Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurogenet ; 34(3-4): 323-334, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32648491

RESUMO

Sexual dimorphism is a device that supports genetic diversity while providing selective pressure against speciation. This phenomenon is at the core of sexually reproducing organisms. Caenorhabditis elegans provides a unique experimental system where males exist in a primarily hermaphroditic species. Early works of John Sulston, Robert Horvitz, and John White provided a complete map of the hermaphrodite nervous system, and recently the male nervous system was added. This addition completely realized the vision of C. elegans pioneer Sydney Brenner: a model organism with an entirely mapped nervous system. With this 'connectome' of information available, great strides have been made toward understanding concepts such as how a sex-shared nervous system (in hermaphrodites and males) can give rise to sex-specific functions, how neural plasticity plays a role in developing a dimorphic nervous system, and how a shared nervous system receives and processes external cues in a sexually-dimorphic manner to generate sex-specific behaviors. In C. elegans, the intricacies of male-mating behavior have been crucial for studying the function and circuitry of the male-specific nervous system and used as a model for studying human autosomal dominant polycystic kidney disease (ADPKD). With the emergence of CRISPR, a seemingly limitless tool for generating genomic mutations with pinpoint precision, the C. elegans model system will continue to be a useful instrument for pioneering research in the fields of behavior, reproductive biology, and neurogenetics.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/anatomia & histologia , Proteínas de Ciclo Celular/genética , Organismos Hermafroditas/fisiologia , Sistema Nervoso/anatomia & histologia , Caracteres Sexuais , Estruturas Animais/crescimento & desenvolvimento , Estruturas Animais/inervação , Estruturas Animais/ultraestrutura , Animais , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Cílios/química , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Vesículas Extracelulares/fisiologia , Organismos Hermafroditas/ultraestrutura , Humanos , Interneurônios/fisiologia , Masculino , Sistema Nervoso/crescimento & desenvolvimento , Plasticidade Neuronal , Neurônios/classificação , Neurônios/fisiologia , Neurônios/ultraestrutura , Neurotransmissores/fisiologia , Não Disjunção Genética , Rim Policístico Autossômico Dominante/genética , Comportamento Sexual Animal/fisiologia , Canais de Cátion TRPP/genética , Fatores de Transcrição/fisiologia
2.
PLoS One ; 9(8): e104456, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25105881

RESUMO

Lifespan costs to reproduction are common across multiple species, and such costs could potentially arise through a number of mechanisms. In the nematode Caenorhabditis elegans, it has been suggested that part of the lifespan cost to hermaphrodites from mating results from physical damage owing to the act of copulation itself. Here, we examine whether mating damages the surface of the hermaphrodite cuticle via scanning electron microscopy. It is found that mated hermaphrodites suffered delamination of cuticle layers surrounding the vulva, and that the incidence of such damage depends on genetic background. Unmated hermaphrodites demonstrated almost no such damage, even when cultured in soil with potentially abrasive particles. Thus, a consequence of mating for C. elegans hermaphrodites is physical cuticle damage. These experiments did not assess the consequences of cuticle damage for lifespan, and the biological significance of this damage remains unclear. We further discuss our results within the context of recent studies linking the lifespan cost to mating in C. elegans hermaphrodites to male secretions.


Assuntos
Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/ultraestrutura , Organismos Hermafroditas/ultraestrutura , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Feminino , Organismos Hermafroditas/genética , Organismos Hermafroditas/fisiologia , Longevidade , Masculino , Reprodução , Comportamento Sexual Animal
3.
J Invertebr Pathol ; 110(1): 135-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22465627

RESUMO

Differential interference contrast, transmission electron and epifluorescence microscopy techniques were employed to examine the ultrastructure of the rectal glands in Heterorhabditis bacteriophora hermaphrodites, with special attention to the location of Photorhabdus bacteria symbionts within these structures. Three rectal glands were clearly visualized in all examined specimens, with two glands positioned sub-ventrally and another gland located dorsally. The dorsal rectal gland in all examined specimens is larger than the subventral ones. Our observations indicate that Photorhabdus bacteria do not colonize the rectal glands of H. bacteriophora hermaphrodites, but rather are present in the most posterior-intestinal cells.


Assuntos
Organismos Hermafroditas/ultraestrutura , Rabditídios/microbiologia , Rabditídios/ultraestrutura , Glândula de Sal/ultraestrutura , Simbiose , Animais , Microscopia Eletrônica de Transmissão , Photorhabdus
4.
Zoolog Sci ; 28(1): 37-40, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21186945

RESUMO

The egg capsule of Isohypsibius granulifer granulifer Thulin 1928 (Eutardigrada: Hypsibiidae) is composed of two shells: the thin vitelline envelope and the multilayered chorion. The process of the formation of the egg shell begins in middle vitellogenesis. The I. g. granulifer vitelline envelope is of the primary type (secreted by the oocyte), but the chorion should be regarded as a mixed type: primary (secreted by the oocyte), and secondary (produced by the cells of gonad wall). During early choriogenesis, the parts of the chorion are produced and then connected into a permanent layer. The completely developed chorion consists of three layers: (1) the inner, medium electron dense layer; (2) the middle labyrinthine layer; (3) the outer, medium electron dense layer. After the formation of the chorion, a vitelline envelope is secreted by the oocyte.


Assuntos
Organismos Hermafroditas/fisiologia , Organismos Hermafroditas/ultraestrutura , Invertebrados/fisiologia , Invertebrados/ultraestrutura , Óvulo/fisiologia , Óvulo/ultraestrutura , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...