Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 607
Filtrar
1.
Bone ; 184: 117106, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641232

RESUMO

Osteogenesis imperfecta (OI) increases fracture risk due to changes in bone quantity and quality caused by mutations in collagen and its processing proteins. Current therapeutics improve bone quantity, but do not treat the underlying quality deficiencies. Male and female G610C+/- mice, a murine model of OI, were treated with a combination of raloxifene and in vivo axial tibial compressive loading starting at 10 weeks of age and continuing for 6 weeks to improve bone quantity and quality. Bone geometry and mechanical properties were measured to determine whole bone and tissue-level material properties. A colocalized Raman/nanoindentation system was used to measure chemical composition and nanomechanical properties in newly formed bone compared to old bone to determine if bone formed during the treatment regimen differed in quality compared to bone formed prior to treatment. Lastly, lacunar geometry and osteocyte apoptosis were assessed. OI mice were able to build bone in response to the loading, but this response was less robust than in control mice. Raloxifene improved some bone material properties in female but not male OI mice. Raloxifene did not alter nanomechanical properties, but loading did. Lacunar geometry was largely unchanged with raloxifene and loading. However, osteocyte apoptosis was increased with loading in raloxifene treated female mice. Overall, combination treatment with raloxifene and loading resulted in positive but subtle changes to bone quality.


Assuntos
Modelos Animais de Doenças , Osteogênese Imperfeita , Cloridrato de Raloxifeno , Animais , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/patologia , Feminino , Masculino , Camundongos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Fenômenos Biomecânicos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Anabolizantes/farmacologia , Anabolizantes/uso terapêutico , Suporte de Carga , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteócitos/patologia
2.
Front Immunol ; 15: 1383113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646530

RESUMO

It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects of inflammatory processes on bone formation are less studied. Therefore, we investigated the effect of locally induced inflammation on bone formation. Toll-like receptor (TLR) 2 agonists LPS from Porphyromonas gingivalis and PAM2 were injected once subcutaneously above mouse calvarial bones. After five days, both agonists induced bone formation mainly at endocranial surfaces. The injection resulted in progressively increased calvarial thickness during 21 days. Excessive new bone formation was mainly observed separated from bone resorption cavities. Anti-RANKL did not affect the increase of bone formation. Inflammation caused increased bone formation rate due to increased mineralizing surfaces as assessed by dynamic histomorphometry. In areas close to new bone formation, an abundance of proliferating cells was observed as well as cells robustly stained for Runx2 and alkaline phosphatase. PAM2 increased the mRNA expression of Lrp5, Lrp6 and Wnt7b, and decreased the expression of Sost and Dkk1. In situ hybridization demonstrated decreased Sost mRNA expression in osteocytes present in old bone. An abundance of cells expressed Wnt7b in Runx2-positive osteoblasts and ß-catenin in areas with new bone formation. These data demonstrate that inflammation, not only induces osteoclastogenesis, but also locally activates canonical WNT signaling and stimulates new bone formation independent on bone resorption.


Assuntos
Inflamação , Osteogênese , Receptor 2 Toll-Like , Via de Sinalização Wnt , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteoblastos/imunologia , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteogênese/efeitos dos fármacos , Crânio , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Proteínas Wnt/metabolismo
3.
Cryobiology ; 115: 104894, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614237

RESUMO

This study examined the effects of liquid nitrogen vapor on osteogenesis in the rabbit femur. Cryotweezers made of porous nickel titanium alloy (nitinol or NiTi) obtained by self-propagating high temperature synthesis were used in this experiment. The porous structure of the cryotweezers allows them to hold up to 10 g of liquid nitrogen after being immersed for 2 min, which completely evaporates after 160 s. To study the effects of liquid nitrogen evaporation on osteogenesis, a rabbit femur was perforated. The formed holes were subjected to cryotherapy with varying exposure times. It was found that a 3 s exposure time stimulates osteogenesis, which was manifested in a greater number of osteoblasts in the regenerate compared to the control sample without liquid nitrogen. It was observed that increasing the exposure to 6, 9 or 12 s had a destructive effect, to varying degrees. The most severe damage was exerted by a 12 s exposure, which resulted in the formation of osteonecrosis areas. In the samples exposed to 6 and 9 s of cryotherapy, destruction of the cytoplasm of osteocytes and osteoclasts was observed.


Assuntos
Ligas , Crioterapia , Fêmur , Níquel , Osteogênese , Titânio , Animais , Coelhos , Crioterapia/métodos , Níquel/química , Porosidade , Fêmur/efeitos dos fármacos , Titânio/química , Ligas/química , Osteogênese/efeitos dos fármacos , Nitrogênio , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteonecrose/terapia , Masculino , Osteoclastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteócitos/citologia
4.
Ann Anat ; 254: 152260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521364

RESUMO

BACKGROUND: Oxidative stress plays a crucial role in the pathogenesis of many skeletal diseases by inducing osteocyte death. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of various antioxidant gene expressions through antioxidant response element (ARE) against cellular oxidative stress and can be induced by various stimulants, including the phytochemicals methysticin (MET) and L-sulforaphane (SFN). This study aimed to establish an osteocyte in vitro model to investigate the pharmacological effects of MET and SFN on the Nrf2/ARE pathway. METHODS: MLO-Y4 murine osteocytes and the stably transduced MLO-Y4-SIN-lenti-ARE reporter gene cell line were used. MET and SFN were used as Nrf2 inducers. The cytotoxicity of MET, SFN, and hydrogen peroxide (H2O2) was evaluated using the CytoTox-Glo™ Assay. Time- and dose-dependent ARE induction was examined by Monoluciferase Assay. The mRNA and protein expressions of Nrf2 target markers, such as heme-oxygenase 1 (Ho-1), NADPH quinone dehydrogenase 1 (Nqo1), and thioredoxin reductase 1 (Txnrd1), were detected by RT-qPCR, Western Blot, and immunofluorescence staining, respectively. Osteogenesis markers, osteopontin, and osteocalcin were compared with and without treatment by immunofluorescence staining. RESULTS: The experimental data showed that MET and SFN induced ARE activity in a time- and dose-dependent manner and increased the mRNA and protein expression of antioxidant markers compared to vehicle-treated controls. The protein expression of osteopontin and osteocalcin in the samples treated with SFN were significantly higher than without treatment, and the number of cell death treated with SFN was significantly lower than without treatment under H2O2-induced stress conditions. CONCLUSIONS: Nrf2 inducers MET and SFN increased the mRNA expression of antioxidant genes through the Nrf2/ARE pathway in osteocytes. Notably, SFN increased the protein expression of osteocyte-associated osteogenic markers and suppressed cell death under H2O2-induced stress condition. Thus, Nrf2 stimulators can exert stress-relieving and osteogenic effects on osteocytes.


Assuntos
Elementos de Resposta Antioxidante , Isotiocianatos , Fator 2 Relacionado a NF-E2 , Osteócitos , Transdução de Sinais , Sulfóxidos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Isotiocianatos/farmacologia , Sulfóxidos/farmacologia , Elementos de Resposta Antioxidante/efeitos dos fármacos , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Antioxidantes/farmacologia , Osteopontina/metabolismo , Osteopontina/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Tiorredoxina Redutase 1/metabolismo
5.
Biofactors ; 50(2): 347-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37767998

RESUMO

Bone remodeling is a process that involves osteoblasts, osteoclasts, and osteocytes, and different intracellular signaling, such as the canonical Wnt/ß-catenin pathway. Dysregulations of this pathway may also occur during secondary osteoporosis, as in the case of glucocorticoid-induced osteoporosis (GIO), which accelerates osteoblast and osteocyte apoptosis by reducing bone formation, osteoblast differentiation and function, accelerates in turn osteoblast, and osteocyte apoptosis. Genistein is a soy-derived nutrient belonging to the class of isoflavones that reduces bone loss in osteopenic menopausal women, inhibiting bone resorption; however, genistein may also favor bone formation. The aim of this study was to investigate whether estrogen receptor stimulation by genistein might promote osteoblast and osteocyte function during glucocorticoid challenge. Primary osteoblasts, collected from C57BL6/J mice, and MLO-A5 osteocyte cell line were used to reproduce an in vitro model of GIO by adding dexamethasone (1 µM) for 24 h. Cells were then treated with genistein for 24 h and quantitative Polymerase Chain Reaction (qPCR) and western blot were performed to study whether genistein activated the Wnt/ß-catenin pathway. Dexamethasone challenge reduced bone formation in primary osteoblasts and bone mineralization in osteocytes; moreover, canonical Wnt/ß-catenin pathway was reduced following incubation with dexamethasone in both osteoblasts and osteocytes. Genistein reverted these changes and this effect was mediated by both estrogen receptors α and ß. These data suggest that genistein could induce bone remodeling through Wnt/ß-catenin pathway activation.


Assuntos
Genisteína , Isoflavonas , Osteoporose , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Diferenciação Celular , Dexametasona/farmacologia , Genisteína/farmacologia , Glucocorticoides , Isoflavonas/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Glycine max/química
6.
Sci Rep ; 13(1): 14556, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666868

RESUMO

Deriving stem cells to regenerate full-thickness human skin is important for treating skin disorders without invasive surgical procedures. Our previous protocol to differentiate human induced pluripotent stem cells (iPSCs) into skin-derived precursor cells (SKPs) as a source of dermal stem cells employs mouse fibroblasts as feeder cells and is therefore unsuitable for clinical use. Herein, we report a feeder-free method for differentiating iPSCs into SKPs by customising culture substrates. We immunohistochemically screened for laminins expressed in dermal papillae (DP) and explored the conditions for inducing the differentiation of iPSCs into SKPs on recombinant laminin E8 (LM-E8) fragments with or without conjugation to domain I of perlecan (PDI), which binds to growth factors through heparan sulphate chains. Several LM-E8 fragments, including those of LM111, 121, 332, 421, 511, and 521, supported iPSC differentiation into SKPs without PDI conjugation. However, the SKP yield was significantly enhanced on PDI-conjugated LM-E8 fragments. SKPs induced on PDI-conjugated LM111-E8 fragments retained the gene expression patterns characteristic of SKPs, as well as the ability to differentiate into adipocytes, osteocytes, and Schwann cells. Thus, PDI-conjugated LM-E8 fragments are promising agents for inducing iPSC differentiation into SKPs in clinical settings.


Assuntos
Diferenciação Celular , Proteoglicanas de Heparan Sulfato , Células-Tronco Pluripotentes Induzidas , Peptídeos e Proteínas de Sinalização Intercelular , Laminina , Fragmentos de Peptídeos , Domínios Proteicos , Pele , Humanos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteoglicanas de Heparan Sulfato/química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Laminina/química , Laminina/farmacologia , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Pele/citologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia
7.
J Biol Chem ; 299(2): 102804, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529290

RESUMO

Fibroblast growth factor (FGF) is a multifunctional protein that exhibits a wide range of biological effects. Most commonly, it acts as a mitogen, but it also has regulatory, morphological, and endocrine effects. The four receptor subtypes of FGF are activated by more than 20 different FGF ligands. FGF2, one of the FGF ligands, is an essential factor for cell culture in stem cells for regenerative medicine; however, recombinant FGF2 is extremely unstable. Here, we successfully generated homobivalent agonistic single-domain antibodies (variable domain of heavy chain of heavy chain antibodies referred to as VHHs) that bind to domain III and induce activation of the FGF receptor 1 and thus transduce intracellular signaling. This agonistic VHH has similar biological activity (EC50) as the natural FGF2 ligand. Furthermore, we determined that the agonistic VHH could support the proliferation of human-induced pluripotent stem cells (PSCs) and human mesenchymal stem cells, which are PSCs for regenerative medicine. In addition, the agonistic VHH could maintain the ability of mesenchymal stem cells to differentiate into adipocytes or osteocytes, indicating that it could maintain the properties of PSCs. These results suggest that the VHH agonist may function as an FGF2 mimetic in cell preparation of stem cells for regenerative medicine with better cost effectiveness.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Domínios Proteicos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Anticorpos de Domínio Único , Humanos , Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Ligantes , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/agonistas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Medicina Regenerativa , Transdução de Sinais/efeitos dos fármacos , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/farmacologia
8.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216216

RESUMO

The discovery that osteocytes secrete phosphaturic fibroblast growth factor 23 (FGF23) has defined bone as an endocrine organ. However, the autocrine and paracrine functions of FGF23 are still unknown. The present study focuses on the cellular and molecular mechanisms involved in the complex control of FGF23 production and local bone remodeling functions. FGF23 was assayed using ELISA kit in the presence or absence of 17ß-estradiol in starved MLO-Y4 osteocytes. In these cells, a relationship between oxidative stress-induced apoptosis and up-regulation of active FGF23 levels due to MAP Kinases activation with involvement of the transcriptional factor (NF-kB) has been demonstrated. The active FGF23 increase can be due to up-regulation of its expression and post-transcriptional modifications. 17ß-estradiol prevents the increase of FGF23 by inhibiting JNK and NF-kB activation, osteocyte apoptosis and by the down-regulation of osteoclastogenic factors, such as sclerostin. No alteration in the levels of dentin matrix protein 1, a FGF23 negative regulator, has been determined. The results of this study identify biological targets on which drugs and estrogen may act to control active FGF23 levels in oxidative stress-related bone and non-bone inflammatory diseases.


Assuntos
Apoptose/efeitos dos fármacos , Estradiol/farmacologia , Fator de Crescimento de Fibroblastos 23/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Estrogênios/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
Sci Rep ; 12(1): 19, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997043

RESUMO

Invasive dental treatment such as tooth extraction following treatment with strong anti-bone resorptive agents, including bisphosphonates and denosumab, reportedly promotes osteonecrosis of the jaw (ONJ) at the extraction site, but strategies to prevent ONJ remain unclear. Here we show that in mice, administration of either active vitamin D analogues, antibiotics or anti-inflammatory agents can prevent ONJ development induced by tooth extraction during treatment with the bisphosphonate zoledronate. Specifically, tooth extraction during treatment with zoledronate induced osteonecrosis in mice, but administration of either 1,25(OH)2D3 or ED71, both active vitamin D analogues, significantly antagonized osteonecrosis development, even under continuous zoledronate treatment. 1,25(OH)2D3 or ED71 administration also significantly inhibited osteocyte apoptosis induced by tooth extraction and bisphosphonate treatment. Administration of either active vitamin D analogue significantly inhibited elevation of serum inflammatory cytokine levels in mice in response to injection of lipopolysaccharide, an infection mimetic. Furthermore, administration of either anti-inflammatory or antibiotic reagents significantly blocked ONJ development following tooth extraction and zoledronate treatment. These findings suggest that administration of active vitamin D, anti-inflammatory agents or antibiotics could prevent ONJ development induced by tooth extraction in patients treated with zoledronate.


Assuntos
Antibacterianos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/prevenção & controle , Extração Dentária/efeitos adversos , Vitamina D/administração & dosagem , Ácido Zoledrônico/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/sangue , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Citocinas/sangue , Difosfonatos/efeitos adversos , Feminino , Humanos , Camundongos Endogâmicos C57BL , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Vitamina D/análogos & derivados
10.
Toxicology ; 465: 153045, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801612

RESUMO

Exposure to tobacco smoke (TS) has been considered a risk factor for osteonecrosis of the femoral head (ONFH). Soluble epoxide hydrolase inhibitors (sEHIs) have been found to reduce inflammation and oxidative stress in a variety of pathologies. This study was designed to assess the effect of sEHI on the development of ONFH phenotypes induced by TS exposure in spontaneously hypertensive (SH) rats. SH and normotensive Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or TS (80 mg/m3 particulate concentration) 6 h/day, 3 days/week for 8 weeks. During this period, sEHI was delivered through drinking water at a concentration of 6 mg/L. Histology, immunohistochemistry, and micro-CT morphometry were performed for phenotypic evaluation. As results, TS exposure induced significant increases in adipocyte area, bone specific surface (BS/BV), and trabecular separation (Tb.SP), as well as significant decreases in bone mineral density (BMD), percent trabecular area (Tb.Ar), HIF-1a expression, bone volume fraction (BV/TV), trabecular numbers (Tb.N), and trabecular thickness (Tb.Th) in both SH and WKY rats. However, the protective effects of sEHI were mainly observed in TS-exposed SH rats, specifically in the density of osteocytes, BMD, Tb.Ar, HIF-1a expression, BV/TV, BS/BV, Tb.N, and Tb.SP. Our study confirms that TS exposure can induce ONFH especially in SH rats, and suggests that sEHI therapy may protect against TS exposure-induced osteonecrotic changes in the femoral head.


Assuntos
Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Necrose da Cabeça do Fêmur/prevenção & controle , Cabeça do Fêmur/efeitos dos fármacos , Hipertensão/complicações , Nicotiana , Osteócitos/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia , Fumaça , Animais , Modelos Animais de Doenças , Epóxido Hidrolases/metabolismo , Cabeça do Fêmur/enzimologia , Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/enzimologia , Necrose da Cabeça do Fêmur/etiologia , Necrose da Cabeça do Fêmur/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Osteócitos/enzimologia , Osteócitos/patologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Food Chem Toxicol ; 159: 112772, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34929351

RESUMO

Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, is commonly used as a plasticizer to manufacture various food packaging materials. Evidence has demonstrated that BPA disturbed bone health. However, few studies focused on the effect of BPA on osteocytes, making up over 95% of all the bone cells. Here, we reported that BPA inhibited the cell viability of MLO-Y4 cells, and increased apoptosis in a dose-dependent manner. Furthermore, BPA up-regulated protein expressions of speck-like protein containing CARD (ASC), NLRP3, cleaved caspase-1 (Casp-1 p20) and cleaved gasdermin D (GSDMD-N), and increased the ratios of interleukin (IL)-1ß/pro-IL-1ß and IL-18/pro-IL-18 in MLO-Y4 cells. BPA enhanced levels of lactate dehydrogenase (LDH), IL-1ß and IL-18 in culture supernatants. This pyroptotic death and the NLPR3 inflammasome activation were reversed by the caspase-1 inhibitor VX765 or the NLRP3 inflammasome inhibitor MCC950. Furthermore, BPA stimulated the production of intracellular reactive oxygen species (ROS), mitochondrial ROS (mtROS), elevated malondialdehyde (MDA) level and decreased superoxide dismutase (SOD) activity, which led to oxidative damage in MLO-Y4 cells. The ROS scavenger N-acetylcysteine (NAC) or the mitochondrial antioxidant Mito-TEMPO inhibited the NLPR3 inflammasome activation and pyroptotic death induced by BPA. Collectively, our data suggest that BPA causes pyroptotic death of osteocytes via ROS/NLRP3/Caspase-1 pathway.


Assuntos
Compostos Benzidrílicos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteócitos/efeitos dos fármacos , Fenóis/toxicidade , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Caspase 1/metabolismo , Linhagem Celular , Camundongos , Osteócitos/metabolismo
12.
Aging (Albany NY) ; 13(24): 25607-25642, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34968192

RESUMO

Aging is accompanied by osteopenia, characterized by reduced bone formation and increased bone resorption. Osteocytes, the terminally differentiated osteoblasts, are regulators of bone homeostasis, and parathyroid hormone (PTH) receptor (PPR) signaling in mature osteoblasts/osteocytes is essential for PTH-driven anabolic and catabolic skeletal responses. However, the role of PPR signaling in those cells during aging has not been investigated. The aim of this study was to analyze the role of PTH signaling in mature osteoblasts/osteocytes during aging. Mice lacking PPR in osteocyte (Dmp1-PPRKO) display an age-dependent osteopenia characterized by a significant decrease in osteoblast activity and increase in osteoclast number and activity. At the molecular level, the absence of PPR signaling in mature osteoblasts/osteocytes is associated with an increase in serum sclerostin and a significant increase in osteocytes expressing 4-hydroxy-2-nonenals, a marker of oxidative stress. In Dmp1-PPRKO mice there was an age-dependent increase in p16Ink4a/Cdkn2a expression, whereas it was unchanged in controls. In vitro studies demonstrated that PTH protects osteocytes from oxidative stress-induced cell death. In summary, we reported that PPR signaling in osteocytes is important for protecting the skeleton from age-induced bone loss by restraining osteoclast's activity and protecting osteocytes from oxidative stresses.


Assuntos
Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Doenças Ósseas Metabólicas/patologia , Reabsorção Óssea/metabolismo , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Homeostase/efeitos dos fármacos , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteócitos/metabolismo , Osteoporose/metabolismo
13.
Orthop Surg ; 13(7): 2145-2152, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34559465

RESUMO

OBJECTIVE: To investigate the effect and mechanism of Glucocorticoids (GCs) induced oxidative stress and apoptosis on necrosis of the femoral head in patients and rats. METHODS: Eight patients with steroid-induced avascular necrosis of the femoral head (SINFH) and eight patients with developmental dysplasia of the hips (DDH) were enrolled in our study. In animal model, twenty male Sprague-Dawley rats were randomly divided into two groups (SINFH group and NS group). The SINFH model group received the methylprednisolone (MPS) injection, while control group was injected with normal saline (NS). MRI was used to confirm SINFH rat model was established successfully. Then, the rats were sacrificed 4 weeks later and femoral head samples were harvested. Histopathological staining was preformed to evaluate osteonecrosis. TUNEL staining was performed with 8-OHdG and DAPI immunofluorescence staining to evaluate oxidative injury and osteocyte apoptosis. Immunohistochemistry staining was used to detect Nox1, Nox2, and Nox4 protein expression. RESULTS: MRI showed signs of typical osteonecrosis of femoral head in SIHFH patients. Histopathological staining showed that the rate of empty lacunae in SINFH patients was significantly higher (56.88% ± 9.72% vs 19.92% ± 4.18%, T = -11.04, P < 0.001) than that in DDH patients. The immunofluorescence staining indicated that the TUNEL-positive cell and 8-OHdG-positve cell in SINFH patients were significantly higher (49.32% ± 12.95% vs 8.00% ± 2.11%, T = -7.04, P = 0.002, 54.6% ± 23.8% vs 9.75% ± 3.31%, T = -4.17, P = 0.003) compared to the DDH patients. The immunohistochemistry staining showed that the protein expression of NOX1, NOX2 and NOX4 in SINFH patients were significantly increased (64.50% ± 7.57% vs 37.58% ± 9.23%, T = -3.88, P = 0.018, 90.84% ± 2.93% vs 49.56% ± 16.47%, T = -5.46, P = 0.001, 85.46% ± 9.3% vs 40.69% ± 6.77%, T = -8.03, P = 0.001) compared to the DDH patients. In animal model, MRI showed signs of edema of femoral head in MPS group, which represents SINFH rat model was established successfully. Histological evaluation showed the rate of empty lacunae in MPS group was significantly higher (25.85% ± 4.68% vs 9.35% ± 1.99%, T = -7.96, P < 0.001) than that in NS group. The immunofluorescence staining indicated that the TUNEL-positive cell and 8-OHdG-positve cell (in MPS group were significantly increased (31.93% ± 1.01% vs 11.73% ± 1.16%, T = -32.26, P < 0.001, 47.59% ± 1.39% vs 22.07% ± 2.45%, T = -22.18, P < 0.001) compared to the NS group. The immunohistochemistry staining showed that the expression of NOX2 in MPS group was significantly increased (76.77% ± 8.34% vs 50.32% ± 10.84%, T = -4.74, P = 0.001) compare with NS group. CONCLUSION: Our findings indicated that GC-induced NOXs expression may be an important source of oxidative stress, which could lead to osteocyte apoptosis in the process of SINFH.


Assuntos
Apoptose/efeitos dos fármacos , Necrose da Cabeça do Fêmur/induzido quimicamente , Glucocorticoides/efeitos adversos , Osteócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Adulto , Animais , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
14.
J Mater Sci Mater Med ; 32(9): 124, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524552

RESUMO

The extracellular matrix regulates cell survival, proliferation, and differentiation. In vitro two-dimensional cell experiments are typically performed on a plastic plate or a substrate of a single extracellular matrix constituent such as collagen or calcium phosphate. As these approaches do not include extracellular matrix proteins or growth factors, they fail to mimic a complex cell microenvironment. The cell-derived matrix is an alternative platform for better representing the in vivo microenvironment in vitro. Standard decellularization of a cell-derived matrix is achieved by combining chemical and physical methods. In this study, we compared the decellularization efficacy of several methods: ammonium hydroxide, sodium dodecyl sulfate (SDS), or Triton X-100 with cold or heat treatment on a matrix of Saos-2 cells. We found that the protocols containing SDS were cytotoxic during recellularization. Heat treatment at 47 °C was not cytotoxic, removed cellular constituents, inactivated alkaline phosphatase activity, and maintained the levels of calcium deposition. Subsequently, we investigated the differentiation efficiency of a direct bone coculture system in the established decellularized Saos-2 matrix, an inorganic matrix of calcium phosphate, and a plastic plate as a control. We found that the decellularized Saos-2 cell matrix obtained by heat treatment at 47 °C enhanced osteoclast differentiation and matrix mineralization better than the inorganic matrix and the control. This simple and low-cost method allows us to create a Saos-2 decellularized matrix that can be used as an in vivo-like support for the growth and differentiation of bone cells.


Assuntos
Matriz Extracelular Descelularizada/síntese química , Osteoblastos/citologia , Osteoblastos/fisiologia , Engenharia Tecidual/métodos , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Humanos , Osteoblastos/efeitos dos fármacos , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Osteócitos/fisiologia , Células THP-1 , Alicerces Teciduais/química
15.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445794

RESUMO

Xenogeneic biomaterials Cerbone® and OsteoBiol® are widely used in oral implantology. In dental practice, xenogeneic biomaterial is usually combined with autologous bone to provide bone volume stability needed for long-term dental implants. Magnesium alloy implants dissolve and form mineral corrosion layer that is directly in contact with bone tissue, allowing deposition of the newly formed bone. CSBD heals by intramembranous ossification and therefore is a convenient model for analyses of ostoconductive and osteoinductive properties of different type of biomaterials. Magnesium alloy-enriched biomaterials have not yet been applied in oral implantology. Therefore, the aim of the current study was to investigate biological properties of potentially new bovine xenogeneic biomaterial enriched with magnesium alloy in a 5 mm CSBD model. Osteoconductive properties of Cerabone®, Cerabone® + Al. bone, and OsteoBiol® were also analyzed. Dynamics of bone healing was followed up on the days 3, 7, 15, 21, and 30. Calvary bone samples were analyzed by micro-CT, and values of the bone morphometric parameters were assessed. Bone samples were further processed for histological and immunohistochemical analyses. Histological observation revealed CSBD closure at day 30 of the given xenogeneic biomaterial groups, with the exception of the control group. TNF-α showed high intensity of expression at the sites of MSC clusters that underwent ossification. Osx was expressed in pre-osteoblasts, which were differentiated into mature osteoblasts and osteocytes. Results of the micro-CT analyses showed linear increase in bone volume of all xenogeneic biomaterial groups and also in the control. The highest average values of bone volume were found for the Cerabone® + Mg group. In addition, less residual biomaterial was estimated in the Cerabone® + Mg group than in the Cerabone® group, indicating its better biodegradation during CSBD healing. Overall, the magnesium alloy xenogeneic biomaterial demonstrated key properties of osteoinduction and biodegradidibility during CSBD healing, which is the reason why it should be recommended for application in clinical practice of oral implantology.


Assuntos
Ligas/farmacologia , Materiais Biocompatíveis/farmacologia , Osso e Ossos/efeitos dos fármacos , Magnésio/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/farmacologia , Bovinos , Corrosão , Hidroxiapatitas/farmacologia , Teste de Materiais/métodos , Minerais/farmacologia , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Ratos , Microtomografia por Raio-X/métodos
16.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361085

RESUMO

A novel aptamer-based competitive drug screening platform for osteoporosis was devised in which fluorescence-labeled, sclerostin-specific aptamers compete with compounds from selected chemical libraries for the binding of immobilized recombinant human sclerostin to achieve high-throughput screening for potential small-molecule sclerostin inhibitors and to facilitate drug repurposing and drug discovery. Of the 96 selected inhibitors and FDA-approved drugs, six were shown to result in a significant decrease in the fluorescence intensity of the aptamer, suggesting a higher affinity toward sclerostin compared with that of the aptamer. The targets of these potential sclerostin inhibitors were correlated to lipid or bone metabolism, and several of the compounds have already been shown to be potential osteogenic activators, indicating that the aptamer-based competitive drug screening assay offered a potentially reliable strategy for the discovery of target-specific new drugs. The six potential sclerostin inhibitors suppressed the level of both intracellular and/or extracellular sclerostin in mouse osteocyte IDG-SW3 and increased alkaline phosphatase activity in IDG-SW3 cells, human bone marrow-derived mesenchymal stem cells and human fetal osteoblasts hFOB1.19. Potential small-molecule drug candidates obtained in this study are expected to provide new therapeutics for osteoporosis as well as insights into the structure-activity relationship of sclerostin inhibitors for rational drug design.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Aptâmeros de Nucleotídeos/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Aptâmeros de Nucleotídeos/isolamento & purificação , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Osteoporose/metabolismo , Osteoporose/patologia
17.
J Mol Histol ; 52(5): 1081-1095, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34297260

RESUMO

The apoptosis of mature osteocytes is the main factor causing damage to the microstructure of cortical bone in glucocorticoid-induced osteoporosis (GIOP). Our previous research found damaged areas and empty osteocytes lacunae in the tibial cortical bone of GIOP mice. However, the specific mechanism has not been clarified. Recently, a study showed that the quality of the cortical bone significantly increased by knocking out Notum, a gene encoding α/ß hydrolase. However, it is not clear whether Notum affects cortical bone remodeling by participating in glucocorticoids (GCs)-induced apoptosis of osteocytes. The present study aimed to explore the correlation between Notum, osteocytes apoptosis, and cortical bone quality in GIOP. Prednisolone acetate was intragastrically administered to mice for two weeks. Histochemical staining was applied to evaluate changes in GIOP and Notum expression. Osteocytes were stimulated with prednisolone, and cell viability was assessed via CCK8. Hoechst 33342/PI staining, flow cytometry, RT-PCR, and western blot were used to detect osteocytes apoptosis, siRNA transfection efficiency, and expressions of pathway related factors. The results showed that the number of empty osteocytes lacunae increased in GIOP mice. TUNEL-stained apoptotic osteocytes and Notum immuno-positive osteocytes were also observed. Furthermore, prednisolone was found to promote Notum expression and osteocytes apoptosis in vitro. Knocking down Notum via siRNA partially restored osteocytes apoptosis and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3ß (GSK3ß)/ß-catenin pathway. These findings showed GCs-induced osteocytes apoptosis by promoting Notum expression and inhibiting PI3K/AKT/GSK3ß/ß-catenin pathway. Thus, Notum might be a potential therapeutic target for the treatment of GIOP.


Assuntos
Apoptose , Esterases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Prednisolona/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteócitos/efeitos dos fármacos , Osteoporose/induzido quimicamente , Osteoporose/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fosfatase Ácida Resistente a Tartarato/metabolismo
18.
J Cell Physiol ; 236(10): 7088-7096, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33792917

RESUMO

Clinical studies have shown that persistent hyperglycemia following oxidative stress is associated with the apoptosis of osteocytes in diabetics. Adiponectin (APN) can ameliorate oxidative stress, and its receptors have been identified in bone-forming cells. However, the relationship between APN and osteocyte apoptosis has not been fully elucidated. This study aimed to investigate whether APN could prevent osteocyte apoptosis and regulate reactive oxygen species (ROS) generation in a high-glucose environment. Hoechst staining and fluorescence microscopy were used to observe the apoptosis of osteocytic MLO-Y4 cells. Real-time quantitative polymerase chain reaction and Western blot analysis were used to detect the expression of Caspase 3, Caspase 8, and Bcl-2. ROS generation was investigated with an active oxygen kit and fluorescence microscopy. Furthermore, the expression of proteins in the AMPK/FoxO3A signaling pathway was also studied by Western blot analysis. In a high-glucose environment, APN promoted the proliferation of MLO-Y4 osteocytes and the expression of Bcl-2 but inhibited the expression of Caspase 3, Caspase 8, and ROS in a dose-dependent manner. APN promoted the activation of p-AMPK and p-AMPK/AMPK, which reached their highest levels at 10 min and returned to baseline at 30 min. The expression of p-FoxO3A/FoxO3A in both the cytoplasm and nucleus peaked at 15 min, and this expression was returned to baseline at 60 min. In summary, APN has an antiapoptotic effect and regulates ROS generation in MLO-Y4 osteocytes in a high-glucose environment. The AMPK/FoxO3A signaling pathway might be a key signaling pathway that participates in the effect of APN on regulating osteocyte apoptosis in diabetics.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/farmacologia , Apoptose/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Glucose/toxicidade , Osteócitos/efeitos dos fármacos , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Camundongos , Osteócitos/enzimologia , Osteócitos/patologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
19.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809778

RESUMO

OBJECTIVE: To explore the effect of physical exercise (EXE), strontium ranelate (SR), or their combination on bone status in ovariectomized (OVX) rats. DESIGN: Sixty female Wistar rats were randomized to one of five groups: sham (Sh), OVX (O), OVX+EXE (OE), OVX+SR (OSR), and OVX+EXE+SR (OESR). Animals in EXE groups were subjected to 10 drops per day (45 cm in height); rats in SR groups received 625 mg/kg/day of SR, 5 days/week for 8 weeks. Bone mineral density (BMD) and bone mineral content (BMC, dual-energy X-ray absorptiometry (DXA)), mechanical strength of the left femur (three-point bending test), and femur microarchitecture of (micro-computed tomography imaging, microCT) analyses were performed to characterize biomechanical and trabecular/cortical structure. Bone remodeling, osteocyte apoptosis, and lipid content were evaluated by ELISA and immunofluorescence tests. RESULTS: In OVX rats, whole-body BMD, trabecular parameters, and osteocalcin (OCN) levels decreased, while weight, lean/fat mass, osteocyte apoptosis, and lipid content all increased. EXE after ovariectomy improved BMD and BMC, trabecular parameters, cross-sectional area (CSA), moment of inertia, and OCN levels while decreasing osteocyte apoptosis and lipid content. SR treatment increased BMD and BMC, trabecular parameters, CSA, stiffness, OCN, and alkaline phosphatase (ALP) levels. Furthermore, fat mass, N-telopeptide (NTX) level, osteocyte apoptosis, and lipid content significantly decreased. The combination of both EXE and SR improved bone parameters compared with EXE or SR alone. CONCLUSION: EXE and SR had positive and synergistic effects on bone formation and resorption.


Assuntos
Densidade Óssea/efeitos dos fármacos , Ovariectomia , Condicionamento Físico Animal , Tiofenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Fenômenos Biomecânicos/efeitos dos fármacos , Composição Corporal/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Osso Esponjoso/efeitos dos fármacos , Osso Cortical/efeitos dos fármacos , Feminino , Fêmur/efeitos dos fármacos , Lipídeos/química , Osteócitos/efeitos dos fármacos , Ratos Wistar
20.
Macromol Biosci ; 21(6): e2100069, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33870650

RESUMO

The aim of this study is to investigate polyacrylamide-based hydrogels stress relaxation and the subsequent impact on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Different hydrogels are synthesized by varying the amount of cross-linker and the ratio between the monomers (acrylamide and acrylic acid), and characterized by compression tests. It has been found that hydrogels containing 18% of acrylic acid exhibit an average relaxation of 70%, while pure polyacrylamide gels show an average relaxation of 15%. Subsequently, hMSCs are cultured on two different hydrogels functionalized with a mimetic peptide of the bone morphogenetic protein-2 to enable cell adhesion and favor their osteogenic differentiation. Phalloidin staining shows that for a constant stiffness of 55 kPa, a hydrogel with a low relaxation (15%) leads to star-shaped cells, which is typical of osteocytes, while a hydrogel with a high relaxation (70%) presents cells with a polygonal shape characteristic of osteoblasts. Immunofluorescence labeling of E11, strongly expressed in early osteocytes, also shows a dramatically higher expression for cells cultured on the hydrogel with low relaxation (15%). These results clearly demonstrate that, by fine-tuning hydrogels stress relaxation, hMSCs differentiation can be directed toward osteoblasts, and even osteocytes, which is particularly rare in vitro.


Assuntos
Acrilamidas/farmacologia , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Alicerces Teciduais , Acrilamidas/síntese química , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Humanos , Hidrogéis/síntese química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Estresse Mecânico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...