Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
J Agric Food Chem ; 72(27): 15321-15333, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38917998

RESUMO

Profenofos insecticide poses risks to nontarget organisms including mammals and hydrobionts, and its effects on crops are not known. This study examined the invisible toxicity of profenofos on pakchoi (Brassica rapa L.), using transcriptome and metabolome analyses. Profenofos inhibited the photosynthetic efficiency and light energy absorption by leaves and severely damaged the chloroplasts, causing the accumulation of reactive oxygen species (ROS). Metabolomic analysis confirmed that profenofos promoted the conversion of ß-carotene into abscisic acid (ABA), as evidenced by the upregulation of the carotenoid biosynthesis pathway genes: zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED3), and xanthoxin dehydrogenase (XanDH). The inhibitory effects on carotenoid accumulation, photosynthesis, and increased ABA and ROS contents of the leaves led to invisible injury and stunted growth of the pakchoi plants. The findings of this study revealed the toxicological risk of profenofos to nontarget crops and provide guidance for the safe use of insecticides.


Assuntos
Brassica rapa , Carotenoides , Metabolômica , Proteínas de Plantas , Brassica rapa/metabolismo , Brassica rapa/genética , Brassica rapa/química , Carotenoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Transcriptoma , Fotossíntese/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Organotiofosfatos/metabolismo , Organotiofosfatos/toxicidade
2.
Pestic Biochem Physiol ; 194: 105514, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532329

RESUMO

As a ubiquitous environmental pollutant in China, triazophos (TP) is known to have neurotoxicity, oxidative stress, and reproductive toxicity to mussels. To investigate the molecular mechanisms of TP toxicity, metabolic changes in the digestive glands of Perna viridis in different sexes were examined after treated with 35 µg/L TP. Notably, 158 significant different metabolites (SDMs) were detected in TP-treated mussels and more than half of the SDMs were lipids and lipid-like molecules, which suggested that TP disturbed the lipid metabolism of P. viridis. In addition, metabolites associated with neurotoxicity and reproductive disturbance were also detected in female and male mussels. Moreover, a larger number of SDMs were found in male mussels (120 SDMs) than females (99 SDMs), and 60 common metabolites exhibited consistent variation tendency and similar magnitude in both sexes. The metabolic alternations in female and male mussels displayed similar protective mechanisms and also sex-specific responses, male mussels were more sensitive to TP exposure. This research provided new data about the molecular mechanisms of TP toxicity and the gender specific changes in mussels after treated by chemicals.


Assuntos
Perna (Organismo) , Poluentes Químicos da Água , Masculino , Animais , Feminino , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Organotiofosfatos/toxicidade , Triazóis/metabolismo , Perna (Organismo)/química , Perna (Organismo)/metabolismo
3.
Bull Environ Contam Toxicol ; 110(5): 94, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171504

RESUMO

The physiological effects of triazophos were examined using respiratory and behavioral endpoints in Bellamya bengalensis under a 96-hour acute exposure regime. Physiological manifestation of respiratory stress was measured using the rate of oxygen consumption while behavioral toxicity was measured using crawling reflexes, touch response, and mucus production. The threshold effect values for LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) at 96 h were 0.40, 0.60, and 0.075 mg/l, respectively. Definitive 96 h acute exposures for both respiratory and behavioral endpoints tests were determined using a control group and concentrations ranging from 0.40 to 1.60 mg/l monitored for 24, 48, 72, and 96 h. Test organisms irrespective of exposure concentration demonstrated an initial rise in oxygen consumption rate after 24 h, followed by a progressive decrease in toxicant concentration and exposure period. The in silico structural analysis presents triazophos as having an electrophilic toxic structure similar to choline esterase inhibitors, and also capable of inducing oxidative stress. The AOP highlighted neurotoxicity and oxidative stress as plausible pathways of triazophos toxicity in mollusk species.


Assuntos
Rotas de Resultados Adversos , Poluentes Químicos da Água , Animais , Caramujos , Organotiofosfatos/toxicidade , Água Doce , Poluentes Químicos da Água/toxicidade
4.
Mar Environ Res ; 183: 105837, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481714

RESUMO

The pesticide azamethiphos used by the salmon industry to treat sea lice, is applied as a bath and subsequently discharged into the sea. The effects of azamethiphos concentration (0, 15 and 100 µg L-1) on the physiology of the Chilean oyster (Ostrea chilensis) at two temperatures (12 and 15 °C) was examined. In all azamethiphos treatments, oysters kept at 15 °C had clearance rates (CR) higher than oysters kept at 12 °C. The oxygen consumption rate (OCR) increased at higher temperatures, except with 100 µg L-1 of azamethiphos, where no changes were observed. Sixty days after the exposure, survival rates of 91 and 79% (15 and 100 µg L-1, respectively), were observed compared to the controls, a situation independent of the experimental temperature. The interaction between temperature and pesticide has detrimental effects on the physiological performance and survival of O. chilensis, and these effects should also be assessed for other non-target species.


Assuntos
Ostrea , Praguicidas , Animais , Praguicidas/toxicidade , Temperatura , Organotiofosfatos/toxicidade
5.
Pestic Biochem Physiol ; 182: 105036, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35249646

RESUMO

Residues of triazophos in aquatic ecosystems due to extensive use for controlling pests in agriculture has became worldwide concern, while the toxic response of triazophos on the non-target green algae in aquatic environment is not well studied. Therefore, the acute (96 h) toxic effects of 1 and 10 mg/L triazophos on green algae Chlorella pyrenoidosa were evaluated in present study. The results showed that the growth was notably inhibited when treated with triazophos and the 96 h-EC50 (median inhibition concentration) were 12.79 mg/L. The content of photosynthetic pigments (including chl a, chl b, total-chl and carotinoids) clearly decreased under two treatments after 48 h and 96 h with exception for the values at 48 h exposure in 1 mg/L treatment. In addition, the transcript abundance of photosynthesis-related genes (psbA, psbC and rbcL) showed obvious decrease in above two treatments after exposure 96 h to triazophos. In response to 10 mg/L triazophos treatment, the morphology of thylakoid chloroplast of algal cells were obviously damaged. It was also found that starch granules increased with down-regulation of atpB gene expression in 10 mg/L treatment, which suggests that triazophos may inhibit the energy metabolism of C. pyrenoidosa. Moreover, the algal growth inhibition was along with the increase of intracellular reactive oxygen species (ROS), activity of antioxidant enzymes and malondialdehyde content indicating oxidative damage and lipid peroxidation in the algal cells. Our findings reveal that triazophos has potential toxicity and environmental risks to one of the primary producers green algae.


Assuntos
Chlorella , Poluentes Químicos da Água , Chlorella/metabolismo , Ecossistema , Organotiofosfatos/toxicidade , Triazóis/farmacologia , Poluentes Químicos da Água/toxicidade
6.
Fish Shellfish Immunol ; 120: 325-336, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34856373

RESUMO

Profenofos (PFF) as an environmental pollutant seriously harms the health of aquatic animals, and even endangers human safety through the food chain. Albicanol, a sesquiterpenoid extraction from the Dryopteris fragrans, has previously been shown to effectively exhibit anti-aging, anti-oxidant, and antagonize the toxicity of heavy metals. However, the mechanism of hepatocyte toxicity caused by PFF and the role that Albicanol plays in this process are still unclear. In this study, a PFF poisoning model was established by treating grass carp hepatocytes cells with PFF (150 µM) for 24 h The results of AO/EB staining, Tunel staining and flow cytometry showed that the proportion of apoptotic liver cells increased significantly after exposure. The results of ROS staining show that compared with the control group, ROS levels and PTEN/PI3K/AKT-related gene expression were up-regulated after PFF exposure. RT-qPCR and Western blotting results showed that the expression of PTEN/PI3K/AKT related genes was up-regulated. These results indicate that PFF can induce oxidative stress in hepatocytes and inhibit the phosphorylation of AKT. We further found that the expressions of Bax, CytC, Caspase-3, Caspase-9, Caspase-8 and TNFR1 after PFF exposure were significantly higher than those of the control group, and Bcl-2/Bax was significantly lower than that of the control group. These results indicate that PFF can induce oxidative stress in hepatocytes and inhibit the phosphorylation of AKT and activate mitochondrial apoptosis. Using Albicanol (5 × 10-5 µg mL-1) can significantly reduce the above-mentioned effects of PFF exposure on grass carp hepatocytes cells. In summary, Albicanol inhibits PFF-induced apoptosis by regulating the ROS/PTEN/PI3K/AKT pathway.


Assuntos
Carpas , Naftalenos/farmacologia , Organotiofosfatos/toxicidade , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose , Carpas/metabolismo , Hepatócitos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Proteína X Associada a bcl-2
7.
Basic Clin Pharmacol Toxicol ; 130(2): 320-327, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34796663

RESUMO

Self-poisoning with organophosphorus (OP) insecticides is an important means of global self-harm. The insecticides are formulated with solvents that may also contribute to toxicity. We set up a study to detect changes in osmolal and anion gaps following ingestion of OP insecticides. We recruited consecutive patients admitted to a Teaching Hospital, Sri Lanka, with a history of OP self-poisoning. The osmolal and anion gaps were calculated on admission and at 4, 24 and 72 h post-ingestion together with ethanol concentration. Forty-nine patients were recruited (28 profenofos, 10 diazinon, one coumaphos, one chlorpyrifos, one phenthoate and eight unknown OP). Only modest increases in osmolal and anion gaps were noted. Small rises in osmolal gap above the upper limit of normal were noted in 16/49 (32.7%) of all cases, 9/28 (32.1%) profenofos cases and 4/10 (40.0%) diazinon cases. The anion gap was raised in 24/49 (49.0%) of all cases, 15/28 (53.6%) profenofos cases and 5/10 (50.0%) diazinon cases. We observed a trend for a fall in osmolal gap during the first 24 h, followed by an increase up to 72 h. There was no correlation between the anion gap and serum lactate concentration, indicating that a lactic acidosis was not responsible for the anion gap. Formate, which could have explained the increased gap, was not detected in any of the samples; ketoacids (beta-hydroxybutyrate and acetoacetate) were not measured. This pilot study found that profenofos and diazinon poisoning caused only modest increases in the osmolal and anion gaps in a minority of cases.


Assuntos
Inseticidas/intoxicação , Intoxicação por Organofosfatos/epidemiologia , Comportamento Autodestrutivo/epidemiologia , Equilíbrio Ácido-Base/efeitos dos fármacos , Adulto , Diazinon/toxicidade , Feminino , Hospitais de Ensino , Humanos , Masculino , Pessoa de Meia-Idade , Organotiofosfatos/toxicidade , Concentração Osmolar , Projetos Piloto , Solventes/toxicidade , Sri Lanka
8.
J Environ Sci Health B ; 56(6): 566-576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34038317

RESUMO

Organophosphorus pesticide (OP) residues present in food can be metabolized into diethylphosphate (DEP) in vivo. Epidemiological studies of OPs have usually focused on these metabolites, while animal studies mainly assessed the OPs. Here, we compared the health risks of a frequently detected OP, triazophos (TAP), and its major metabolite, DEP, in rats. Levels of serum lipids and, sex hormones were measured using immunoassay kits. Gut hormones and inflammatory cytokines were assessed using a multiplexing kit, and the gut microbiota was evaluated by 16S rRNA gene sequencing. After a 24-week exposure period, both TAP and DEP significantly decreased serum levels of triglycerides, cholesterol, low-density lipoprotein cholesterol, and IL-6 (p < 0.05). However, DEP exposure had a stronger effect on serum estradiol (p < 0.05) than TAP, whereas only TAP inhibited the secretion of gut hormones. Both TAP and DEP enriched the pathogenic genera Oscillibacter, Peptococcus and Paraprevotella in the gut, and TAP also enriched enteritis-related genera Roseburia and Oscillibacter, which may affect the secretion of gut hormones. These findings indicate that the use of dialkyl phosphates as markers of OPs to examine the correlations of OP exposure with diseases may only provide partial information, especially for diseases related to gut health and the endocrine system.


Assuntos
Organofosfatos/toxicidade , Organotiofosfatos/toxicidade , Praguicidas/toxicidade , Triazóis/toxicidade , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Hormônios/sangue , Lipídeos/sangue , Masculino , RNA Ribossômico 16S , Ratos Wistar
9.
Food Chem Toxicol ; 152: 112162, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33813062

RESUMO

Difenoconazole, cypermethrin and triazophos are widely used pesticides in agricultural production and frequently detected in foods. The aim of this study was to determine the effect of these pesticides and their mixtures on cell viability, reactive oxygen species (ROS), lactate dehydrogenase (LDH) content, apoptosis rate and DNA fragmentation and synthesis in human hepatocellular carcinoma cells (HepG2). The order of inhibitory effects for the individual pesticides was ranked as difenoconazole > cypermethrin > triazophos. The enhanced expression of caspase-3, caspase-7 and PARP activity was observed in HepG2 cells, which was 1.7, 1.3 and 1.6-fold higher than the control, respectively, along with significant protein cleavage; and induced apoptosis in a concentration-dependent manner. Further, the pesticide mixtures significantly increased ROS level (up to 1.3-fold), induced DNA fragmentation (up to 1.8-fold), inhibited DNA synthesis (up to 53%), and damaged the cells by destroying the cell membrane and producing a large amount of LDH at concentration range of 10-30 µM. Specifically, mixtures containing difenoconazole showed stronger toxicities than individual pesticides, implying higher health risks associated with mixtures. Our results show that three widely used pesticides exhibited cytotoxicity and apoptosis through the ROS-related caspase pathway, providing a basis for evaluation of health risks from pesticide mixtures via food consumption.


Assuntos
Apoptose/efeitos dos fármacos , Dioxolanos/toxicidade , Organotiofosfatos/toxicidade , Praguicidas/toxicidade , Piretrinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Triazóis/toxicidade , Caspase 3/metabolismo , Caspase 7/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , L-Lactato Desidrogenase/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-33722765

RESUMO

The utilization of pesticides has increased for destroying pests and protecting crops in the agriculture field. Triazophos is a commonly used organophosphorous insecticide that causes alterations in haematological and histological parameters in fish. The present study was designed to evaluate the effect of triazophos induced innate and cell mediated immunotoxicity in freshwater teleost, Channa punctata. Fishes were exposed to triazophos at concentrations 5 and 10% of LC50 value for 10 and 20 days. Splenic and head kidney macrophage phagocytosis, nitric oxide production and superoxide production were assayed to evaluate the innate immunity. Cell-mediated immunity was measured through splenic and head kidney lymphocyte proliferation in presence of T and B cell mitogens. Results of the present study revealed that macrophage phagocytosis was significantly reduced after in vivo triazophos treatment. Differential suppressive effect of triazophos was also observed where mitogen induced splenic and head kidney lymphocyte proliferations were reduced after 10 and 20 days treatment. Concentration dependent effect of triazophos was observed in in vivo studies where the production of reactive oxygen and nitrogen intermediates were suppressed. This study describes the first investigation of the effect of triazophos on immune functions and will help to determine appropriate ecotoxicity and immunotoxicity in freshwater teleosts.


Assuntos
Peixes/metabolismo , Imunidade Celular/efeitos dos fármacos , Organotiofosfatos/toxicidade , Praguicidas/toxicidade , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Rim Cefálico/citologia , Rim Cefálico/efeitos dos fármacos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Fagocitose , Baço/citologia , Baço/efeitos dos fármacos
11.
Arch Toxicol ; 95(4): 1287-1301, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33651127

RESUMO

Organophosphate pesticides (OPs) are known to inhibit acetylcholine esterase (AChE), a critical effect used to establish health-based guidance values. This study developed a combined in vitro-in silico approach to predict AChE inhibition by the OP profenofos in rats and humans. A physiologically based kinetic (PBK) model was developed for both species. Parameter values for profenofos conversion to 4-bromo-2-chlorophenol (BCP) were derived from in vitro incubations with liver microsomes, liver cytosol, and plasma from rats (catalytic efficiencies of 1.1, 2.8, and 0.19 ml/min/mg protein, respectively) and humans (catalytic efficiencies of 0.17, 0.79, and 0.063 ml/min/mg protein, respectively), whereas other chemical-related parameter values were derived using in silico calculations. The rat PBK model was evaluated against literature data on urinary excretion of conjugated BCP. Concentration-dependent inhibition of rat and human AChE was determined in vitro and these data were translated with the PBK models to predicted dose-dependent AChE inhibition in rats and humans in vivo. Comparing predicted dose-dependent AChE inhibition in rats to literature data on profenofos-induced AChE inhibition revealed an accurate prediction of in vivo effect levels. Comparison of rat predictions (BMDL10 of predicted dose-response data of 0.45 mg/kg bw) and human predictions (BMDL10 of predicted dose-response data of 0.01 mg/kg bw) suggests that humans are more sensitive than rats, being mainly due to differences in kinetics. Altogether, the results demonstrate that in vivo AChE inhibition upon acute exposure to profenofos was closely predicted in rats, indicating the potential of this novel approach method in chemical hazard assessment.


Assuntos
Inibidores da Colinesterase/toxicidade , Modelos Biológicos , Organotiofosfatos/toxicidade , Praguicidas/toxicidade , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Inibidores da Colinesterase/administração & dosagem , Simulação por Computador , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Organotiofosfatos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
12.
Artigo em Inglês | MEDLINE | ID: mdl-33220514

RESUMO

The present study was aimed to assess the acute toxicity of organophosphate pesticide, profenofos; synthetic pyrethroid pesticide, λ cyhalothrin and biopesticide, azadirachtin and their sublethal effects on growth rate and oxidative stress biomarkers in Tubifex tubifex in vivo. The results showed that 96 h LC50 value of profenofos, λ cyhalothrin and azadirachtin to Tubifex tubifex are 0.59, 0.13 and 82.15 mg L-1 respectively. Pesticide treated worms showed several behavioral abnormalities including increased mucus secretion, erratic movements, wrinkling activity and decreased clumping tendency during acute exposure. The percentage of autotomy increased significantly (p < 0.05) with the increasing concentration of the pesticides at 96 h of exposure. Sublethal concentrations of profenofos (0.059 and 0.118 mg L-1), λ cyhalothrin (0.013 and 0.026 mg L-1) and azadirachtin (8.2 and 16.4 mg L-1) caused significant alterations in growth rate and oxidative stress enzymes in T. tubifex during 14 days exposure period. The growth rate of the pesticide exposed worms decreased significantly (P < 0.05) in a concentration and duration-dependent manner. Superoxide dismutase (SOD), reduced glutathione (GSH), glutathione-s-transferase (GST) and glutathione peroxidase (GPx) demonstrated a noteworthy (p < 0.05) initial induction followed by a subsequent reduction, while catalase (CAT) and malondialdehyde (MDA) exhibited noteworthy induction (p < 0.05) all through the exposure time. Through principal component analysis, correlation matrix, and integrated biomarker response, the effects of profenofos, λ cyhalothrin and azadirachtin on T. tubifex were distinguished. These results indicate that exposure to profenofos, λ cyhalothrin and azadirachtin affect survivability, change the behavioral responses, reduce the growth rate and induce oxidative stress enzymes in T. tubifex.


Assuntos
Limoninas/toxicidade , Nitrilas/toxicidade , Oligoquetos/efeitos dos fármacos , Oligoquetos/enzimologia , Organotiofosfatos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Piretrinas/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Inseticidas/toxicidade , Oligoquetos/crescimento & desenvolvimento
13.
Neurotoxicol Teratol ; 82: 106929, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33031921

RESUMO

Acute organophosphate (OP) poisoning, particularly by suicide attempts, generates high mortality and morbidity. Few studies have systematically addressed the consequences of acute OP intoxication on cognition and memory of survivors. Preclinical evidence suggests that acute OP-induced effects are associated with inhibiting the brain acetylcholinesterase (AChE) enzyme. The OP triazophos has been used worldwide, although its effects on mnemonic processing are yet to be investigated. Based on the above, the present study investigated whether acute triazophos intoxication interferes with the expression and extinction of contextual fear memory in rats. Hippocampal and amygdalar AChE activity and plasma butyrylcholinesterase (BChE) were measured at the end of the experiment to confirm the cholinergic overstimulation. Independent cohorts of animals intoxicated with triazophos were evaluated in the novel object recognition (NOR) test, a less aversive associative memory task. At the dose of 15 mg/kg, triazophos administered immediately after contextual fear conditioning impaired the extinction but not the expression of freezing behavior. Triazophos poisoning induced no changes in the discrimination index in the NOR test. Triazophos inhibited the AChE activity in a time- and brain region-dependent manner. Our findings suggest that fear memory extinction deficits induced by acute triazophos intoxication are accompanied by hippocampal AChE inhibition. The deficient fear extinction associated with acute OP poisoning may represent a behavioral and biochemical phenotype helpful to study mechanisms of neurotoxicity and treatment approach of OP suicide survivors.


Assuntos
Inibidores da Colinesterase/toxicidade , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Organofosfatos/toxicidade , Organotiofosfatos/toxicidade , Triazóis/toxicidade , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Condicionamento Clássico/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Ratos , Ratos Wistar
14.
Chemosphere ; 261: 128054, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113645

RESUMO

Triazophos (TAP), methamidophos (MAP) and carbofuran (CF) pesticides are highly toxic, soluble and absorbable. Efficient co-degradation of multi-pesticides is rare reported. The objectives of this study were to investigate TAP, MAP and CF co-degradative ability of Enterobacter sp. Z1 and study the degradation mechanisms. Strain Z1 was shown to efficiently co-degrade TAP, MAP and CF when they were used as primary carbon sources. The degradation occurred over a wide range of temperatures, pH values and pesticide concentrations and followed first-order kinetics. Under the optimum conditions (37 °C, pH 7 and 100 mg/L of each pesticide), the degradation efficiencies were 100%, 100%, and 95.3% for TAP, MAP and CF, respectively. In addition, strain Z1 could simultaneously degrade TAP, MAP, CF and total nitrogen in wastewater in a batch bioreactor, with high removal efficiencies of 98.3%, 100%, 98.7% and 100%, respectively. Genomics, proteomics, qRT-PCR and gene overexpression analyses revealed that the degradation mechanisms involved the activities of multiple proteins, among which, organophosphorus hydrolase (Oph) and 3-hydroxyacyl-CoA dehydrogenase (PaaC) are primarily responsible for TAP and MAP degradation, while carbofuran hydrolase (Mcd) and amidohydrolase (RamA) primarily degrade CF. Among these enzymes, PaaC and RamA are newly identified pesticide-degrading enzymes. Toxicity assays of strain Z1 using reporter recombinase gene (recA) and zebrafish showed that there was no accumulation of toxic metabolites during the degradation process. Biosafety test using zebrafish showed that the strain was nontoxic toward zebrafish. Strain Z1 provides a good purification effect for pesticides-containing wastewater and novel microbial pesticide-degrading mechanisms were discovered.


Assuntos
Reatores Biológicos/microbiologia , Enterobacter/metabolismo , Praguicidas , Águas Residuárias/química , Poluentes Químicos da Água , Purificação da Água/métodos , Biodegradação Ambiental , Carbofurano/análise , Carbofurano/toxicidade , Contenção de Riscos Biológicos , Enterobacter/efeitos dos fármacos , Hidrolases/metabolismo , Organotiofosfatos/análise , Organotiofosfatos/toxicidade , Compostos Organotiofosforados/análise , Compostos Organotiofosforados/toxicidade , Praguicidas/análise , Praguicidas/toxicidade , Triazóis/análise , Triazóis/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
Mar Environ Res ; 159: 105007, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32662438

RESUMO

This study investigated effects of sea lice pharmaceuticals on egg-bearing deep-water shrimp (Pandalus borealis). Both mortality and sub-lethal effects (behavior, embryo development, and reproductive output) were studied for each of three pharmaceuticals alone and in different sequential combinations. The most severe effect was observed for deltamethrin where 2 h exposure to 330 times diluted treatment dose (alone and in sequential application with hydrogen peroxide and azamethiphos) induced almost 100% mortality within a few days after exposure. Similar effects were not observed for hydrogen peroxide or azamethiphos. However, sequential treatment of hydrogen peroxide and azamethiphos (2 h exposure to each pharmaceutical; 500 times dilution) resulted in >40% mortality during the first week following treatment. No sub-lethal effects or loss of eggs in female shrimp could be related to exposure to the bath treatments. Future studies should investigate potential sub-lethal effects at exposure concentrations close to the no-effect concentration.


Assuntos
Copépodes , Nitrilas , Pandalidae , Piretrinas , Animais , Peróxido de Hidrogênio , Nitrilas/toxicidade , Organotiofosfatos/toxicidade , Piretrinas/toxicidade
16.
Aquat Toxicol ; 224: 105493, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32408004

RESUMO

Currently, the contamination of water with different insecticides like profenofos (PFF) is a critical concern in the aquatic ecosystem. There are limited studies available on the negative impacts of PFF on common carp fish (Cyprinus carpio L.). Therefore, the existing study was designed to investigate the effect of PFF exposure (1/10 of the 96 h-LC50) on the neurobehavior, growth performance, chemical composition, oxidative status, DNA damage, apoptotic status and histological indices of the brain and gill tissues. In addition, this study seeks to detect the ability of geranium essential oil (GEO) dietary supplementation to mitigate the negative impacts of PFF. Accordingly, a total of 120 healthy fish were divided into four groups: the control group, fed on basal diet only; the other groups were fed on a basal diet supplemented with 400 mg kg-1 GEO, basal diet and PFF in water (PFF group), and supplemented diet with GEO and PFF in water (GEO + PFF), respectively, for 60 days. The results showed that PFF significantly reduced fish growth performance, crude protein, and lipid contents. It caused several behavioral alterations including spiral movement, decreased activeness, and changes in feeding behavior. Moreover, PFF increased the DNA tail length, tail moment, and the level of 8-hydroxy-2'-deoxyguanosine. Histologically, PFF induced a wide array of circulatory, inflammatory, regressive and progressive alterations in the brain and gill tissues. PFF significantly downregulated Bcl-2 and upregulated caspase-3 immuno-expression in both organs. Further, it considerably depleted the antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase. The GEO supplementation did not reach the respective control values but markedly improved most of the behavioral, physical, biochemical, oxidative, apoptotic, and inflammatory markers, altered by PFF exposure. It also protected the gill and brain tissues from the branchial and encephalopathic effects of PFF. These findings suggest that GEO dietary supplements could be advantageous for mitigating PFF negative impacts and presenting a promising feed additive for common carp in aquaculture.


Assuntos
Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Carpas , Dano ao DNA/efeitos dos fármacos , Geranium/química , Óleos Voláteis/farmacologia , Organotiofosfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Aquicultura , Encéfalo/enzimologia , Encéfalo/patologia , Carpas/genética , Carpas/metabolismo , Dieta , Suplementos Nutricionais , Ecossistema , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Brânquias/patologia , Óleos Voláteis/isolamento & purificação
17.
BMC Public Health ; 20(1): 780, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450831

RESUMO

BACKGROUND: Sri Lanka has reduced its overall suicide rate by 70% over the last two decades through means restriction, through a series of government regulations and bans removing highly hazardous pesticides from agriculture. We aimed to identify the key pesticide(s) now responsible for suicides in rural Sri Lanka to provide data for further pesticide regulation. METHODS: We performed a secondary analysis of data collected prospectively during a cluster randomized controlled trial in the Anuradhapura district of Sri Lanka from 2011 to 16. The identity of pesticides responsible for suicides were sought from medical or judicial medical notes, coroners' records, and the person's family. Trend analysis was done using a regression analysis with curve estimation to identify relative importance of key pesticides. RESULTS: We identified 337 suicidal deaths. Among them, the majority 193 (57.3%) were due to ingestion of pesticides while 82 (24.3%) were due to hanging. A specific pesticide was identified in 105 (54.4%) of the pesticide suicides. Ingestion of carbosulfan or profenofos was responsible for 59 (56.2%) of the suicides with a known pesticide and 17.5% of all suicides. The increasing trend of suicides due to carbosulfan and profenofos over time was statistically significant (R square 0.846, F 16.541, p 0.027). CONCLUSION: Ingestion of pesticides remains the most important means of suicides in rural Sri Lanka. The pesticides that were once responsible for most pesticide suicides have now been replaced by carbosulfan and profenofos. Their regulation and replacement in agriculture with less hazardous pesticides will further reduce the incidence of both pesticide and overall suicides in rural Sri Lanka.


Assuntos
Agricultura/legislação & jurisprudência , Praguicidas/intoxicação , População Rural , Suicídio/estatística & dados numéricos , Carbamatos/intoxicação , Ingestão de Alimentos , Regulamentação Governamental , Humanos , Organotiofosfatos/toxicidade , Estudos Prospectivos , Sri Lanka/epidemiologia
18.
Aquat Toxicol ; 222: 105453, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32112997

RESUMO

Anti-parasitic drugs used in the aquaculture industry are discharged to the sea after treatment of salmon. In this study, the effects of azamethiphos (AZA) in the Salmosan® formulation and deltamethrin (DEL) in the Alpha Max® formulation, have been assessed in Northern shrimp larvae (Pandalus borealis) when administered both separately and in combination. The exposure concentrations were 100 ng/L for AZA and 2 ng/L for DEL, each representing a 1000-fold dilution of the prescribed concentrations for salmon. These two chemicals were combined at these concentrations to give a third treatment (AZA + DEL). When larvae were exposed for two hours on the first, second and third days post hatch (dph), significantly increased mortality and reduced swimming activity were observed for larvae from the DEL and combined AZA + DEL treatments 4 dph, though not in larvae from the AZA treatment. A single pulse exposure, delivered on the first day post hatch, caused similar effects on mortality and swimming activity 4 dph as the three-pulse exposure. Mortality was driven by the presence of DEL in both experiments, with no amplification or reduction of effects observed when DEL and AZA were combined. Larvae were observed for 13 days following the single pulse exposure, with food limitation introduced as an additional stressor on day 4. In the DEL and AZA + DEL treatments mortality continued to increase regardless of food level, with no larvae completing development to stage II. The overriding toxicity of DEL masked any potential effects the reduced food ration may have exerted. Swimming activity was lower for AZA treated larvae than Control larvae 13 dph, when both groups were fed daily, though no other significant changes to mortality, development to stage II, feeding rate or gene expression were observed. Food limited Control and AZA larvae had lower swimming activity and feeding rate than daily fed Control larvae, with expression of pyruvate kinase and myosin genes also downregulated. However, there was no negative effect on survival or successful development to stage II in these treatments. In addition, mesencephalic astrocyte-derived neurotropic factor was downregulated in food limited Control larvae when compared with the daily fed Controls. Results from this study together with reported estimates of dispersion plume concentrations of discharged pesticides indicate that toxic concentrations of deltamethrin could reach shrimp larvae several kilometers from a treated salmon farm.


Assuntos
Ração Animal , Aquicultura/métodos , Larva/efeitos dos fármacos , Pandalidae/efeitos dos fármacos , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Nitrilas/toxicidade , Organotiofosfatos/toxicidade , Piretrinas/toxicidade , Salmão/crescimento & desenvolvimento
19.
J Environ Sci Health B ; 55(5): 429-437, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32065017

RESUMO

We evaluated the real effects of pollutants through a multi-generation study. We tested whether short-term exposure (48 h) of successive (first and second) generations of Chironomus yoshimatsui neonates (<24-h-old) to two acetylcholinesterase inhibitor insecticides, pyraclofos, and pirimicarb, would change insecticide sensitivity and life-cycle parameters over four generations. Additionally, we tested whether acetylcholinesterase (AChE) activity levels would be associated with this sensitivity change. Sensitivities (48 h EC50 value, using immobility as the endpoint) in chironomids (<24-h-old) and insect life-cycle parameters (the number of larvae per egg mass and adult size) were investigated. Parental chironomids produced larvae that were less sensitive than those in the control group following the two 48 h pirimicarb exposure events, whereas exposure to pyraclofos did not affect sensitivity. The AChE activity in larvae with low sensitivity to pirimicarb was significantly higher than that in the control. Thus, increased AChE activity might be associated with low sensitivity. The life-cycle parameters in chironomids recovered from the effects of pyraclofos and pirimicarb suggested they could adapt to the insecticides by changing biomass allocation. Our study suggested potential chemical risks of insecticide stress and how aquatic organisms adapt to it.


Assuntos
Carbamatos/toxicidade , Chironomidae/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Inseticidas/toxicidade , Organotiofosfatos/toxicidade , Pirimidinas/toxicidade , Adaptação Biológica/efeitos dos fármacos , Animais , Chironomidae/fisiologia , Ecotoxicologia/métodos , Larva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
20.
Ecotoxicol Environ Saf ; 190: 110085, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855789

RESUMO

This study investigated the effects of paclobutrazol and profenofos on six neurotransmitters and their metabolites involving in cholinergic and non-cholinergic neurotransmission systems in mouse. The results revealed that profenofos decreased the levels of 5-hydroxyindole-3-acetic acid (5-HIAA) and normetanephrine (MNE), and increased the level of dopamine (DA) in the mice after four weeks of exposure. The turnovers of serotonergic neurotransmission system (5-HIAA/5-HT) and noradrenergic neurotransmission system (MNE/NE) showed a decline under exposure of profenofos. Exposure to paclobutrazol resulted in decreases of 5-HIAA and MNE in both sexes of mice, and of 5-HT and ACh in the females. Similar to profenofos, the turnovers of serotonergic neurotransmission system and noradrenergic neurotransmission system decreased in the mice exposed to paclobutrazol. The integrated biomarker response (IBR) was introduced to comprehensively evaluate the neurotoxic effects of the two pesticides through integration of the responses of neurotransmitters. The results of IBR indicated that the overall effect of neurotransmitters increased at the beginning of exposure and then decreased in the end. It was also found that the order of neurotoxic effect for the two pesticides is as: paclobutrazol > profenofos referred to their LD50. Furthermore, the effects on neurotransmitters are higher in the males.


Assuntos
Neurotransmissores/metabolismo , Organotiofosfatos/toxicidade , Praguicidas/toxicidade , Triazóis/toxicidade , Animais , Dopamina/metabolismo , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...