and six hypervariable CDSs), while the phylogenetic relationships among species were fully resolved based on the complete plastome with one IR dataset. Our results confirmed that the complete plastome has a great power in resolving the phylogenetic relationships of recently radiated lineages.


Assuntos
Evolução Molecular , Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Genomas de Plastídeos , Composição de Bases , Código de Barras de DNA Taxonômico
2.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273609

RESUMO

Aluminum-activated malate transporter (ALMT) genes play an important role in aluminum ion (Al3+) tolerance, fruit acidity, and stomatal movement. Although decades of research have been carried out in many plants, there is little knowledge about the roles of ALMT in Orchidaceae. In this study, 34 ALMT genes were identified in the genomes of four orchid species. Specifically, ten ALMT genes were found in Dendrobium chrysotoxum and D. catenatum, and seven were found in Apostasia shenzhenica and Phalaenopsis equestris. These ALMT genes were further categorized into four clades (clades 1-4) based on phylogenetic relationships. Sequence alignment and conserved motif analysis revealed that most orchid ALMT proteins contain conserved regions (TM1, GABA binding motif, and WEP motif). We also discovered a unique motif (19) belonging to clade 1, which can serve as a specifically identified characteristic. Comparison with the gene structure of AtALMT genes (Arabidopsis thaliana) showed that the gene structure of ALMT was conserved across species, but the introns were longer in orchids. The promoters of orchid ALMT genes contain many light-responsive and hormone-responsive elements, suggesting that their expression may be regulated by light and phytohormones. Chromosomal localization and collinear analysis of D. chrysotoxum indicated that tandem duplication (TD) is the main reason for the difference in the number of ALMT genes in these orchids. D. catenatum was chosen for the RT-qPCR experiment, and the results showed that the DcaALMT gene expression pattern varied in different tissues. The expression of DcaALMT1-9 was significantly changed after ABA treatment. Combining the circadian CO2 uptake rate, titratable total acid, and RT-qPCR data analysis, most DcaALMT genes were highly expressed at night and around dawn. The result revealed that DcaALMT genes might be involved in photosynthate accumulation. The above study provides more comprehensive information for the ALMT gene family in Orchidaceae and a basis for subsequent functional analysis.


Assuntos
Alumínio , Dendrobium , Regulação da Expressão Gênica de Plantas , Orchidaceae , Filogenia , Proteínas de Plantas , Alumínio/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dendrobium/genética , Dendrobium/metabolismo , Família Multigênica , Regiões Promotoras Genéticas , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Malatos/metabolismo , Sequência de Aminoácidos
3.
Mol Biol Rep ; 51(1): 1000, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302551

RESUMO

BACKGROUND: Phalaenopsis bellina, an orchid native to Borneo, is renowned for its unique appearance. It releases distinct fragrances, which have been linked to the presence of terpenoids. However, the identification and study of sesquiterpene synthase in P. bellina remain limited. In this study, we examines the functional characterisation of terpene synthase (TPS) from P. bellina, known as PbTS, through recombinant protein expression and its manifestation in the flower. METHODS AND RESULTS: Gene annotation of PbTS revealed that the inferred peptide sequence of PbTS comprises 1,680 bp nucleotides encoding 559 amino acids with an estimated molecular mass of 65.2 kDa and a pI value of 5.4. A similarity search against GenBank showed that PbTS shares similarities with the previously published partial sequence of P. bellina (ABW98504.1) and Phalaenopsis equestris (XP_020597359.1 and ABW98503.1). Intriguingly, the phylogenetic analysis places the PbTS gene within the TPS-a group. In silico analysis of PbTS demonstrated stable interactions with farnesyl pyrophosphate (FPP), geranyl pyrophosphate (GPP), and geranylgeranyl pyrophosphate (GGPP). To verify this activity, an in vitro enzyme assay was performed on the PbTS recombinant protein, which successfully converted FPP, GPP, and GGPP into acyclic sesquiterpene ß-farnesene, yielding approximately 0.03 mg/L. Expressional analysis revealed that the PbTS transcript was highly expressed in P. bellina, but its level did not correlate with ß-farnesene levels across various flowering time points and stages. CONCLUSION: The insights gained from this study will enhance the understanding of terpenoid production in P. bellina and aid in the discovery of novel fragrance-related genes in other orchid species.


Assuntos
Alquil e Aril Transferases , Flores , Orchidaceae , Filogenia , Sesquiterpenos , Orchidaceae/genética , Orchidaceae/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sesquiterpenos/metabolismo , Flores/genética , Flores/enzimologia , Sequência de Aminoácidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Clonagem Molecular/métodos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Regulação da Expressão Gênica de Plantas
4.
PLoS One ; 19(9): e0291888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39283891

RESUMO

The yellow-flowered Spathoglottis aurea (tribe Collabieae; family Orchidaceae) is native to the mountainous areas of Peninsular Malaysia. The species is well known as an ornamental plant and for its role in artificial hybrid breeding. There is an interesting evolutionary relationship between S. aurea and the geographically isolated S. microchilina from Borneo that has encouraged further study of the S. aurea populations, but the genomic resource for S. aurea has not yet been reported. The present study reports the first work to characterize a chloroplast (cp) genome among the Spathoglottis genus. The complete cp genome of S. aurea was assembled from a sequence generated by the Illumina platform and analysed in comparison with other Collabieae species available in the GenBank database. The cp genome of S. aurea is 157,957 base pairs (bp) in length with guanine-cytosine (GC) content of 37.3%. The genome possessed a typical quadripartite cp genome structure with large single-copy (LSC) (86,888 bp), small single-copy (SSC) (18,125 bp) and inverted repeat (IR) (26,472 bp) sequences. A total of 134 genes were annotated, with 88 protein coding genes (PCGs), 38 transfer RNA (tRNA) genes and eight ribosomal RNA (rRNA) genes. Overall, 80 simple sequence repeats (SSR) or microsatellites were identified. Comparative analysis with other Collabieae species revealed high conservation in the cp genome arrangements with minimal difference in genome lengths. However, several mutational hotspots were also detected, with high potential to be developed as genetic markers for phylogenetic analysis. Characterization of the S. aurea cp genome revealed its conserved nature without gene loss or rearrangements when compared to other species of the Collabieae tribe. Phylogenetic analysis of Collabieae species also revealed that S. aurea has a distant evolutionary relationship to other members of the Collabieae species, despite the presence of problematic genera such as Phaius and Cephalantheropsis.


Assuntos
Genoma de Cloroplastos , Orchidaceae , Filogenia , Genoma de Cloroplastos/genética , Orchidaceae/genética , Orchidaceae/classificação , Repetições de Microssatélites/genética , Composição de Bases/genética
5.
An Acad Bras Cienc ; 96(suppl 1): e20240172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319837

RESUMO

Repetitive sequences can lead to variation in DNA quantity and composition among species. The Orchidaceae, the largest angiosperm family, is divided into five subfamilies, with Apostasioideae as the basal group and Orchidoideae and Epidendroideae showing high diversification rates. Despite their different evolutionary paths, some species in these groups have similar nuclear DNA content. This study focuses on one example to understand the dynamics of major repetitive DNAs in the nucleus. We used Next-Generation Sequencing (NGS) data from Apostasia wallichii (Apostasioideae) and Ludisia discolor (Orchidoideae) to identify and quantify the most abundant repeats. The repetitive fraction varied in abundance (27.5% in L. discolor and 60.6% in A. wallichii) and composition, with LTR retrotransposons of different lineages being the most abundant repeats in each species. Satellite DNAs showed varying organization and abundance. Despite the unbalanced ratio between single-copy and repetitive DNA sequences, the two species had the same genome size, possibly due to the elimination of non-essential genes. This phenomenon has been observed in other Apostasia and likely led to the proliferation of transposable elements in A. wallichii. Deep genome information in the future will aid in understanding the contraction/expansion of gene families and the evolution of sequences in these genomes.


Assuntos
Tamanho do Genoma , Genoma de Planta , Orchidaceae , Sequências Repetitivas de Ácido Nucleico , Orchidaceae/genética , Orchidaceae/classificação , Genoma de Planta/genética , Sequências Repetitivas de Ácido Nucleico/genética , Simulação por Computador , DNA de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala
6.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125719

RESUMO

Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, we assembled and annotated the mitochondrial genome of A. fujianica, which has a length of 573,612 bp and a GC content of 44.5%. We annotated a total of 44 genes, including 30 protein-coding genes, 12 tRNA genes, and two rRNA genes. We also performed relative synonymous codon usage (RSCU) analysis, repeat sequence analysis, intergenomic transfer (IGT) analysis, and Ka/Ks analysis for A. fujianica and conducted RNA editing site analysis on the mitochondrial genomes of eight orchid species. We found that most protein-coding genes are under purifying selection, but nad6 is under positive selection, with a Ka/Ks value of 1.35. During the IGT event in A. fujianica's mitogenome, the trnN-GUU, trnD-GUC, trnW-CCA, trnP-UGG, and psaJ genes were identified as having transferred from the plastid to the mitochondrion. Compared to other monocots, the family Orchidaceae appears to have lost the rpl10, rpl14, sdh3, and sdh4 genes. Additionally, to further elucidate the evolutionary relationships among monocots, we constructed a phylogenetic tree based on the complete mitogenomes of monocots. Our study results provide valuable data on the mitogenome of A. fujianica and lay the groundwork for future research on genetic variation, evolutionary relationships, and breeding of Orchidaceae.


Assuntos
Genoma Mitocondrial , Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Genoma Mitocondrial/genética , Evolução Molecular , RNA de Transferência/genética , Composição de Bases , Edição de RNA/genética , Uso do Códon
7.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39126069

RESUMO

Gastrochilus is an orchid genus containing about 70 species in tropical and subtropical Asia with high morphological diversity. The phylogenetic relationships among this genus have not been fully resolved, and the plastome evolution has not been investigated either. In this study, five plastomes of Gastrochilus were newly reported, and sixteen plastomes of Gastrochilus were used to conduct comparative and phylogenetic analyses. Our results showed that the Gastrochilus plastomes ranged from 146,183 to 148,666 bp, with a GC content of 36.7-36.9%. There were 120 genes annotated, consisting of 74 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. No contraction and expansion of IR borders, gene rearrangements, or inversions were detected. Additionally, the repeat sequences and codon usage bias of Gastrochilus plastomes were highly conserved. Twenty hypervariable regions were selected as potential DNA barcodes. The phylogenetic relationships within Gastrochilus were well resolved based on the whole plastome, especially among main clades. Furthermore, both molecular and morphological data strongly supported Haraella retrocalla as a member of Gastrochilus (G. retrocallus).


Assuntos
Código de Barras de DNA Taxonômico , Evolução Molecular , Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Código de Barras de DNA Taxonômico/métodos , Genomas de Plastídeos
8.
Genes (Basel) ; 15(8)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39202350

RESUMO

To explore the regulatory mechanism of endogenous hormones in the synthesis of anthocyanins in Anoectochilus roxburghii (Wall.) Lindl (A. roxburghii) under different light intensities, this study used metabolomics and transcriptomics techniques to identify the key genes and transcription factors involved in anthocyanin biosynthesis. We also analyzed the changes in and correlations between plant endogenous hormones and anthocyanin metabolites under different light intensities. The results indicate that light intensity significantly affects the levels of anthocyanin glycosides and endogenous hormones in leaves. A total of 38 anthocyanin-related differential metabolites were identified. Under 75% light transmittance (T3 treatment), the leaves exhibited the highest anthocyanin content and differentially expressed genes such as chalcone synthase (CHS), flavonol synthase (FLS), and flavonoid 3'-monooxygenase (F3'H) exhibited the highest expression levels. Additionally, 13 transcription factors were found to have regulatory relationships with 7 enzyme genes, with 11 possessing cis-elements responsive to plant hormones. The expression of six genes and two transcription factors was validated using qRT-PCR, with the results agreeing with those obtained using RNA sequencing. This study revealed that by modulating endogenous hormones and transcription factors, light intensity plays a pivotal role in regulating anthocyanin glycoside synthesis in A. roxburghii leaves. These findings provide insights into the molecular mechanisms underlying light-induced changes in leaf coloration and contribute to our knowledge of plant secondary metabolite regulation caused by environmental factors.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Luz , Metaboloma , Orchidaceae , Folhas de Planta , Proteínas de Plantas , Transcriptoma , Antocianinas/biossíntese , Antocianinas/genética , Antocianinas/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Orchidaceae/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaboloma/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Biomolecules ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39199351

RESUMO

Phalaenopsis orchids, with their unique appearance and extended flowering period, are among the most commercially valuable Orchidaceae worldwide. Particularly, the variegation in leaf color of Phalaenopsis significantly enhances the ornamental and economic value and knowledge of the molecular mechanism of leaf-color variegation in Phalaenopsis is lacking. In this study, an integrative analysis of the physiology, cytology, and transcriptome profiles was performed on Phalaenopsis Chia E Yenlin Variegata leaves between the green region (GR) and yellow region (YR) within the same leaf. The total chlorophyll and carotenoid contents in the YR exhibited a marked decrease of 72.18% and 90.21%, respectively, relative to the GR. Examination of the ultrastructure showed that the chloroplasts of the YR were fewer and smaller and exhibited indistinct stromal lamellae, ruptured thylakoids, and irregularly arranged plastoglobuli. The transcriptome sequencing between the GR and YR led to a total of 3793 differentially expressed genes, consisting of 1769 upregulated genes and 2024 downregulated genes. Among these, the chlorophyll-biosynthesis-related genes HEMA, CHLH, CRD, and CAO showed downregulation, while the chlorophyll-degradation-related gene SGR had an upregulated expression in the YR. Plant-hormone-related genes and transcription factors MYBs (37), NACs (21), ERFs (20), bHLH (13), and GLK (2), with a significant difference, were also analyzed. Furthermore, qRT-PCR experiments validated the above results. The present work establishes a genetic foundation for future studies of leaf-pigment mutations and may help to improve the economic and breeding values of Phalaenopsis.


Assuntos
Clorofila , Regulação da Expressão Gênica de Plantas , Orchidaceae , Folhas de Planta , Transcriptoma , Folhas de Planta/genética , Orchidaceae/genética , Transcriptoma/genética , Clorofila/metabolismo , Carotenoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Citologia
10.
Am J Bot ; 111(7): e16370, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38989916

RESUMO

PREMISE: Leafless, heterotrophic plants are prime examples of organismal modification, the genomic consequences of which have received considerable interest. In particular, plastid genomes (plastomes) are being sequenced at a high rate, allowing continual refinement of conceptual models of reductive evolution in heterotrophs. However, numerous sampling gaps exist, hindering the ability to conduct comprehensive phylogenomic analyses in these plants. METHODS: Using floral tissue from an herbarium specimen, we sequenced and analyzed the plastome of Degranvillea dermaptera, a rarely collected, leafless orchid species from South America about which little is known, including its phylogenetic affinities. RESULTS: The plastome is the most reduced of those sequenced among the orchid subfamily Orchidoideae. In Degranvillea, it has lost the majority of genes found in leafy autotrophic species, is structurally rearranged, and has similar gene content to the most reduced plastomes among the orchids. We found strong evidence for the placement of Degranvillea within the subtribe Spiranthinae using models that explicitly account for heterotachy, or lineage-specific evolutionary rate variation over time. We further found evidence of relaxed selection on several genes and of correlations among substitution rates and several other "traits" of the plastome among leafless members of orchid subfamily Orchidoideae. CONCLUSIONS: Our findings advance knowledge on the phylogenetic relationships and paths of plastid genome evolution among the orchids, which have experienced more independent transitions to heterotrophy than any other plant family. This study demonstrates the importance of herbarium collections in comparative genomics of poorly known species of conservation concern.


Assuntos
Evolução Molecular , Genomas de Plastídeos , Orchidaceae , Filogenia , Orchidaceae/genética
11.
Genes (Basel) ; 15(7)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062694

RESUMO

The GATA transcription factors play crucial roles in plant growth, development, and responses to environmental stress. Despite extensive studies of GATA genes in many plants, their specific functions and mechanisms in orchids remain unexplored. In our study, a total of 149 GATA genes were identified in the genomes of seven sequenced orchid species (20 PeqGATAs, 23 CgGATAs, 24 CeGATAs, 23 DcaGATAs, 20 DchGATAs, 27 DnoGATAs, and 12 GelGATAs), classified into four subfamilies. Subfamily I typically contains genes with two exons, while subfamily II contains genes with two or three exons. Most members of subfamilies III and IV have seven or eight exons, with longer introns compared to subfamilies I and II. In total, 24 pairs (CgGATAs-DchGATAs), 27 pairs (DchGATAs-DnoGATAs), and 14 pairs (DnoGATAs-GelGATAs) of collinear relationships were identified. Cis-acting elements in GATA promoters were mainly enriched in abscisic acid (ABA) response elements and methyl jasmonate (MeJA) elements. Expression patterns and RT-qPCR analysis revealed that GATAs are involved in the regulation of floral development in orchids. Furthermore, under high-temperature treatment, GL17420 showed an initial increase followed by a decrease, GL18180 and GL17341 exhibited a downregulation followed by upregulation and then a decrease, while GL30286 and GL20810 displayed an initial increase followed by slight inhibition and then another increase, indicating diverse regulatory mechanisms of different GATA genes under heat stress. This study explores the function of GATA genes in orchids, providing a theoretical basis and potential genetic resources for orchid breeding and stress resistance improvement.


Assuntos
Fatores de Transcrição GATA , Regulação da Expressão Gênica de Plantas , Orchidaceae , Proteínas de Plantas , Orchidaceae/genética , Orchidaceae/crescimento & desenvolvimento , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Proteínas de Plantas/genética , Família Multigênica , Genoma de Planta , Regiões Promotoras Genéticas , Filogenia , Estresse Fisiológico/genética
12.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062906

RESUMO

As an important genus in Orchidaceae, Cymbidium has rich ecological diversity and significant economic value. DNA binding with one zinc finger (Dof) proteins are pivotal plant-specific transcription factors that play crucial roles in the growth, development, and stress response of plants. Although the Dof genes have been identified and functionally analyzed in numerous plants, exploration in Orchidaceae remains limited. We conducted a thorough analysis of the Dof gene family in Cymbidium goeringii, C. ensifolium, and C. sinensis. In total, 91 Dof genes (27 CgDofs, 34 CeDofs, 30 CsDofs) were identified, and Dof genes were divided into five groups (I-V) based on phylogenetic analysis. All Dof proteins have motif 1 and motif 2 conserved domains and over half of the genes contained introns. Chromosomal localization and collinearity analysis of Dof genes revealed their evolutionary relationships and potential gene duplication events. Analysis of cis-elements in CgDofs, CeDofs, and CsDofs promoters showed that light-responsive cis-elements were the most common, followed by hormone-responsive elements, plant growth-related elements, and abiotic stress response elements. Dof proteins in three Cymbidium species primarily exhibit a random coil structure, while homology modeling exhibited significant similarity. In addition, RT-qPCR analysis showed that the expression levels of nine CgDofs changed greatly under heat stress. CgDof03, CgDof22, CgDof27, CgDof08, and CgDof23 showed varying degrees of upregulation. Most upregulated genes under heat stress belong to group I, indicating that the Dof genes in group I have great potential for high-temperature resistance. In conclusion, our study systematically demonstrated the molecular characteristics of Dof genes in different Cymbidium species, preliminarily revealed the patterns of heat stress, and provided a reference for further exploration of stress breeding in orchids.


Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Família Multigênica , Orchidaceae , Filogenia , Proteínas de Plantas , Orchidaceae/genética , Orchidaceae/classificação , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Dedos de Zinco/genética , Regiões Promotoras Genéticas
13.
Methods Mol Biol ; 2827: 267-278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985276

RESUMO

In ornamental plants, artificial polyploidization has enabled the creation of new cultivars. Due to their high commercial value in the international flower market and their ornamental characteristics, such as the shape, size, color, and durability of their flower, orchids have received great attention in studies of artificial polyploidization. Here we described the protocol used for polyploid induction in Oncidium crispum, an epiphyte species native of southeastern Brazil, of great ornamental interest and widely sold in flower shops. The species stands out for having inflorescence with large flowers, brown in color with yellow spots. In addition, O. crispum has great potential for use in genetic improvement programs since the species is widely used in interspecific crosses. Closed capsules containing mature O. crispum seeds were subjected to running sterilized water for 10 min and then to a 1.5% sodium hypochlorite solution for 10 min. Small portions of seeds were introduced into 50 mL of water-soluble fertilizer with macro- and micronutrients (B>M) plus 0.7% agar. Explants originating from seeds previously in vitro germinated were submitted to 0.05% and 0.1% of colchicine for 4 days and 8 days. Flow cytometry and chromosome counts confirmed that the protocol successfully produced synthetic polyploid plants.


Assuntos
Orchidaceae , Sementes , Tetraploidia , Orchidaceae/genética , Orchidaceae/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Cromossomos de Plantas/genética , Germinação , Colchicina/farmacologia
14.
Nat Commun ; 15(1): 6308, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060266

RESUMO

Pollinator-driven evolution of floral traits is thought to be a major driver of angiosperm speciation and diversification. Ophrys orchids mimic female insects to lure male pollinators into pseudocopulation. This strategy, called sexual deception, is species-specific, thereby providing strong premating reproductive isolation. Identifying the genomic architecture underlying pollinator adaptation and speciation may shed light on the mechanisms of angiosperm diversification. Here, we report the 5.2 Gb chromosome-scale genome sequence of Ophrys sphegodes. We find evidence for transposable element expansion that preceded the radiation of the O. sphegodes group, and for gene duplication having contributed to the evolution of chemical mimicry. We report a highly differentiated genomic candidate region for pollinator-mediated evolution on chromosome 2. The Ophrys genome will prove useful for investigations into the repeated evolution of sexual deception, pollinator adaptation and the genomic architectures that facilitate evolutionary radiations.


Assuntos
Orchidaceae , Polinização , Aranhas , Animais , Orchidaceae/genética , Orchidaceae/fisiologia , Polinização/genética , Aranhas/genética , Aranhas/fisiologia , Genoma de Planta , Filogenia , Flores/genética , Flores/fisiologia , Adaptação Fisiológica/genética , Elementos de DNA Transponíveis/genética , Masculino , Feminino , Evolução Molecular , Duplicação Gênica , Isolamento Reprodutivo , Evolução Biológica
15.
Plant Physiol Biochem ; 214: 108872, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964087

RESUMO

Bletilla striata, valued for its medicinal and ornamental properties, remains largely unexplored in terms of how light intensity affects its physiology, biochemistry, and polysaccharide formation. In this 5-month study, B. striata plants were exposed to three different light intensities: low light (LL) (5-20 µmol m-2·s-1), middle light (ML) (200 µmol m-2·s-1), and high light (HL) (400 µmol m-2·s-1). The comprehensive assessment included growth, photosynthetic apparatus, chlorophyll fluorescence electron transport, and analysis of differential metabolites based on the transcriptome and metabolome data. The results indicated that ML resulted in the highest plant height and total polysaccharide content, enhanced photosynthetic apparatus performance and light energy utilization, and stimulated carbon metabolism and carbohydrate accumulation. HL reduced Chl content and photosynthetic apparatus functionality, disrupted OEC activity and electron transfer, stimulated carbon metabolism and starch and glucose accumulation, and hindered energy metabolism related to carbohydrate degradation and oxidation. In contrast, LL facilitated leaf growth and increased chlorophyll content but decreased plant height and total polysaccharide content, compromised the photosynthetic apparatus, hampered light energy utilization, stimulated energy metabolism related to carbohydrate degradation and oxidation, and inhibited carbon metabolism and carbohydrate synthesis. Numerous genes in carbon metabolism were strongly related to polysaccharide metabolites. The katE and cysK genes in carbon metabolism were strongly related not only to polysaccharide metabolites, but also to genes involved in polysaccharide biosynthesis. Our results highlight that light intensity plays a crucial role in affecting polysaccharide biosynthesis in B. striata, with carbon metabolism acting as a mediator under suitable light intensity conditions.


Assuntos
Carbono , Luz , Orchidaceae , Fotossíntese , Folhas de Planta , Polissacarídeos , Orchidaceae/metabolismo , Orchidaceae/efeitos da radiação , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/genética , Polissacarídeos/metabolismo , Polissacarídeos/biossíntese , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Carbono/metabolismo , Fotossíntese/efeitos da radiação , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Multiômica
16.
Mol Phylogenet Evol ; 199: 108138, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38977041

RESUMO

Cypripedioideae (slipper orchids; Orchidaceae) currently consist of âˆ¼200 herbaceous species with a strikingly disjunctive distribution in tropical and temperate regions of both hemispheres. In this study, an updated phylogeny with representatives from all five cypripedioid genera was presented based on maximum likelihood and Bayesian inference of plastome and low-copy nuclear genes. Phylogenomic analyses indicated that each genus is monophyletic, but some relationships (e.g., those among Cypripedium sects. Acaulia, Arietinum, Bifolia, Flabellinervia, Obtusipetala and Palangshanensia) conflict with those in previous studies based on Sanger data. Cypripedioideae appeared to have arisen in South America and/or the adjacent Qinghai-Tibet Plateau and Hengduan Mountains âˆ¼35 Mya. We inferred multiple dispersal events between East Asia and North America in Cypripedium, and between mainland Southeast Asia and the Malay Archipelago in Paphiopedilum. In the Americas, divergences among four genera (except Cypripedium) occurred around 31-20 Mya, long before the closure of the Isthmus of Panama, indicating the importance of long-distance dispersal. Evolutionary patterns between morphological and plastome character evolution suggested several traits, genome size and NDH genes, which are likely to have contributed to the success of slipper orchids in alpine floras and low-elevation forests. Species diversification rates were notably higher in epiphytic clades of Paphiopedilum than in other, terrestrial cypripedioids, paralleling similar accelerations associated with epiphytism in other groups. This study also suggested that sea-level fluctuations and mountain-building processes promoted the diversification of the largest genera, Paphiopedilum and Cypripedium.


Assuntos
Orchidaceae , Filogenia , Filogeografia , Orchidaceae/genética , Orchidaceae/classificação , Teorema de Bayes , Evolução Molecular , Especiação Genética , Evolução Biológica , Análise de Sequência de DNA
17.
BMC Plant Biol ; 24(1): 681, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020275

RESUMO

BACKGROUND: A retrotransposon HORT1 in the promoter of the anthocyanin activator gene PeMYB11, microRNA858 (miR858) that targets PeMYB11, and a repressor PeMYBx have been implicated in pigmentation patterning diversity of harlequin Phalaenopsis orchids. However, the interrelationship among them remains to be elucidated. RESULTS: To understand how these factors interact to generate anthocyanin spots in Phalaenopsis, we successfully developed a mathematical model based on the known reaction-diffusion system to simulate their interplay and refined the conceptual biological model. Intriguingly, the expression of both PeMYBx and PeMYB11 were in phase for purple spot formation, even though they showed adverse effects on anthocyanin accumulations. An increase in the self-activation rate of PeMYB11 resulted in the increased size of purple spots, but no effects on spot fusion. Decreased degradation rate of miR858 in the purple regions, led to disruption of the formation of spotted pigmentation patterning and a full-red pigmentation pattern. Significantly, the reduced miR858 level promotes the fusion of large dark purple dots induced by the solo-LTR of HORT1, eventually generating the purple patches. In addition, the spatially heterogeneous insertion of HORT1 caused by the remnant solo-LTR of HORT1 derived from random homologous unequal recombination of HORT1 in individual cells of floral organs could explain the diverse pigmentation patterning of harlequin Phalaenopsis. CONCLUSIONS: This devised model explains how HORT1 and miR858 regulate the formation of the pigmentation patterning and holds great promise for developing efficient and innovative approaches to breeding harlequin Phalaenopsis orchids.


Assuntos
Orchidaceae , Pigmentação , Orchidaceae/genética , Orchidaceae/metabolismo , Pigmentação/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Antocianinas/metabolismo , Simulação por Computador , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retroelementos/genética
18.
PLoS One ; 19(7): e0307260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39046970

RESUMO

BACKGROUND: Bletilla striata (Thunb.) Reichb.f. (B. striata) is a traditional Chinese medicinal herb. B. striata polysaccharides (BSP), stilbenes and 2-isobutyl malic acid glucosoxy-benzyl ester compounds are the main active ingredients in B. striata. However, there is limited report on the changes of medicinal components and their biosynthesis regulation mechanisms in the tubers of B. striata at different stages. METHOD: The tubers of B. striata were collected during the flowering period, fruiting period, and harvest period to determine the total polysaccharide content using the phenol sulfuric acid method. The changes in secondary metabolites in the tubers at these stages were analyzed by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS), and transcriptomics was conducted for further exploration of their biosynthetic pathways. RESULT: The BSP content gradually increases from the flowering period to the fruiting period as the tubers develop, reaching its peak, but subsequently decreases at harvest time, which may be associated with the germination of B. striata buds in later stage. A total of 294 compounds were identified in this study. Among them, a majority of the compounds, such as 2-isobutyl malate gluconoxy-benzyl ester, exhibited high content during the fruit stage, while stilbenes like coelonin, 3'-O-methylbatatasin III, and blestriarene A accumulated during the harvesting period. The transcriptome data also revealed a substantial number of differentially expressed genes at various stages, providing a partial explanation for the complex changes in metabolites. We observed a correspondence between the expression pattern of GDP-Man biosynthesis-related enzyme genes and cumulative changes in BSP. And identified a positive correlation between 9 transcription factors and genes associated with polysaccharide biosynthesis, while 5 transcription factors were positively correlated with accumulation of 2-isobutyl malate gluconoxy-benzyl ester compounds and 5 transcription factors exhibited negative correlated with stilbene accumulation. CONCLUSION: It is imperative to determine the appropriate harvesting period based on the specific requirements of different active ingredients and the accumulation patterns of their metabolites. Considering the involvement of multiple transcription factors in the biosynthesis and accumulation of its active ingredients, a comprehensive investigation into the specific regulatory mechanisms that facilitate high-quality cultivation of B. striata is imperative.


Assuntos
Metabolômica , Orchidaceae , Orchidaceae/metabolismo , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/genética , Metabolômica/métodos , Regulação da Expressão Gênica de Plantas , Transcriptoma , Polissacarídeos/metabolismo , Perfilação da Expressão Gênica , Metabolismo Secundário/genética , Tubérculos/metabolismo , Tubérculos/crescimento & desenvolvimento , Tubérculos/genética
19.
BMC Genomics ; 25(1): 552, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825700

RESUMO

BACKGROUND: The disputed phylogenetic position of Aerides flabellata Rolfe ex Downie, due to morphological overlaps with related species, was investigated based on evidence of complete chloroplast (cp) genomes. The structural characterization of complete cp genomes of A. flabellata and A. rosea Lodd. ex Lindl. & Paxton were analyzed and compared with those of six related species in "Vanda-Aerides alliance" to provide genomic information on taxonomy and phylogeny. RESULTS: The cp genomes of A. flabellata and A. rosea exhibited conserved quadripartite structures, 148,145 bp and 147,925 bp in length, with similar GC content (36.7 ~ 36.8%). Gene annotations revealed 110 single-copy genes, 18 duplicated in inverted regions, and ten with introns. Comparative analysis across related species confirmed stable sequence identity and higher variation in single-copy regions. However, there are notable differences in the IR regions between two Aerides Lour. species and the other six related species. The phylogenetic analysis based on CDS from complete cp genomes indicated that Aerides species except A. flabellata formed a monophyletic clade nested in the subtribe Aeridinae, being a sister group to Renanthera Lour., consistent with previous studies. Meanwhile, a separate clade consisted of A. flabellata and six Vanda R. Br. species was formed, as a sister taxon to Holcoglossum Schltr. CONCLUSIONS: This research was the first report on the complete cp genomes of A. flabellata. The results provided insights into understanding of plastome evolution and phylogenetic relationships of Aerides. The phylogenetic analysis based on complete cp genomes showed that A. flabellata should be placed in Vanda rather than in Aerides.


Assuntos
Genoma de Cloroplastos , Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Composição de Bases , Anotação de Sequência Molecular
20.
BMC Plant Biol ; 24(1): 584, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898387

RESUMO

BACKGROUND: High temperatures significantly affect the growth, development, and yield of plants. Anoectochilus roxburghii prefers a cool and humid environment, intolerant of high temperatures. It is necessary to enhance the heat tolerance of A. roxburghii and breed heat-tolerant varieties. Therefore, we studied the physiological indexes and transcriptome of A. roxburghii under different times of high-temperature stress treatments. RESULTS: Under high-temperature stress, proline (Pro), H2O2 content increased, then decreased, then increased again, catalase (CAT) activity increased continuously, peroxidase (POD) activity decreased rapidly, then increased, then decreased again, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and soluble sugars (SS) content all decreased, then increased, and chlorophyll and soluble proteins (SP) content increased, then decreased. Transcriptomic investigation indicated that a total of 2740 DEGs were identified and numerous DEGs were notably enriched for "Plant-pathogen interaction" and "Plant hormone signal transduction". We identified a total of 32 genes in these two pathways that may be the key genes for resistance to high-temperature stress in A. roxburghii. CONCLUSIONS: To sum up, the results of this study provide a reference for the molecular regulation of A. roxburghii's tolerance to high temperatures, which is useful for further cultivation of high-temperature-tolerant A. roxburghii varieties.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Orchidaceae , Orchidaceae/genética , Orchidaceae/fisiologia , Orchidaceae/metabolismo , Transcriptoma , Temperatura Alta , Resposta ao Choque Térmico/genética , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malondialdeído/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA