Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.709
Filtrar
1.
Biomaterials ; 312: 122720, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39084098

RESUMO

Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.


Assuntos
Diferenciação Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Nanopartículas , Osteoartrite , Peptídeos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Osteoartrite/terapia , Osteoartrite/patologia , Nanopartículas/química , Humanos , Diferenciação Celular/efeitos dos fármacos , Peptídeos/química , Transplante de Células-Tronco Mesenquimais/métodos , Condrogênese/efeitos dos fármacos , Camundongos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/farmacologia , Engenharia Tecidual/métodos , Regeneração/efeitos dos fármacos
2.
Arthritis Res Ther ; 26(1): 168, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342326

RESUMO

BACKGROUND: Untreated acute ankle sprains often result in chronic ankle instability (CAI) and can ultimately lead to the development of post-traumatic osteoarthritis (PTOA). At present, a typical animal model of ankle instability in mice is established by transecting the ligaments around the ankle joint. This study aimed to establish a grade I acute ankle sprain animal model by rapid stretching of peri-ankle joint ligaments. Furthermore, we tried to explore the pathophysiological mechanism of ankle osteoarthritis. METHODS: In all, 18 male C57BL/6 J mice (7 weeks) were randomly divided into three groups: calcaneofibular ligament (CFL) laxity group, deltoid ligament (DL) laxity group, and SHAM group. One week after the surgical procedure, all mice were trained to run in the mouse rotation fatigue machine daily. The mice were tested on the balance beam before surgery and three days, 4 weeks, 8 weeks, and 12 weeks after surgery. Footprint analyses were performed on each mouse before surgery and 12 weeks after surgery. Micro-CT scanning was then performed to evaluate the degeneration of ankle joints and histological staining was performed to analyze and evaluate PTOA caused by ankle joint instability. RESULTS: After surgery, the mice in the CFL and DL laxity groups took longer to cross the balance beam and slipped more often than those in the SHAM group (p < 0.05). The step length and width in the CFL and DL laxity groups were significantly shorter and smaller than those in the SHAM group 12 weeks after surgery (p < 0.05). There was a significant increase in the bone volume fraction (BV/TV) in the CFL and DL laxity groups compared with the SHAM group (p < 0.05). Histological staining results suggested obvious signs of PTOA in the CFL and DL laxity groups. CONCLUSIONS: Based on CFL and DL laxity in a mouse ankle instability model, this study suggests that grade I ankle sprain can contribute to chronic ankle instability, impair motor coordination and balance, and eventually lead to PTOA of ankle with significant degeneration of its adjacent joints.


Assuntos
Traumatismos do Tornozelo , Articulação do Tornozelo , Instabilidade Articular , Camundongos Endogâmicos C57BL , Osteoartrite , Animais , Instabilidade Articular/etiologia , Masculino , Osteoartrite/patologia , Osteoartrite/etiologia , Camundongos , Traumatismos do Tornozelo/complicações , Articulação do Tornozelo/patologia , Modelos Animais de Doenças , Entorses e Distensões/complicações , Doença Crônica , Microtomografia por Raio-X/métodos
3.
J Orthop Surg Res ; 19(1): 584, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342341

RESUMO

Primary osteoarthritis (OA) is a prevalent degenerative joint disease that mostly affects the knee joint. It is a condition that occurs around the world. Because of the aging population and the increase in obesity prevalence, the incidence of primary OA is increasing each year. Joint replacement can completely subside the pain and minimize movement disorders caused by advanced OA, while nonsteroidal drugs and injection of sodium hyaluronate into the joint cavity can only partially relieve the pain; hence, it is critical to search for new methods to treat OA. Increasing lines of evidence show that primary OA is a chronic inflammatory disorder, with synovial inflammation as the main characteristic. Macrophages, as one of the immune cells, can be polarized to produce M1 (proinflammatory) and M2 (anti-inflammatory) types during synovial inflammation in OA. Following polarization, macrophages do not come in direct contact with chondrocytes; however, they affect chondrocyte metabolism through paracrine production of a significant quantity of inflammatory cytokines, matrix metalloproteinases, and growth factors and thus participate in inducing joint pain, cartilage injury, angiogenesis, and osteophyte formation. The main pathways that influence the polarization of macrophages are the Toll-like receptor and NF-κB pathways. The study of how macrophage polarization affects OA disease progression has gradually become one of the approaches to prevent and treat OA. Experimental studies have found that the treatment of macrophage polarization in primary OA can effectively relieve synovial inflammation and reduce cartilage damage. The present article summarizes the influence of inflammatory factors secreted by macrophages after polarization on OA disease progression, the main signaling pathways that induce macrophage differentiation, and the role of different polarized types of macrophages in OA; thus, providing a reference for preventing and treating primary OA.


Assuntos
Progressão da Doença , Macrófagos , Osteoartrite , Humanos , Macrófagos/fisiologia , Osteoartrite/etiologia , Osteoartrite/patologia , Animais , Polaridade Celular/fisiologia
4.
Arthritis Res Ther ; 26(1): 167, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342381

RESUMO

BACKGROUND: Small extracellular vesicles (sEV) derived from synovial fibroblasts (SF) represent a novel molecular mechanism regulating cartilage erosion in osteoarthritis (OA). However, a comprehensive evaluation using disease relevant cells has not been undertaken. The aim of this study was to isolate and characterise sEV from OA SF and to look at their ability to regulate OA chondrocyte effector responses relevant to disease. Profiling of micro (mi) RNA signatures in sEV and parental OA SF cells was performed. METHODS: SF and chondrocytes were isolated from OA synovial membrane and cartilage respectively (n = 9). sEV were isolated from OA SF (± IL-1ß) conditioned media by ultracentrifugation and characterised using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Particle size was confirmed by nanoparticle tracking analysis (NTA). sEV regulation of OA chondrocyte and cartilage effector response was evaluated using qPCR, ELISA and sulphated glycosaminoglycan assay (sGAG). RNA-sequencing was used to establish miRNA signatures in isolated sEV from OA SF. RESULTS: OA SF derived sEV were readily taken up by OA chondrocytes, with increased expression of the catabolic gene MMP 13 (p < 0.01) and decreased expression of the anabolic genes aggrecan and COL2A1 (p < 0.01) observed. Treatment with sEV derived from IL-1ß stimulated OA SF significantly decreased expression of aggrecan and COL2A1 (p < 0.001) and increased SOX 9 gene expression (p < 0.05). OA chondrocytes cultured with sEV from either non-stimulated or IL-1ß treated OA SF, resulted in a significant increase in the secretion of IL-6, IL-8 and MMP-3 (p < 0.01). Cartilage explants cultured with sEV from SF (± IL-1ß) had a significant increase in the release of sGAG (p < 0.01). miRNA signatures differed between parental SF cells and isolated sEV. The recently identified osteoclastogenic regulator miR182, along with miR4472-2, miR1302-3, miR6720, miR6087 and miR4532 were enriched in sEV compared to parental cells, p < 0.01. Signatures were similar in sEVs derived from non-stimulated or IL-1ß stimulated SF. CONCLUSIONS: OA SF sEV regulate chondrocyte inflammatory and remodelling responses. OA SF sEV have unique signatures compared to parental cells which do not alter with IL-1ß stimulation. This study provides insight into a novel regulatory mechanism within the OA joint which could inform future targeted therapy.


Assuntos
Condrócitos , Vesículas Extracelulares , Fibroblastos , MicroRNAs , Osteoartrite , Membrana Sinovial , Humanos , Condrócitos/metabolismo , Condrócitos/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Células Cultivadas , Idoso , Masculino , Feminino , Pessoa de Meia-Idade
5.
Physiol Res ; 73(4): 633-642, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39264083

RESUMO

The study aims to elucidate the therapeutic mechanism of Baicalin (BAI) in alleviating cartilage injury in osteoarthritic (OA) rat models, concentrating on its regulation of the miR-766-3p/AIFM1 axis. An OA rat model was developed with unilateral anterior cruciate ligament transection (ACLT). Interventions comprised of BAI treatment and intra-articular administration of miR-766-3p inhibitor. For evaluation, histopathological staining was conducted to investigate the pathological severity of knee cartilage injury. The levels of oxidative stress (OS) indicators including MDA, SOD, and GSH-Px, were quantified using colorimetric assays. Inflammatory factors (IFs; TNF-?, IL-1?, and IL-6) in knee joint lavage fluids were assessed using ELISA, while RT-PCR was employed to quantify miR-766-3p expression. TUNEL apoptosis staining was utilized to detect chondrocyte apoptosis, and western blotting examined autophagy-related markers (LC3, Beclin, p62), extracellular matrix (ECM) synthesis-associated indices (COL2A, ACAN, MMP13), and apoptosis-inducing factor mitochondrion-associated 1 (AIFM1). Histological examination revealed a marked amelioration of cartilage injury in the BAI-treated OA rat models compared to controls. BAI treatment significantly reduced inflammation and OS of knee joint fluid, activated autophagy, and decreased chondrocyte apoptosis and ECM degradation. Interestingly, the inhibitory effects of BAI on these pathological markers were significantly decreased by the miR-766-3p inhibitor. Further assessment revealed that BAI efficiently promoted miR-766-3p expression while inhibiting AIFM1 protein expression. BAI potentially mitigates articular cartilage injury in OA rats, likely through modulation of miR-766-3p/AIFM1 axis. Keywords: Baicalin, microRNA, AIFM1, Osteoarthritisv, Rat.


Assuntos
Flavonoides , MicroRNAs , Ratos Sprague-Dawley , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , MicroRNAs/metabolismo , MicroRNAs/genética , MicroRNAs/biossíntese , Ratos , Masculino , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Fator de Indução de Apoptose/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos
6.
ACS Appl Mater Interfaces ; 16(38): 50484-50496, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39282962

RESUMO

Characterized by progressive and irreversible degeneration of the articular cartilage (AC), osteoarthritis (OA) is the most common chronic joint disease, and there is no cure for OA at present. Recent studies suggest that enhancing the recruitment of endogenous mesenchymal stem cells (MSCs) to damaged cartilage is a promising therapeutic strategy for cartilage repair. Tetrahedral framework nucleic acid (tFNA) is a novel DNA nanomaterial and has shown great potential in the field of biomedical science. Transforming growth factor-beta 3 (TGF-ß3), a vital member of the highly conserved TGF-ß superfamily, is considered to induce chondrogenesis. A 66-base DNA aptamer named HM69 is reported to identify and recruit MSCs. In this study, aptamer HM69-modified tFNAs were successfully self-assembled and used to load TGF-ß3 when the disulfide bonds combined. We confirmed the successful synthesis of the final composition, HM69-tFNA@TGF-ß3 (HTT), by PAGE, dynamic light scattering, and atomic force microscopy. The results of in vitro experiments showed that HTT effectively induced MSC proliferation, migration, and chondrogenic differentiation. In addition, HTT-treated MSCs were shown to protect the OA chondrocytes. In DMM mice, the injection of HTT improved the therapeutic outcome of mouse pain symptoms and AC degeneration. In conclusion, this study innovatively used the disulfide bonds combined with TGF-ß3 and tFNA, and an additional sequence HM69 was loaded on tFNA for the better-targeted recruitment of MSCs. HTT demonstrated its role in promoting the chondrogenesis of MSCs and cartilage protection, indicating that it might be promising for OA therapy.


Assuntos
Aptâmeros de Nucleotídeos , Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Osteoartrite , Fator de Crescimento Transformador beta3 , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Fator de Crescimento Transformador beta3/farmacologia , Fator de Crescimento Transformador beta3/química , Fator de Crescimento Transformador beta3/metabolismo , Osteoartrite/patologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Animais , Condrogênese/efeitos dos fármacos , Camundongos , Diferenciação Celular/efeitos dos fármacos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Humanos , Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/citologia , Proliferação de Células/efeitos dos fármacos
7.
Nano Lett ; 24(37): 11697-11705, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39225479

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by obscure etiology and unsatisfactory therapeutic outcomes, making the development of new efficient therapies urgent. Superfluous reactive oxygen species (ROS) have historically been considered one of the crucial factors inducing the pathological progression of OA. Ultrasmall Prussian blue nanoparticles (USPBNPs), approximately sub-5 nm in size, are developed by regulating the configuration of polyvinylpyrrolidone chains. USPBNPs display an excellent ROS eliminating capacity and catalase-like activity, capable of decomposing hydrogen peroxide (H2O2) into O2. The anti-inflammatory mechanism of USPBNPs can be attributed to repolarizing macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype by decreasing the ROS levels accompanied by O2 improvement. Additionally, USPBNPs exhibit an exciting therapeutic efficiency against OA, comparable to that of hydrocortisone in vivo. This study not only develops a new therapeutic agent for OA but also offers an estimable insight into the application of the nanozyme.


Assuntos
Ferrocianetos , Macrófagos , Osteoartrite , Espécies Reativas de Oxigênio , Ferrocianetos/química , Ferrocianetos/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nanopartículas/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Humanos , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fenótipo , Tamanho da Partícula
8.
Dental Press J Orthod ; 29(4): e24spe4, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39230116

RESUMO

INTRODUCTION: Osteoarthritis (OA) is a progressive degenerative disease characterized by the gradual degradation of cartilage, remodeling of subchondral bone, synovitis, and chronic pain. This condition impacts various large and small joints, including the temporomandibular joint (TMJ). However, addressing OA, particularly in impeding or reducing disease progression, is challenging due to its clinical and imaging heterogeneity. Authors are increasingly suggesting that this heterogeneity involves different phenotypes or subpopulations, discernible by variations in the disease's pathophysiology and structural manifestations. Even within the TMJ, these phenotypes may display distinct clinical features, laboratory parameters, biochemical markers, and imaging criteria. Recent research has proposed MRI as a reference standard for TMJ OA, highlighting its substantial agreement with histopathological changes. MRI-based phenotypes offer a promising avenue for understanding disease progression and treatment response, potentially providing valuable insights for prognosis and treatment planning. OBJECTIVE: This article introduces the ROAMES-TMJ (Rapid OsteoArthritis MRI Eligibility Score for TMJ) to assess the structural eligibility of individuals for inclusion in TMJ OA clinical trials.


Assuntos
Imageamento por Ressonância Magnética , Osteoartrite , Fenótipo , Transtornos da Articulação Temporomandibular , Articulação Temporomandibular , Humanos , Osteoartrite/diagnóstico por imagem , Osteoartrite/patologia , Imageamento por Ressonância Magnética/métodos , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Transtornos da Articulação Temporomandibular/patologia , Articulação Temporomandibular/diagnóstico por imagem , Articulação Temporomandibular/patologia , Progressão da Doença
9.
J Pineal Res ; 76(6): e12992, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228264

RESUMO

Recent evidence indicates that the damaged regions in osteoarthritis are accompanied by the accumulation of iron ions. Ferroptosis, as an iron-dependent form of cell death, holds significant implications in osteoarthritis. Melatonin, a natural product with strong scavenging abilities against reactive oxygen species and lipid peroxidation, plays a crucial role in the treatment of osteoarthritis. This study aims to demonstrate the existence of ferroptosis in osteoarthritis and explore the specific mechanism of melatonin in suppressing ferroptosis and alleviating osteoarthritis. Our findings reveal that melatonin reverses inflammation-induced oxidative stress and lipid peroxidation while promoting the expression of extracellular matrix components in chondrocytes, safeguarding the cells. Our research has revealed that NADPH oxidase 4 (NOX4) serves as a crucial molecule in the ferroptosis process of osteoarthritis. Specifically, NOX4 is located on mitochondria in chondrocytes, which can induce disorders in mitochondrial energy metabolism and dysfunction, thereby intensifying oxidative stress and lipid peroxidation. LC-MS analysis further uncovered that GRP78 is a downstream binding protein of NOX4. NOX4 induces ferroptosis by weakening GRP78's protective effect on GPX4 and reducing its expression. Melatonin can inhibit the upregulation of NOX4 on mitochondria and mitigate mitochondrial dysfunction, effectively suppressing ferroptosis and alleviating osteoarthritis. This suggests that melatonin therapy represents a promising new approach for the treatment of osteoarthritis.


Assuntos
Ferroptose , Melatonina , Mitocôndrias , NADPH Oxidase 4 , Osteoartrite , Melatonina/farmacologia , Ferroptose/efeitos dos fármacos , Osteoartrite/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , NADPH Oxidase 4/metabolismo , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Estresse Oxidativo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Humanos , Camundongos
10.
Nat Commun ; 15(1): 7712, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231947

RESUMO

Osteoarthritis is a degenerative joint disease with joint pain as the main symptom, caused by fibrosis and loss of articular cartilage. Due to the complexity and heterogeneity of osteoarthritis, there is a lack of effective individualized disease-modifying osteoarthritis drugs in clinical practice. Chondrocyte senescence is reported to participate in occurrence and progression of osteoarthritis. Here we show that small molecule 10-hydroxy-2-decenoic acid suppresses cartilage degeneration and relieves pain in the chondrocytes, cartilage explants from osteoarthritis patients, surgery-induced medial meniscus destabilization or naturally aged male mice. We further confirm that 10-hydroxy-2-decenoic acid exerts a protective effect by targeting the glycosylation site in the Asp_Arg_Hydrox domain of aspartyl ß-hydroxylase. Mechanistically, 10-hydroxy-2-decenoic acid alleviate cellular senescence through the ERK/p53/p21 and GSK3ß/p16 pathways in the chondrocytes. Our study uncovers that 10-hydroxy-2-decenoic acid modulate cartilage metabolism by targeting aspartyl ß-hydroxylase to inhibit chondrocyte senescence in osteoarthritis. 10-hydroxy-2-decenoic acid may be a promising therapeutic drug against osteoarthritis.


Assuntos
Cartilagem Articular , Senescência Celular , Condrócitos , Ácidos Graxos Monoinsaturados , Osteoartrite , Animais , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Masculino , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/tratamento farmacológico , Osteoartrite/prevenção & controle , Camundongos , Senescência Celular/efeitos dos fármacos , Humanos , Ácidos Graxos Monoinsaturados/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Feminino
11.
Bone Res ; 12(1): 50, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231936

RESUMO

Osteoarthritis (OA) is the most common form of arthritic disease, and phenotypic modification of chondrocytes is an important mechanism that contributes to the loss of cartilage homeostasis. This study identified that Fascin actin-bundling protein 1 (FSCN1) plays a pivotal role in regulating chondrocytes phenotype and maintaining cartilage homeostasis. Proteome-wide screening revealed markedly upregulated FSCN1 protein expression in human OA cartilage. FSCN1 accumulation was confirmed in the superficial layer of OA cartilage from humans and mice, primarily in dedifferentiated-like chondrocytes, associated with enhanced actin stress fiber formation and upregulated type I and III collagens. FSCN1-inducible knockout mice exhibited delayed cartilage degeneration following experimental OA surgery. Mechanistically, FSCN1 promoted actin polymerization and disrupted the inhibition of Decorin on TGF-ß1, leading to excessive TGF-ß1 production and ALK1/Smad1/5 signaling activation, thus, accelerated chondrocyte dedifferentiation. Intra-articular injection of FSCN1-overexpressing adeno-associated virus exacerbated OA progression in mice, which was mitigated by an ALK1 inhibitor. Moreover, FSCN1 inhibitor NP-G2-044 effectively reduced extracellular matrix degradation in OA mice, cultured human OA chondrocytes, and cartilage explants by suppressing ALK1/Smad1/5 signaling. These findings suggest that targeting FSCN1 represents a promising therapeutic approach for OA.


Assuntos
Proteínas de Transporte , Condrócitos , Proteínas dos Microfilamentos , Osteoartrite , Animais , Humanos , Masculino , Camundongos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/genética , Fenótipo , Receptores Odorantes , Transdução de Sinais
12.
J Orthop Surg Res ; 19(1): 550, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252111

RESUMO

Osteoarthritis (OA) is a chronic joint disease characterized by the degeneration, destruction, and excessive ossification of articular cartilage. The prevalence of OA is rising annually, concomitant with the aging global population and increasing rates of obesity. This condition imposes a substantial and escalating burden on individual health, healthcare systems, and broader social and economic frameworks. The etiology of OA is multifaceted and not fully understood. Current research suggests that the death of chondrocytes, encompassing mechanisms such as cellular apoptosis, pyroptosis, autophagy, ferroptosis and cuproptosis, contributes to both the initiation and progression of the disease. These cell death pathways not only diminish the population of chondrocytes but also exacerbate joint damage through the induction of inflammation and other deleterious processes. This paper delineates the morphological characteristics associated with various modes of cell death and summarizes current research results on the molecular mechanisms of different cell death patterns in OA. The objective is to review the advancements in understanding chondrocyte cell death in OA, thereby offering novel insights for potential clinical interventions.


Assuntos
Morte Celular , Condrócitos , Progressão da Doença , Osteoartrite , Condrócitos/patologia , Humanos , Osteoartrite/patologia , Osteoartrite/terapia , Morte Celular/fisiologia , Apoptose/fisiologia , Cartilagem Articular/patologia , Autofagia/fisiologia , Animais , Piroptose/fisiologia , Ferroptose/fisiologia
13.
PLoS One ; 19(9): e0309807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39236007

RESUMO

This study explored the mechanism of curcumin (CUR) suppressing osteoclastogenesis and evaluated its effects on osteoarthritis (OA) mouse. Bone marrow-derived macrophages were isolated as osteoclast precursors. In the presence or absence of CUR, cell proliferation was detected by CCK-8, osteoclastogenesis was detected by tartrate-resistant acid phosphatase (TRAP) staining, F-actin rings formation was detected by immunofluorescence, bone resorption was detected by bone slices, IκBα, nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were detected using western blot, osteoclastogenesis-related gens were measured using quantitative polymerase chain reaction. A knee OA mouse model was designed by destabilizing the medial meniscus (DMM). Thirty-six male mice were divided into sham+vehicle, OA+vehicle, and OA+CUR groups. Mice were administered with or without CUR at 25 mg/kg/d from the first post-operative day until sacrifice. After 4 and 8 weeks of OA induction, micro-computed tomography was performed to analyze microstructure changes in subchondral bone, hematoxylin and eosin staining was performed to calculate the thickness of the calcified and hyaline cartilage layers, toluidine blue O staining was performed to assess the degenerated cartilage, TRAP-stained osteoclasts were counted, and NF-κB, phosphorylated Jun N-terminal Kinases (p-JNK), and receptor activator of nuclear factor κB ligand (RANKL) were detected using immunohistochemistry. CUR suppressed osteoclastogenesis and bone resorption without cytotoxicity. CUR restrained RANKL-induced activation of NF-κB, p-JNK and up-regulation of osteoclastogenesis-related genes. CUR delayed cartilage degeneration by suppressing osteoclastogenesis and bone resorption in early OA. The mechanism of CUR inhibiting osteoclastogenesis might be associated with NF-κB/JNK signaling pathway, indicating a novel strategy for OA treatment.


Assuntos
Curcumina , Sistema de Sinalização das MAP Quinases , NF-kappa B , Osteoclastos , Osteogênese , Animais , Camundongos , Masculino , NF-kappa B/metabolismo , Curcumina/farmacologia , Osteogênese/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia
14.
Chem Biol Drug Des ; 104(3): e14620, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39251394

RESUMO

Osteoarthritis (OA) is a progressive joint disease characterized by extracellular matrix (ECM) degradation and inflammation, which is involved with pathological microenvironmental alterations induced by damaged chondrocytes. However, current therapies are not effective in alleviating the progression of OA. Isoquercetin is a natural flavonoid glycoside compound that has various pharmacological effects including anticancer, anti-diabetes and blood lipid regulation. Previous evidence suggests that isoquercetin has anti-inflammatory properties in various diseases, but its effect on OA has not been investigated yet. In this study, through western bolt, qRT-PCR and ELISA, it was found that isoquercetin could reduce the increase of ADAMTS5, MMP13, COX-2, iNOS and IL-6 induced by IL-1ß, suggesting that isoquercetin could inhibit the inflammation and ECM degradation of chondrocytes. Through nuclear-plasma separation technique, western blot and immunocytochemistry, it can be found that Nrf2 and NF-κB pathways are activated in this process, and isoquercetin may rely on this process to play its protective role. In vivo, the results of X-ray and SO staining show that intra-articular injection of isoquercetin reduces the degradation of cartilage in the mouse OA model. In conclusion, the present work suggests that isoquercetin may benefit chondrocytes by regulating the Nrf2/NF-κB signaling axis, which supports isoquercetin as a potential drug for the treatment of OA.


Assuntos
Condrócitos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Osteoartrite , Quercetina , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Proteína ADAMTS5/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Quercetina/farmacologia , Quercetina/análogos & derivados , Quercetina/química , Quercetina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
15.
Int J Rheum Dis ; 27(9): e15323, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39221886

RESUMO

BACKGROUND: Osteoarthritis (OA) is a prevalent degenerative disease. We explored the role and regulatory mechanisms of lncRNA-FAS-AS1 in OA progression. METHODS: We exposed human immortalized chondrocytes to IL-1ß for 24 h to induce an OA cell model. The target molecule levels were assessed using western blot and quantitative real-time PCR (RT-qPCR). Cell viability and apoptosis were measured using CCK-8 and flow cytometry. The m6A modification of FAS-AS1 was determined using MeRIP. We examined the binding relationships between FAS-AS1, Fragile X mental retardation 1 (FMR1), and A disintegrin and metalloproteinase 8 (ADAM8) using RIP and RNA pull-down. The OA animal model was established by separating the medial collateral ligament and medial meniscus. Safranin-O staining and Mankin's scale were employed to evaluate pathological changes within the cartilage. RESULTS: FAS-AS1, METTL14, and ADAM8 were upregulated, and the JAK/STAT3 signaling pathway was activated in OA mice and IL-1ß-induced chondrocytes. FAS-AS1 knockdown inhibited extracellular matrix degradation in IL-1ß-induced chondrocytes; however, ADAM8 overexpression reversed this effect. FAS-AS1 maintained the stability of ADAM8 mRNA by recruiting FMR1. METTL14 knockdown repressed FAS-AS1 expression in an m6A-dependent manner. FAS-AS1 overexpression reversed the inhibitory effects of METTL14 knockdown on JAK/STAT3 signaling and cartilage damage in the OA model both in vitro and in vivo. CONCLUSION: METTL14-mediated FAS-AS1 promotes OA progression through the FMR1/ADAM8/JAK/STAT3 axis.


Assuntos
Proteínas ADAM , Condrócitos , Progressão da Doença , Proteínas de Membrana , RNA Longo não Codificante , Fator de Transcrição STAT3 , Transdução de Sinais , Regulação para Cima , Animais , Humanos , Masculino , Camundongos , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Adenosina/análogos & derivados , Apoptose , Artrite Experimental/metabolismo , Artrite Experimental/genética , Artrite Experimental/patologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Linhagem Celular , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
16.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273098

RESUMO

Osteoarthritis (OA) is a leading cause of pain and disability worldwide in elderly people. There is a critical need to develop novel therapeutic strategies that can effectively manage pain and disability to improve the quality of life for older people. Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for age-related disorders due to their multilineage differentiation and strong paracrine effects. Notably, MSC-derived exosomes (MSC-Exos) have gained significant attention because they can recapitulate MSCs into therapeutic benefits without causing any associated risks compared with direct cell transplantation. These exosomes help in the transport of bioactive molecules such as proteins, lipids, and nucleic acids, which can influence various cellular processes related to tissue repair, regeneration, and immune regulation. In this review, we have provided an overview of MSC-Exos as a considerable treatment option for osteoarthritis. This review will go over the underlying mechanisms by which MSC-Exos may alleviate the pathological hallmarks of OA, such as cartilage degradation, synovial inflammation, and subchondral bone changes. Furthermore, we have summarized the current preclinical evidence and highlighted promising results from in vitro and in vivo studies, as well as progress in clinical trials using MSC-Exos to treat OA.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Osteoartrite , Exossomos/metabolismo , Exossomos/transplante , Humanos , Osteoartrite/terapia , Osteoartrite/metabolismo , Osteoartrite/patologia , Células-Tronco Mesenquimais/metabolismo , Animais , Transplante de Células-Tronco Mesenquimais/métodos
17.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39273553

RESUMO

Osteoarthritis (OA) is an age-related disease characterized by inflammation, pain, articular cartilage damage, synovitis, and irreversible disability. Gynostemma pentaphyllum (Thunb.) Makino (GP), a herbal medicine traditionally used in East Asia for its anti-inflammatory properties, was investigated for its potential to modulate OA pathology and symptoms. This study evaluated GP's efficacy in inhibiting pain, functional decline, and cartilage destruction in monosodium iodoacetate-induced OA and acetic acid-induced writhing models. Additionally, the effects of GP on OA-related inflammatory targets were assessed via mRNA and protein expression in rat knee cartilage and lipopolysaccharide-induced RAW 264.7 cells. The GP group demonstrated significant pain relief, functional improvement, and cartilage protection. Notably, GP inhibited key inflammatory mediators, including interleukin (IL)-1ß, IL-6, matrix metalloproteinases (MMP)-3 and MMP-13, cyclooxygenase-2, and prostaglandin E receptor 2, surpassing the effects of active controls. These findings suggest that GP is a promising candidate for disease-modifying OA drugs and warrants further comprehensive studies.


Assuntos
Analgésicos , Anti-Inflamatórios , Gynostemma , Osteoartrite , Extratos Vegetais , Animais , Gynostemma/química , Camundongos , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/induzido quimicamente , Osteoartrite/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células RAW 264.7 , Ratos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Masculino , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Modelos Animais de Doenças , Ratos Sprague-Dawley , Dor/tratamento farmacológico
18.
FASEB J ; 38(17): e70013, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39225365

RESUMO

Articular cartilage phenotypic homeostasis is crucial for life-long joint function, but the underlying cellular and molecular mechanisms governing chondrocyte stability remain poorly understood. Here, we show that the protein tyrosine phosphatase SHP2 is differentially expressed in articular cartilage (AC) and growth plate cartilage (GPC) and that it negatively regulates cell proliferation and cartilage phenotypic program. Postnatal SHP2 deletion in Prg4+ AC chondrocytes increased articular cellularity and thickness, whereas SHP2 deletion in Acan+ pan-chondrocytes caused excessive GPC chondrocyte proliferation and led to joint malformation post-puberty. These observations were verified in mice and in cultured chondrocytes following treatment with the SHP2 PROTAC inhibitor SHP2D26. Further mechanistic studies indicated that SHP2 negatively regulates SOX9 stability and transcriptional activity by influencing SOX9 phosphorylation and promoting its proteasome degradation. In contrast to published work, SHP2 ablation in chondrocytes did not impact IL-1-evoked inflammation responses, and SHP2's negative regulation of SOX9 could be curtailed by genetic or chemical SHP2 inhibition, suggesting that manipulating SHP2 signaling has translational potential for diseases of cartilage dyshomeostasis.


Assuntos
Cartilagem Articular , Condrócitos , Osteoartrite , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Fatores de Transcrição SOX9 , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Condrócitos/metabolismo , Condrócitos/patologia , Camundongos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Proliferação de Células , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Masculino
19.
Stem Cell Res Ther ; 15(1): 311, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294780

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have shown a positive effect on Osteoarthritis (OA), but the efficacy is still not significant in clinical. Conventional two-dimensional (2D) monolayer culture method is prone to cause MSCs undergoing replication senescence, which may affect the functions of MSCs. Three-dimensional (3D) culture strategy can sustain cell proliferative capacity and multi-differentiation potential. This study aimed to investigate the therapeutic potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) cultured by 3D hanging drop method on OA. METHODS: hUC-MSCs were isolated from umbilical cord and cultured by 3D hanging drop method for 48 h. Scanning electron microscopy (SEM) was used to observe gross morphology 2D and 3D hUC-MSCs. Transcriptome comparison of gene expression differences between 2D and 3D hUC-MSCs. GO enrichment analysis, KEGG pathway enrichment analysis and GSEA enrichment analysis were used to analyze the impact of 3D hanging drop culture on the biological functions of hUC-MSCs. Female New Zealand rabbits (n = 12) were divided into 4 groups: Normal group, Model group, 2D hUC-MSCs treatment group and 3D hUC-MSCs treatment group. After 8 weeks, the gross and histological appearance of the cartilage was evaluated by safranin O-fast green staining and Mankin scoring system. The expression of type I collagen and type II collagen was detected by immunohistochemistry. The levels of IL-6, IL-7, TNFα, TGFß1 and IL-10 in the knee joint fluid were tested by ELISA. RESULTS: 3D hanging drop culture changed cell morphology but did not affect phenotype. The MSCs transcriptome profiles showed that 3D hanging drop culture method enhanced cell-cell contact, improved cell responsiveness to external stimuli and immunomodulatory function. The animal experiment results showed that hUC-MSCs could promote cartilage regeneration compared with Model group. 3D hUC-MSCs treatment group had a higher histological score and significantly increased type II collagen secretion. In addition, 3D hUC-MSCs treatment group increased the expression of anti-inflammatory factors TGFß1 and IL-10. CONCLUSION: The above experimental results illustrated that 3D hanging drop culture method could enhance the therapeutic effect of hUC-MSCs, and showed a good clinical application prospect in the treatment of OA.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Cordão Umbilical , Animais , Coelhos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Cordão Umbilical/citologia , Osteoartrite/terapia , Osteoartrite/patologia , Osteoartrite/metabolismo , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Diferenciação Celular , Células Cultivadas , Técnicas de Cultura de Células em Três Dimensões/métodos , Proliferação de Células
20.
Cytokine ; 183: 156746, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39236430

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common musculoskeletal disorder characterized by chondrocyte apoptosis and extracellular matrix degradation. This study aimed to investigate the role of CCL4/CCR5 in regulating chondrocyte apoptosis and reactive oxygen species (ROS) levels in OA progression. METHODS: Bioinformatics analysis was employed to identify CCL4 as the target gene, following which primary chondrocytes were treated with varying concentrations of CCL4. Apoptosis rate of chondrocytes and ROS levels were assessed using flow cytometry. The mechanism by which CCL4 regulated the extracellular matrix was investigated through Western blot and Immunofluorescence analyses. Additionally, maraviroc, a CCR5 inhibitor, was administered to chondrocytes in order to explore the potential signaling pathway of CCL4/CCR5. RESULTS: Our study found that CCL4 was predominantly up-regulated among the top 10 hub genes identified in RNA-sequencing analysis. Validation through quantitative polymerase chain reaction (qPCR) confirmed elevated CCL4 expression in patients with Hip joint osteoarthritis, knee joint osteoarthritis, and facet joint osteoarthritis. The upregulation of CCL4 was associated with an increase in chondrocyte apoptosis and ROS levels. Mechanistically, CCL4, upon binding to its receptor CCR5, triggered the downstream phosphorylation of P65 in the nuclear factor-κB (NF-κB) signaling pathway. In vitro experiments demonstrated that treatment with maraviroc mitigated chondrocyte apoptosis, reduced intracellular ROS levels, and attenuated extracellular matrix degradation. CONCLUSION: The study highlights the critical role of CCL4/CCR5 in modulating chondrocyte apoptosis and ROS levels in OA progression. Targeting this pathway may offer promising therapeutic interventions for mitigating the pathogenic mechanisms associated with OA.


Assuntos
Apoptose , Quimiocina CCL4 , Condrócitos , Progressão da Doença , Osteoartrite , Espécies Reativas de Oxigênio , Receptores CCR5 , Condrócitos/metabolismo , Condrócitos/patologia , Humanos , Receptores CCR5/metabolismo , Receptores CCR5/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Quimiocina CCL4/metabolismo , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Maraviroc/farmacologia , Matriz Extracelular/metabolismo , NF-kappa B/metabolismo , Masculino , Células Cultivadas , Regulação para Cima , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA